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Abstract

Let D be a finite dimensional division algebra over a local field of charac-
teristic p and let SL; (D) denote the group of elements of reduced norm 1 in D.
In this paper we prove that SLq(D) is finitely presented as a profinite group.

1 Introduction

Let F be a local field of (positive) characteristic p. Let D be a finite dimensional
central division algebra over F, and let SLq(D) denote the group of elements of
reduced norm 1 in D. The goal of this paper is to prove the following result.

Theorem 1.1. The group SL1(D) is finitely presented as a profinite group.

The notion of finite presentability for profinite groups is defined in the usual
sense of category theory, but in general is hard to analyze. Things become easier
if one considers pro-p groups instead of profinite groups, in which case a simple
cohomological criterion is available (see [Wil]):

Theorem 1.2. A finitely generated pro-p group G is finitely presented (as a pro-p
group) if and only if H*(G,F,) is finite.

Remark: By a theorem of Lubotzky [Lul], a pro-p group is finitely presented as a
pro-p group if and only if it is finitely presented as a profinite group.

Just as in the case of abstract groups, finite presentability of profinite groups
is a commensurability invariant (recall that two groups are called commensurable
if they have isomorphic subgroups of finite index). Since SL;(D) contains a finite
index pro-p subgroup, the assertion of Theorem 1.1 is equivalent to finiteness of
H?(G,F,) for some (hence arbitrary) open pro-p subgroup G of SL;(D).

*This work is part of the author’s Ph.D. Thesis at Yale University.

'Here F, is a finite field with p elements, considered as a trivial G-module, and cohomology is
based on continuous cochains. Recall that H?(G,F,) is in bijective correspondence with equivalence
classes of topological central extensions of G by Fp.



In [PR], Prasad and Raghunathan established vanishing of H?(SL1(D),Q/Z)
(where Q/Z is given discrete topology and the action of SL;(D) is trivial), which
immediately implies that H?(SL;(D),F,) = 0. The assertion of Theorem 1.1 does
not follow from this result, since finiteness of cohomology is not necessarily preserved
under the passage to a finite index subgroup. Still, many ideas from [PR] are used
in the present paper, although they are often expressed in different language.

Theorem 1.1 settles the last open case of the following question posed by Yiftach
Barnea.

Question. Let G be a connected, simply-connected, (absolutely almost) simple alge-
braic group defined over a (nonarchimedean) local field F. If U is an open compact
subgroup of G(F), is U finitely presented as a profinite group?

If F' has characteristic zero, then U must be p-adic analytic and hence finitely
presented (see [DDMS]). Recently, Lubotzky [Lu2] answered the above question
in the affirmative for all isotropic groups. Finally, if G is a connected simply-
connected simple algebraic group defined and anisotropic over a local field F,
then by Tits’ classification G(F') is isomorphic to SL;j (D) for some division algebra
D. Since SLi(D) is compact, its open subgroups are of finite index and hence
finitely presented by Theorem 1.1.

The proof of Theorem 1.1 is based on certain relations between cohomology of
pro-p groups and associated graded Lie algebras. Our method 2 is described in detail
in Section 3; here we just explain how Lie algebras come into play and motivate some
of the later definitions. Some notations and terminology below are introduced for
expository purposes and will not be used in the rest of the paper.

Given a finitely generated pro-p group G, let L(G) be the Lie algebra of G with
respect to the lower central series. The following result was suggested to the author
by Efim Zelmanov:

Proposition 1.3. If L(G) is finitely presented (as a Lie algebra over the ring of
p-adic integers), then G is finitely presented (as a pro-p group).

Unfortunately, we do not know any interesting examples where the hypothesis
of Proposition 1.3 holds. Nevertheless, we would like to sketch a proof of this result.
We give not the shortest argument, but the one which will lead us to a suitable
generalization.

By Theorem 1.2, a finitely generated pro-p group G is finitely presented if and
only if G has only finitely many (non-equivalent) topological central extensions
by Fp,; we will call such extensions elementary. With each elementary extension

£ =1—-F, = G — G — 1 one can associate an elementary extension of Lie

~

algebras L(€) := 0 — F, — L(G) — L(G) — 0. The correspondence £ — L(&)

2A somewhat similar method was used in [Ex], but the language in that paper is different.



is not injective; however extensions L(E) and L(E’) are non-equivalent provided £
and & have different depths. The depth of an extension 1 — F, — G G > 1is

defined to be the largest integer n such that Ker ¢ C ~,G. Now suppose that G is
not finitely presented. Then it is easy to show that G has elementary extensions of
arbitrarily large depth. It follows from the above argument that L(G) has infinitely
many elementary extensions and therefore L(G) is not finitely presented. This
finishes the sketch of a proof of Proposition 1.3.

Let us say that an elementary extension of L(G) is integrable, if it is of the form
L(€) for some extension £ of G. Now suppose that G is finitely presented, while
L(G) is not. This means that L(G) has infinitely many elementary extensions,
but only finitely many integrable ones. So, if we want to prove that G is finitely
presented by classifying extensions of L(G), we need to find necessary conditions for
an extension of L(G) to be integrable. The latter seems to be a hard task.

The problem can be resolved by considering Lie algebras with respect to filtra-
tions other than the lower central series. One natural choice is the ”e-step lower
central series” (where e is a fixed positive integer), i.e. the series .G D v2.G D
v3¢G D .... Let L°(G) be the corresponding Lie algebra. As above, there is a
correspondence £ — L¢(E) between elementary extensions of G and elementary ex-
tensions of L¢(G), and we can define the notion of an integrable extension. The new
feature is that L¢(G) is acted on by G in a non-trivial way (for e > 1). As a result,
one can write down easily verifiable conditions which must hold for every integrable
extension of L¢(G). ”Ideally”, one would like to find e such that only finitely many
extensions of L¢(G) satisfy those conditions. However, even if we are unable to do
that, we may still be able to prove finite presentability of G as follows:

a) for every e € N classify elementary extensions of L¢(G);

b) show that for any sufficiently large n there exists e = e(n) with the following
property: if an elementary extension of L¢(G) is of the form L¢(£), then the depth
of € cannot be equal to n (hence G has no elementary extensions of depth n).

The point is that if £ is an elementary extension of G, then L¢(&) carries some
information about the depth of £. So, even if we cannot show directly that L¢(G)
has only finitely many integrable extensions, we may still be able to establish b).

As far as part a) is concerned, note that in general not all elementary extensions
of L¢(G) are accounted for by the cohomology group H?(L¢(G),F,), since some of
those extensions do not split even on the level of abelian groups. However, if G is
the first congruence subgroup of SL1 (D) (which is our case of interest), this problem

does not arise: we will show that for any central extension 1 — F, - G — G — 1,

~

both L¢(G) and L¢(G) are Fp-Lie algebras for a suitable choice of e, whence every
integrable extension of L°(Q) is represented by some element of H2(L¢(G),F,).

Final remark. The filtrations we will use in the actual proof of Theorem 1.1 are
not ”e-step lower central series”, but their truncated versions (which we call basic
filtrations ). This minor technical modification does not affect the idea of the proof.



Organization. In Section 2 we recall basic facts about filtrations in pro-p
groups and associated Lie algebras. The general method used to prove Theorem 1.1
is described in Section 3. In Section 4 we review the structure of division algebras
over local fields. Section 5 is concerned with computation of the second cohomology
of Lie algebras associated with basic filtrations of SL1(D). In Section 6 we use the
obtained information to complete the proof of Theorem 1.1. In the cases p = 2,
d =4, and p = d = 3 (where d is the degree of D over F'), some of the results
of Section 5 require different proofs — these are given in Sections 7. The proof of
Theorem 1.1 in the case p = d = 2 (which requires more serious modifications) is
given in Section 8.
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the problem and to Efim Zelmanov for proposing the use of Lie methods for finite
presentability questions. I would like to thank Alex Lubotzky, Gregory Margulis
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versions of this paper, and Uzi Vishne for suggesting good references on finite fields.

Basic notations. Throughout the paper Z will stand for integers, and N for
positive integers. A finite field of order ¢ will be denoted by F,, and the ring of
p-adic integers by Z,,. If x is real number, then [z] is the largest integer which does
not exceed z. Finally, we will write a =, b for a =b mod n.

2 Filtrations of pro-p groups and associated graded Lie
algebras.

Let G be a pro-p group. As usual, given g,h € G, we set (g,h) = g 'h~'gh. If
A and B are subsets of G, let (A, B) be the closed subgroup generated by the set
{(a,b) | a € A,b € B}. The n'" term of the lower central series of G is denoted by
WG.

Let w = {w1G D weG O ...} be a descending chain of closed normal subgroups
of a pro-p group G. We will call w a filtration of G if (w;G,w;G) C w;;;G for
all 4,7 > 0. Note that our definition does not include standard requirements a)
wiG =G, b) Nw;G = {1} and ¢) w;G is open in G.

The graded Lie algebra of G associated with the filtration w will be denoted by

L¥(G). As a graded abelian group, L*(G) = @ wn,G/wp4+1G, and the bracket is de-
n=1

fined as follows: given g € w;G\w;1+1G and h € w;G\w;+1G, set [gw;11G, hw; 1G] =
(9, h) witj+1G. For each n > 1, the quotient w, G//wn11G has the structure of a right
G-module with respect to the ”conjugation” action. More precisely, given g € w,G
and h € G, we set (gwn1G)" := g"w,1G where g" = h™'gh. Extending by lin-
earity, we obtain a grading-preserving action of G on L“(G), which respects the Lie
bracket. Note that if w;G = G, this action is necessarily trivial.

Since G is pro-p, for every g € G and a € Z,, there is a well-defined element g“;
it follows that L*(G) has the structure of a Lie algebra over Z,. If (w;G)? C wi1G



for all 4, w will be called a p-filtration; in this case pL“(G) = 0, so L*(G) becomes
a Lie algebra over IF,.

Once again, fix a filtration w = {w;G} of a pro-p group G. Let g € G. If
g € wpG\wp4+1G for some n, the coset gw,+1G (which can be thought of as an
element of L*(G)) will be called the w-leading term of g and denoted by LT (g).
The number n will be referred to as the w-degree of g and denoted by deg ,(g). If

g € [ wiG, we set LT ,(g) = 0 and deg ,(g) = oo. If g € w1 G, both the w-degree
i>1
and the w-leading term will be undefined.

Given a subgroup H of G, the Lie subalgebra of L“(G) corresponding to H is
o
Lg(H) == @(H N wiG)wit1G/wir1G. Since (H NwiG)wiy1G/wit1G is naturally
i=1
isomorphic to (H Nw;G)/(H Nw;i4+1G) for all ¢, we can identify L (H) with the Lie
algebra of H associated with the filtration {w;G N H}5°,.

3 Lie algebras as a tool for proving finite presentability
of pro-p groups

3.1 Finite presentations and covering maps.

Finiteness of the second cohomology group H 2(G,IF;,,) is one of several conditions
that are equivalent to finite presentability of a pro-p group G. In order to state the
other conditions we introduce the following definition.

Definition. Let G be a pro-p group. A cover of G is a pair (@, ©), where G is
another pro-p group and ¢ : G — G is a surjective homomorphism. We say that
a) (G, ) is a non-trivial cover, if Ker p # 1,

b) (6:, ¢) is an elementary cover, if Kerp =F),.

The depth of a non-trivial cover (G, ¢) is the largest integer n such that Ker ¢ C ~,,G.
We will write dep (G, ¢) = n.

Note that if (E;, ) is an elementary cover, then Ker ¢ is central in G. Indeed,
the order of the group A = Aut (IF,) is not divisible by p, so there is no nontrivial

homomorphism from G to A.
Remark: The difference between an elementary cover and an elementary extension
(extension of G' by F,) is that in the definition of an elementary cover we do not

specify the embedding of F, into G. Thus, each elementary cover corresponds to
(p — 1) non-equivalent elementary extensions.

Proposition 3.1. Let G be a finitely generated pro-p group. The following are
equivalent:

a) G is finitely presented;

b) H*(G,Fp) is finite;



c) G has finitely many equivalence classes of elementary extensions;
d) The depths of all non-trivial covers of G are uniformly bounded;
e) The depths of all elementary covers of G are uniformly bounded.

Proof. The equivalence of a), b) and c) is well known (see [Wil]), and it is clear that
c¢) implies e). So, it is enough to show that e) implies d) and d) implies a).

e)= d) Let N be a bound for the depths of elementary covers of G. Let (E:, ®)
be a non-trivial cover of G, let n = dep (@ ¢), and let K = Kerp. We know
that K C ynG and K ¢ 7n+1G so there exists a subgroup H of K such that
Kn ’yn+1G C H and |K : H| = p. Tt is easy to see that H is a normal subgroup
of (A? and ((A? /H, ) is an elementary cover of G (where @ is defined in an obvious
way). Therefore, dep (G/H ,@) < N by assumption. On the other hand, we have
dep (G/H, @) > n since Ker ¢ C %LG/H fyn(G/H) Hence, n < N.

d)= a) Since G is finitely generated, it has a presentation (x1,...,Zy, | r1,72,...)
with the following property: for every n > 0 all but finitely many relators {r;} lie in
Y F', where F' is the free pro-p group on {x1,z2,..., 2} (this is true because each
quotient v, F'/vp41F is a finitely generated Z,-module).

Now let N be a bound for the depths of non-trivial covers of G, and let r1, ...,y
be all defining relators in the above presentation which do NOT lie in vyyi41F.
Clearly, the group G = (1,...,Tm | T1,...,17) is a cover of G of depth at least
N + 1. Therefore, G is isomorphic to G and hence finitely presented. O

3.2 Central extensions: from pro-p groups to Lie algebras

Let G be a pro-p group whose finite presentability we are trying to establish. For the
rest of this section we fix an elementary cover (G, ¢) of G, and let N = dep (G, ¢).
We will describe a Lie algebra method which can be used to show that no such cover
exists for sufficiently large N (and hence G is finitely presented by Proposition 3.1).

In this subsection we define a suitable filtration of G and an IF)-valued 2-cocycle
of the associated Lie algebra L¥(G) which carries a lot of useful information about
the cover (G, ). At some point we will need to assume that G satisfies certain
condition, which holds automatically if (7;G)P C ~,;G for all i.

Fix a positive integer e such that e < N, and let ¢ = [N/e]. Given a pro-p group
H, let {w;H} be the filtration of H defined by setting w;H = ~¢;H for i < ¢ and
wiH = yny1H for i > c¢. In what follows, we refer to this filtration as the basic

oo
filtration of type (N,e). Let LY(H) = € LY (H) be the associated graded Lie
i=1

algebra. Note that Ly (H) =0 for i > c.

Recall that we have a ”conjugation” action of G on LW(G) and of G on L¥(G).
Since Ker¢ is central in G Ker ¢ acts trivially on LW(G). Hence both Lw(é)
and L¥(G) are G-modules. Moreover, the G-submodules L¥(G) and L;"(é) are
isomorphic for i < ¢, since dep (E;, p) > ce.



From now on we use shortcut notations L = L“(G), L= L“(a) and LY = LY(G),
ZZJ = Lf(a) for i e N (of course, LY = 0 and Ew =0 for i > ¢).

Define ¢, : L — L by settlng w*(nglG) = ¢(§)wit+1G for g € wza Let ¢; be
the restriction of ¢, to L Clearly, @, is a Lie algebra homomorphism preserving

the G-action, ¢; is surjectlve for all ¢ and injective for i # ¢, while Ker p. = F),.
In order to proceed we need the following technical lemma:

Lemma 3.2. Let G, G and N be as above. Let f:N —- Nbea functwn such
that (viG)? C v4»G. Then for all i € N we have (%G)p C Ymin(f(),N )G and

(’YZG)p - Ymin(p(i—1)+1,f(i— 1)+1)G

Proof. The first half of the statement is clear since Ker ¢ C 'yNé. The second half
can be proved using the following well-known congruence (see [LM]):

(z%,y) = (z,y)" mod K(z,(z,y)),
where K (a,b) is the normal closure of y,(a,b) - (72(a,b))? in (x,y).

We omit the details and refer the reader to [Er, Lemma 4.2], where a very similar
statement is proved. ]

Corollary 3.3. Suppose that ¢ > 2 and (viG)P C 4G for allt > 1. Then {wf;}
is a p-filtration, i.e. ( ZG)p - wH_lG for all i.

From now on we will assume that the conclusion (not necessarily the hypothesis)

of Corollary 3.3 holds. It follows that L is a Lie algebra over ), (and so is L). After
choosing an isomorphism between Ker ¢, and F,, we obtain a central extension of
graded IF,-Lie algebras:

0—-F,— L5 L 0. (3.1)

This extension splits on the level of graded F)-vector spaces. In other words, there
exists a linear map f : L — Z, such that ¢, f = id and f(LY) C Z:’ forl <i<ec.
We shall call such map an w-graded splitting or simply an w-splitting. Note that the
restriction of an w-splitting to LY is uniquely determined for i # c.

Next we introduce two functions which encode the above central extension.
Given f as above, define 37 : G X L — L as follows:

37(g,u) = f(u)? = f(u?).

Note that . (37(g,u)) = @«(f(W)?)=@«(f(u9)) = (@uf () —puf(u9) = v —uf = 0,
whence Im (3¢) € Ker .. Now define Zy : L x L — L by setting

Zs(u,v) = f([u,v]) = [f(w), f(v)].

Once again, we have Im (Z¢) C Ker ¢..



Of course, Zy is a 2-cocycle of L with values in the trivial L-module I}, and
the cohomology class of Z; in H?(L,F,) does not depend on the choice of f. Any
2-cocycle cohomologous to Zy is equal to Zy for another splitting f’; however f’ is
not necessarily an w-splitting. It is important to know when the latter is the case.

Let us say that amap C : Lx L — Lis w-graded if C(Ly, LY) C Zfﬂ. fori,j € N.
Under the chosen identification of IF, with Ker ¢, a map C': L x L — [F, is w-graded
if and only if C(Ly, L¥) = 0 whenever i + j # ¢ (since Ker g, C lA}:) Clearly, Z;
is an w-graded 2-cocycle. Now define the graded cohomology group ® H, gzr (L,F)p) to
be the quotient space of w-graded 2-cocycles modulo w-graded 2-coboundaries. It is
easy to see that a 2-cocycle C'is equal to Zg for some w-splitting f’ if and only if

a) C is w-graded,

b) C and Zy represent the same class in H gQT (L,Fp).

Cohomological interpretation of 3 will not be needed, but let us state it anyway.
Define the left G-module structure on Hom (L, F,) in the usual way: givenl: L — F),
and v € L, set (g *[)(u) = l(u9). One can check that the function from G to
Hom (L,F,) given by g — (u — 3¢(g,u)) is a 1-cocycle, and its cohomology class
3/ € HY(G,Hom (L,F,)) does not depend on f.

Definition. Let C': L x L — Fj, and ¢ : G x L — F,, be any maps. We will say that
C and ¢ are compatible if
(g, [u,v]) = C(u,v) — C(u?,v9) for any g € G and u,v € L. (3.2)
The key relation between Lie algebra and group cohomology is provided by the
following result.
Proposition 3.4. The maps Z; and 35 are compatible.

Proof. Note that G acts trivially on Ker ¢,, whence Z¢(u,v)? = Zy¢(u,v) for all
u,v € L. Thus the right-hand side of (3.2) is equal to

Z(u,0)? = Zy(u?,07) = f(lu, v])? = [f(u), f(0)) = ([, 0%]) + [f (@), f(v7)] =
S, 0])? = [f(w)?, f(0)°] = f([w,v]?) + [f (W), f(v7)] =
3£(g, [u, v]) = [f(w)?, f(0)?] + [f(u?), fF(09)].
Now f(w)? — f(w9) € Ker g, for any w € L, and Ker ¢, lies in the center of L.
Therefore, [f(u)?, f(v)9] = [f(u9), f(v9)], and we are done. O
The following simple observation is recorded here for future use.
Claim 3.5. Let Q be a subset of L x L such that if (u,v) € Q, then (u9,v9) € Q for

any g€ G. If C: Lx L — T, and ¢c: G x L — [F, are compatible, then the values
of C on Q determine the values of ¢ on G x ', where Q' = {[u,v] | (u,v) € Q}.

3This notion is introduced for expository purposes only. In the actual proof we will always work
with cocycles and not their cohomology classes.



3.3 Computing the group 1-cocycle 3;

Suppose now that we explicitly constructed w-graded 2-cocycles C1,...,Cy whose
cohomology classes form a basis for H, gQT(L, [F,). Then for a suitable w-splitting f we
have Z; = > AiC; for some \; € F,. Proposition 3.4 enables us to write a formula
for 3 = 3¢ (or rather its restriction to G x [L, L]) in terms of {\;}.

The next step is to find restrictions on the values of \;. These can be obtained
by finding suitable pairs of commuting elements of G:

Lemma 3.6. Let g and h be commuting elements of G. Assume that deg ,(hP) =
and let u=LT ,(h?) € LY. Then 3(g,u) = 0.

Proof. Tt is enough to show that f(u)? = f(u). Indeed, this would imply that

w = (puf(u))? = pu(f(u)?) = pu(f(u)) = u, whence f(v) = f(u).
Choose §,h € G such that ©(h) = hand () = g, and let & = LT ,,(k?). Clearly,
@ — f(u) € Kergp,. Since G acts trivially on Ker gy, f(u)? = f(u) if and only if

@9 = 4. The latter holds if and only if (h?, ) € 7N+1G Let k = (h,§). Tt follows
from the Hall-Petrescu formula (see [DDMS, Appendix A]) that (hp, g) = kPw where

w is a product of elements of the form {(k,s) | s € G}. Since g and h commute,
k € Ker ¢. But Ker ¢ is central in G and has order p. Therefore kP = w = 1, whence
(h?,§) = 1. O

The objective is to find enough restrictions on the {\;} to conclude that 3 van-
ishes on G x U, where U = yny_1G/yn+1G C L¥. The latter would contradict the
following lemma.

Lemma 3.7. Let U = yv1G/ynvn1G, V= 'YNG/'YNJrlG U= 1G/’YN+1G
V= ’yNG/VNHG (note that V_.C U C L¥ and VcUcL . ). The following hold:

a) V s the linear span of elements of the form f(u)? — f(u), where u € U and
geq.

b) The restriction of 3 to G x U is nontrivial.

¢) The restriction of 3 to G X V is trivial.

Proof. a) First observe that f(u)? — f(u) € V for any u € U and g € G, since
f(U)CUandug—ueroranyuelAf

Given 0 € V let h € 'yNG be such that LT ,(h) = 0. There exist elements h; €
YN— \G and k; € G such that h = [1(hi, ki) mod 7N+1G Since (hs, ki) = h; lhlg

we have

0 =LT,(h) = Y _(af* —a;) where @; = LT ,(h;) € U.

Now let u; = p«(4;) € U. Clearly, 4; — f(u;) € Kerp,. Since G acts trivially on
Ker ¢,, we conclude that @f’ —4; = f(u;)® — f(u;) which takes care of a).



b) Suppose that 3 vanishes on G x U. Then for any v € U and g € G we
have f(u)? = f(u9), whence f(u)? — f(u) = f(u9 — u). Since u9 —u € V for any
u € U, part a) implies that VC f(V). Since V 5 Ker ¢y and Im f NKer g, = 0, we
conclude that Ker ¢, = 0, which is impossible.

c) This is very easy and left to the reader. O

Remark: The method we just described may fail or succeed depending on the
choice of the number e (appearing in the definition of w). In general, the larger e
is, the more relations between {)\;} Lemma 3.6 yields. However, the dimension of
the group H?(L, IF,,) also grows with increasing e. The optimal choice of e depends
largely on G, but the basic guideline is that neither e nor N/e should be too small.
As a rule, the larger N is, the easier it is to find a suitable value of e.

4 The group SL(D)

We start by reviewing the structure of division algebras over local fields. For more
details the reader is referred to a paper of Riehm [Ri].

Let F be a local field of characteristic p. Let D be a finite-dimensional central
division algebra over F' and let d be the degree of D over F. Then there exists
an unramified extension W of F of degree d, a generator o of the Galois group
Gal (W/F') and a uniformizer 7 of D such that

rwr !t = o(w) for all w € W. (4.1)

Denote by Op, Ow and Op the valuation rings of F', W and D, and by mg, myy,
mp the corresponding maximal ideals. It is easy to see that 7 := 7 is a uniformizer
of F, so we have mp = 7Op, mp = 7Of and myy = 70y .

Let w (resp. f) be the residue field of W (resp. F'). So f = F,, where ¢ is a
power of p, and w = F 4. Let fy be the prime subfield of f (so fy = F,). We will
denote the trace map of the extension w/f (resp. w/fy) by tr (resp. try).

Since F' has characteristic p, we can canonically identify f (resp. w) with a
subfield of F' (resp. w). We will also identify the Galois groups Gal (W/F') and
Gal (w/f) via the restriction map (which is an isomorphism). So we can write
F = f£((r)), W = w((r)), Op = f[[7]] and Ow = w][r]]. Similarly, D can be
identified (as a set) with Laurent series w((7)). Using (4.1), it is easy to see that
multiplication in D is given by the formula

amt - ﬁwj — agi(ﬁ)w”j for a, 0 € w and i,j € Z.

Let Nyeq (resp. Tieq) denote the reduced norm (resp. reduced trace) map
from D to F. Recall that if a € D, then Nyeq (a) (resp. Tyeq (a)) is equal to the
determinant (resp. trace) of the endomorphism of the left W-vector space D given
by & — za. The restriction of Nyoq (resp. Tyeq) to W coincides with the norm
(resp. trace) map of the extension W/F.
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Let GL}(D) = {g € D* | g =1 mod mp} and let SL;(D) be the group of
elements of reduced norm one in D. The group SL}(D) = GL}(D)NSLi(D), which
is an open pro-p subgroup of SL;i (D), will be our main object of study. For the rest
of the paper we denote SL1(D) by G and GL}(D) by U. Let {U;} (resp. {G;}) be
the congruence filtration of U (resp. G), that is, set U; = {g € U | g =1 mod m’,}
and G; = GNU;. It is known that

a) GY C Gy for all i > 1, b) G; =G foralli>1unlessd=p=2. (4.2)

Let Lie(U) be the Lie algebra of U with the respect to the congruence filtration.
It is easy to see that Lie(U) can be identified with the subalgebra w[r| C Op via
the map LT (1 + an') — an’. Therefore, the Lie bracket on Lie(U) is given by the
formula

o, ] = (A (1) — paord (A,
The subalgebra Liey(G) = @@ (G N U,)Upy1/Uny1 consists of elements of reduced
n=1

o0
trace zero in w(r]. More explicitly, Liey(G) = @ M,,, where M,, = wr" if d t n,
n=1
and M, = {\n" | tr (A\) =0} if d | n.
Our next goal is to describe the Lie algebras of G with respect to various ba-
sic filtrations. These Lie algebras are similar to Liey(G), and they can be nicely

embedded into certain associative algebras, which are defined below.
Fix integers N and e such that 1 < e < N. Let A = A(N,e) be the Fp-vector

N A
space @ wz' (where x is a formal variable) with the associative multiplication
i=0
defined as follows. Given ¢ € N, let (i) be the remainder of ¢ modulo e. For any
a,f €wandi,j €N we set

act ()t ife(i) +e(j) <eand i+ j < N,

T
az’ - fz { 0 otherwise. (4.3)

The associative algebra A has two natural gradings:

e .
e thin grading A = @@ A; where A; = wa' for i < N and A; =0 for i > N;
=0

o0 €(i+1)—1
e thick grading A = @ AY where AY = @ A;.
=0 j=ei

Given a € A, we write deg (a) =i (resp. deg(a) =1 ) if a € A; (resp. a € AY).

Below we list some of the key properties of A. Their proofs are straightforward
and left to the reader. Recall that tr (resp. tr() denotes the trace map of w/f

(resp. w/fy).
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(P1) The map ~: Op — A, defined by

[ee] e—1
g= g ;T =g o= E o; T,
i=0 =0

is a homomorphism of associative algebras. Therefore, we can define an action
of U on A by setting a9 =¢ 'ag fora € Aand g € U.

(P2) Let I = {i € N | i < Nandd | i}. For every i € I define the function
T; : A — [, as follows: if a = Z;V:O a2’ set Ti(a) = tro(a;). Each T; is a
trace form, that is, T;(a+0b) = T;(a)+ T;(b) and T;(ab) = T;(ba) for a,b € A.

(P3) Consider A as a Lie algebra (with the usual bracket [a,b] = ab—ba). The sub-
N .
set s[(A) = {Z a;z" | tr (a;) = 0 for all 4 divisible by d} is a Lie subalgebra
i=0

of A, which is invariant under the action of U.

Now consider the filtrations {w;U}?, of U and {w;G}52, of G defined by setting
Wil = Unin(ei,n+1) and wiG = Guinein41)- Let LY(G) (resp. L“(U) ) be the
associated Lie algebra of G (resp. U). Clearly, w;G = w;U N G for all i, and
therefore, L¥(G) can be canonically identified with a subalgebra of L¥(U). Note
that if p # 2 or d # 2, then {w;G} is the basic filtration of type (N, e) by (4.2)b).

Proposition 4.1. Let AT = @ AY and sl(A)" =sl(A)NAT. Lety: AT — L¥(U)
i=1

be the unique linear map such that y(az') = LT ,(1 + ax®) for all « € w and
i > e. Then v is an isomorphism of Lie algebras, which preserves the action of U.

Moreover, (A¥) = w;U/w;i1U for all i > 1, and ¢(sl(A)*) = L(G).

Proof. First we prove that 1 is a homomorphism. Take any o, 3 € w and 7,7 € N,
with e <4,7 < N. Let u = ¢(ax?) = LT ,(1+ar’) and v = ¢(B27) = LT ,,(1+877).
Note that u € LY (U) and v € Ly (U) where k = [i/e] and | = [j/e]. By definition,
[u,v] = [(ax?),v(B27)] = (1 + an’,1 + Bl wr1U. Tt is easy to see that

(1+ar', 1+ prl) = 1+ (a0’ (8) — B’ (a))m™*7 mod Unin(irajjraiy.  (44)

Since i = ke +¢(i) and j = le + &(j), it is clear that Upin(iy2;j+2i) € wkrir1U.

Now [u,v] # 0 if and only if (1 + an’,1+ B77) & wrr11U. By (4.4), the latter
happens if and only if (i) +¢(j) < e, i+j < N and ao’(8) — Bo?(a) # 0. By (4.3),
the last three conditions hold precisely when [az?, B27] # 0. Thus [u,v] = 0 if and
only if [az?, Bz7] = 0. If [u,v] # 0, then [u,v] = LT (14 (ao®(B) — Bo? (a))7iT7) by
(4.4). In either case, we conclude that [u,v] = 9 ([ax?, B27]). So, ¥ : At — L¥(U) is
a homomorphism of Lie algebras. Clearly v is bijective, since every element of wiU
is uniquely expressible in the form [, (1 + a;n?) for some «; € w. The facts that
¢ preserves the U-action and ¢ (A¥) = wiU/w; 41U for i > 1 follow directly from
definitions.
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Now let us prove that 1 maps sl(A)" to L¥(G). Fix i € N and o € w such that
az® € sl(A)T. Tt will be enough to show that there exists g = g(i, ) of reduced
norm 1 such that g =1+ am® mod Us;.

First assume that d { i. Let h = 1+ an’. A direct computation shows that
Nieq (h) =1 mod U,,, where m is the least common multiple of i and d; in partic-
ular, m > 2i. Since W/F is unramified, we have Ny, p(W N U;) = F N U; for all
i > 1, where Ny, is the norm map of W/F. Therefore, there exists k € W N U,
such that Nyeq (k) = Npeq (R), whence g = hk~! has the desired properties.

Now consider the case d | i. This time the assumption ax’ € sl(A)T yields
tr(a) = 0. So, a = o(\) — A for some A € w. Let h = 1+ Ar* = 14 A\r¥/4,
and let g = o(h)h~! = (1 + (A7) (1 + Ar?)~L. Since h € W, we have N,oq (g) =
Ny,/r(o(h)h™!) = 1. On the other hand, g = 1+ (0(A) — A)7* mod Usy;.

It remains to show 1 (s[(A)") is the entire L¥(G). If this was not the case, there
would exist g € G such that g = 1 + an® mod Uy, where d | i and tr (o) # 0.
This is impossible since Nieq (Uit1) € Uip1, Nred (1 + an’) = Ny p(1 + an’) (as
d| i) and Nyp(l +an’) =1+ tr (a)r* mod Usy1. O

5 Lie algebra cohomology

Our ultimate goal (which will be accomplished at the end of Section 6) is to prove
the following theorem using the method described in Section 3:

Theorem 5.1. The depth of any elementary cover of G = SL(D) does not exceed
100p3d.

Throughout this section some restrictions on p and d will be made. The case
p = d = 2 is excluded from our considerations here and will be dealt with in
Section 8. When p = d = 3, or p = 2 and d = 4, the general scheme of the
proof remains the same as in the "regular” case, but a couple of key results require
different arguments. The proofs of those results in these exceptional cases are given
in Section 7. Throughout the proof we shall use several facts about extensions of
finite fields. These facts are collected in Section 9.

~ ~

Fix an elementary cover (G, ) of G. Let N = dep (G, ), and fix* a positive
integer e < N. Let w = {w;} be the basic filtration of type (N, e), and let ¢ = [N/e].
Throughout this section we write L = L“(G), L = L*(G), and for i < ¢ we set

LY = L¥Y(GQ) = wiG/wi+1G and Z:} = L¥(G) = w,-f;/wm@. Given an w-graded
splitting f : L — Z, let Zy (resp. 3¢) be the corresponding [F),-valued 2-cocycle of L
(resp. Hom (L, F))-valued 1-cocycle of G), as defined in Section 3. The goal of this
section is to find an explicit formula for the restriction of Z; to some large subset
of L x L (under the assumption N > 100p®d), and then use compatibility equation

4We will impose certain restrictions on the choice of e later in this section.
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(3.2) to find a formula for 37. In the next section we will show that the obtained
formula leads to a contradiction using Lemma 3.6 and Lemma 3.7.

5.1 Cocycle descriptions

Let A = A(N,e) be defined as in the previous section, and identify L with s[*(A)
as in Proposition 4.1. For e < i < N let L; = wz' N L, that is,

L':{ W:Ui‘ if dti;
’ {az’ | tr (o) =0} if d|i.
We also set L; =0 for i > N and 7 < e. Note that
L;={LT,(9) | g € viG\i+1G} U {0} for e <i < N. (5.1)
Given a non-negative integer n < N, let dy,(n) := [n/e]. If n > N, set d,(n) = co.

Then for 1 <7 < ¢ we have
Ly= @ L

dw (]):1

As in the previous section, let £(n) be the remainder of n modulo e. Thus,
e(n) =n—dy(n)e for 0 < n < N. It is natural to introduce the following definition.

Definition. A pair of non-negative integers (i,7) is regular if i + 7 < N and the
following equivalent conditions hold:

a) dw(i+j) = dw(i) +du(j); b) e(i+7) =e() +(j); d) e(i+7)

c) e(i) +e(j) <e; e)e(i+7)

(4);
(J)-

In view of (4.3), the formula for the Lie bracket in L can be written as follows:

> €
> €

i 0 [ (ad®(B) — Bol(a))xtT if (i,4) is regular,
lea®, Ba?] = { 0 otherwise.

Claim 5.2. If the pair (i,7) is reqular and j is prime to d, then [L;, L] = Li4;. If
(1,7) is not reqular, then [L;, L;] = 0.

Proof. The first assertion follows from Lemma 9.4 if d 1 (i + j) and from Lemma 9.1
if d | (i + j). The second assertion is obvious. O

Now recall that a bilinear map C' : L x L — F), is a 2-cocycle, if it satisfies the
following two conditions:

C(u,u) =0 for all u € L, (5.2)

C([u,v],w) = C(u, [v,w]) — C(v, [u,w]) for all u,v,w € L. (5.3)

A cocycle B : L x L — IF, is a coboundary, if there exists a linear function h : L — [,
such that B(z,y) = h([z,y]) for all z,y € L.
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Definition. A bilinear map satisfying (5.3), but not necessarily (5.2), will be called
a semi-cocycle.® We will refer to (5.3) as the semi-cocycle identity.

Next we introduce more auxiliary definitions.

Definition. Let C': L x L — [, be a bilinear map.

a) Let I be a subset of N. We will say that C' is supported on I, if C' vanishes on
L; x Lj whenever i+ j ¢ I. If C is supported on {n} for some n, we will say
that C' is homogeneous of weight n (or simply of weight n).

b) C'is regular, if C vanishes on L; x L; whenever (i, j) is NOT regular.

c) C is admissible, if there exists a function ¢ : G x L — F), linear in the second
argument such that C' and ¢ are compatible in the sense of (3.2).

Remark: Every coboundary is a regular map, since [L;, L;] = 0 whenever (i, ) is
not regular.

Definition. Let C : L x L — F, be a bilinear map. For every positive integer
n < N let C},, : L x L — F) be the unique bilinear map such that

i i Clax®, B27) ifi+j=n
Cl”(o‘x’ﬂ”ﬂ):{ 0 if i 45 #n.

We will call C),, the weight n component of C'.

n==2e
semi-cocycle (resp. cocycle, regular cocycle) if and only if each C) s a semi-cocycle

(resp. cocycle, regular cocycle). On the other hand, if C' is admissible, C),, need not
be admissible.

Note that C' = ZN Cl, and C), is of weight n for every n. Moreover, C' is a

Claim 5.3. Let f be an w-splitting. Then Zy is an admissible reqular cocycle sup-
ported on the set [ce, N] :={i|ce <i < N}.

Proof. Admissibility of Z; is an immediate consequence of Proposition 3.4. Next
we claim that Zf|n = 0 for n < ce. Indeed, let u € L;, v € L;, where ¢ + j < ce.
Then Z;(u,v) = f([u,v]) = [f(u), f(v)] € L, , where k = d,(i+j) < c. On the other
hand, Z¢(u,v) € Ker ¢,. Since Ker ¢, C E:, we conclude that Z¢(u,v) = 0.

It remains to prove that Z¢(L;, L;) = 0 whenever (4, j) is not regular (this will
also imply that Zy, = 0 for n > N). If i > N (resp. j > N), then L; = 0 (resp.
L; = 0), and there is nothing to prove. So, fix a pair (4, j) which is NOT regular,
with 4,7 < N, and set k = d(7) and [ = d,(j).

Let u € L;, v € L;j. Choose g, h € G such that flu) = gwkHé and f(v) =

ﬁwl+1é, and let ¢ = ¢(g), h = ¢(h). Then v = @ (Jwr+1G) = gwi+1G and

®The reason for using such terminology will be clear shortly.
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v =hw1H. So, LT ,(g9) € L; and LT, (h) € L;, whence g € 7,G and h € ;G by
(5.1). Since Kerp C yvG (and i,j < N), we have § € ;G and h € 7;G.

We are trying to prove that f([u,v]) = [f(u), f(v)]. Since [u,v] = @.([f(u), f(v)]),
it will be enough to show that [f(u), f(v)] = 0. By definition,

[f(w), F(0)] = [fwrnr Gy hw1G) = (3, h)wpprn G.

Now (§,h) € ’Yz’+ja C wdw(iﬂ-)@. Since (i,7) is not regular, d, (i + j) > d, (i) +
dw(j) + 1 =k + 1+ 1. Therefore, [f(u), f(v)] = 0. O

So, we should try to describe regular homogeneous cocycles of weights in [ce, N].
The following proposition gives a method of constructing Lie algebra semi-cocycles.

Proposition 5.4. Let 0 be a derivation of A, that is, 9(ab) = ad(b) + 0(a)b for all
a,b € A. Let n < N be divisible by d. Then the function C' = Cyy, : L x L — T,
defined by C(a,b) = T, (0(a)b) is a homogeneous semi-cocycle of weight n.

Proof. The assertion follows directly from the facts that T, is linear and T,,(ab) =
T, (ba) for all a,b € A. O

The following notation is taken from [PR]: given A € w and i € Z>o, we set
i) ==X+ 0(\) + ...+ 0" (X). Now define two families {0)}rew and {e,}er of
derivations of A by setting

oa(ax’) = A(i)ax' and e (az’) = audy(i) 2"
For convenience we give special names to the corresponding semi-cocycles: D) , =

Coyn and & = Ce, . It is clear that

tro(A\(i)ac®(B)) ifi+j=n and (i,5) is regular
0 otherwise,

Dyt 9 - |

tro(udy, (i)aot(B)) ifi+j =mn and (i,5) is regular
0 otherwise.

Eun(az’, Bal) = {

The next result tells us which of the above semi-cocycles are cocycles.

Proposition 5.5. Fix an integer n divisible by d, with 2e < n < N. Assume, in
addition, that e(n) > 2. The following hold:

a) If pd|n, then Dy, is a cocycle for every A € w. Moreover, if tr (\) = tr (u),
then Dy, — Dy p is a coboundary.

b) If pd{n, then Dy, is a cocycle if and only if tr () = 0. Every such cocycle
is a coboundary.

c) Eun is a cocycle if and only if dy(n) is divisible by p or p = 0.
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Proof. a) First assume that p # 2. Fix A € w, and let C' = D, ,,. To prove that C
is a cocycle, it suffices to show that C(u,v) + C(v,u) = 0 for all u,v € L such that
u = axr’, v = B2""" where o, 3 € w and the pair (i,n — i) is regular. We have

C(u,v)

+ C(v,u) = tro(A(i)ac’(8)) + tro(A(n — i) Bo" ()
= tro()\(i .

v, U
Yac'(B)) + tro(a'(A(n —14))o’(B)e™(a))  since trg is o-invariant

= tro((\(i) + o' (M(n —i)))ac’(8)) since o™(a) =a (as d | n). (5.4)

Now A(7) + o'(A(n — 1)) = A(n) = %tr (\) = 0 since % is divisible by p. Thus we
proved the first assertion.

Now assume that tr(A) = 0. Then A = v — o(v) for some v, and therefore
A(i) = v — o*(v). We have

C(u,v) = Claz’, Bz" %) = tro((v — o' (v))ac’(B)) = tro(v(ac(B) — o (a)B)).

On the other hand, [u,v] = (ac®(8) — 0" ¢ (a)B)x™. Thus C(u,v) = h([u,v]), where
h(a) is equal to fy-trace of the coefficient of 2™ in va. Therefore, C' is a coboundary.

Finally, if A\, 4 € w are arbitrary and tr (\) = tr (u), then Dy, —Dyyn = Da_pn
is a coboundary by the above argument.

Now consider the case p = 2 (in which case the identity C(u,v) + C(v,u) = 0
does not imply that C(u,u) = 0). Since C is bilinear and has weight n, it suffices to
show that C'(u,u) = 0 for u € L, /5. Recall that n = 2dm for some m. If u € Ly, s,

dm

then u = az®, where tr (o) = 0. Therefore,

C(u,u) = tro(A(dm)ac?™(a)) = tro(mtr (\)a?) = tr £/g, (tr (m tr (Na?)) =
tr¢ g, (mtr (\)tr (@?)) =0 since tr (a?) = (tra)?.
b) The assertion follows immediately from the calculations in the proof of part
a). Here is where we use the assumption (n) > 2 — it ensures that there exists a

regular pair (i,n — i) with d {4 and d 1 (n — i), whence one can use arbitrary o and
B in (5.4). The case p = 2 does not require special consideration.

c) Let C = &,,. Let u = az’, v = B2"%, where (i,n — i) is regular. Since
w € f, we have

C(u,v) + C(v,u) = tro(pdy(i)ac"(B)) + tro(ude(n — i)Bo" (@) =
tro(1(dw (i) + du(n — 0))ac’(8)) = tro(udy(n)ac’(8)).
The above expression vanishes for all «, # and i if and only if p | d,(n) or = 0,

so we are done if p # 2. If p = 2, we can use the same argument as in the proof of
part a). O

From now on we assume that N > 100p3d and e satisfies the conclusion of the
following claim (whose verification is left to the reader).
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Claim 5.6. If N > 100p3d, we can choose e so that a) pd | e, b) [N/e] = 4p (that
is, c=4p) and ¢) ¢(N) > p + 100.

Let Igooq = [2e,(c—1)e —1] = {i e N | 2 < dy,(i) < c—2}, and let Lypoq =
' D L= 6592 L% . The main part of this section will be devoted to the proof of the
;f)ffgz;ing re:EIQt.

Theorem 5.7. Fix n such that ce + 2 < n < N, and let C be a regular cocycle
of weight n. If the pair (p,d) is equal to (2,4) or (3,3), assume in addition that
n > N —p and C is the weight n component of some regular admissible cocycle Z.
a) If d 1 n, there exists a coboundary B of weight n which coincides with C on
Lgood X Lgood-

b) If d | n, there exist p € w and v € f such that C and Dy + &, coincide on
Lgood X Lgood-

5.2 Proof of Theorem 5.7a)

We will use the following shortcut notations:

Ci(a, B) = C(azx', Bz ") for e <i<n—e and Ai] = o'(\) =\ for A € w,i € Z.

Fix ny € w such that tr (n9) = 0 and ny generates w as a field over f (such 7
exists by Lemma 9.1). We claim that the map az" "¢ +— [az" ¢, noz¢| from L,_. to
L,, is injective. Indeed,

[az" ™, noz?] = (@™ (110) — o*(a)mo) 2" = (0™ (10) —100) 2™ = a-mo[n]z"™ (as d | e)

and no[n] # 0 since d 1 n. Therefore, there exists a coboundary B of weight n such
that C'(ax™ ¢, noz¢) = B(az™ ¢, noxc) for all « € w. Clearly, it is enough to prove
the theorem for C' — B instead of C' (note that C' — B is also regular since every
coboundary is regular). Thus, after replacing C' by C' — B, we can assume that

Caz" ¢ nox®) =0 for all @ € w. (5.5)
We are going to deduce from (5.5) that C' vanishes on Lgooq X Lgood-

Claim 5.8. Suppose that d | i and 1 < d, (i) < ¢ —2. Then C; is identically zero.

Proof. First of all, we can assume that (i, n —1) is regular (otherwise C; = 0 because
C is regular). Since d (i) < ¢ — 2, we have d,(n — i) = dy(n) — d, (i) > 2, whence
n —1i—e > e. Thus given o, # € w, with tr (o) = 0, we have

Ci(a, B) = C(azt, Bz ) = C (ami, [%[nﬁ_i]x"_i_e,noxe}) =

O <|:O[:Z,’i, ﬂ xnie:| 7770‘736) + C ( ﬂ : ‘,L,nfife, [(X:L’i,nofEe]) = 0.
o[ ] nl

n—1
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The first summand in the last expression is equal to zero by (5.5), and the second
summand is zero because [azx’, nox¢] =0 (as d | 7). O

Note that if i € Ijp0q, then 1 < d,(n —i) < c¢—2. Since C is skew-symmetric, it
follows from Claim 5.8 that C; = 0 whenever i € I0q and either d | (n —4) or d | i.
It remains to prove that C; = 0 for every i € Ij50q such that dti, d{ (n —1i).

Lemma 5.9. The following hold:

a) Let i € Igooq, and let a, 3,m € w, with tr (n) = 0. Then
Ci(a-nli], B) = —Ci(e, B - n[n — i). (5.6)

b) Leti,i' € N be such that i’ =4 i. Assume in addition that e < i <i' <n —e,
dti, dt(n—1) and e(i) < e(i’) <e(n). Then C; = Cy.

First we will prove an auxiliary statement:

Claim 5.10. Let i and i' satisfy the hypotheses of Lemma 5.9b), and assume that
dy(i" — 1) > 0. Then for any o, B,n € w, with tr (n) =0, we have

Ci(a-n[i], ) = Ci(a, =B - n[n — i]). (5.7)
Proof. Applying the semi-cocycle identity we have
C(laa', 2" "], B2 ") = Claa’, [pa” ~*, Bz"~"]) = C(na" ", [aa’, Bz 7)), (5.8)

Since (i) < e(¢’) < e(n), the pairs (i,n—1), (i’,n—i") and (4,7’ —1) are regular. Since

d| (i — i), we have [az’,nz" ~ = - gfi]z’ and [nz? —%, Bz V] = —f - nn — iJz" "
The second summand on the right-hand side of (5.8) vanishes by Claim 5.8, and
(5.7) follows. 0

Proof of Lemma 5.9. a) We can assume that (i, n—1) is regular (otherwise the result
is trivial). Applying (5.7) three times, we get

Ci(a - n[i],B) = =Cite(a, B - n[n —i]) = Ci—e(a - i}, B) = —Ci(a, B - nln — il).

b) If d, (i —i) > 0 and either i € Igpq 0r i’ € Igg0q, the result follows immediately
from (5.6) and (5.7) (since d {14 and d 1 (n — i), there exists n, with tr (1) = 0, such
that n[i] # 0 and n[n — i] # 0).

In the general case, choose a # 0 such that i — ae € Igpoq. If @ > 0, we have
C; = Cij_qe = Cy by the above argument. If a < 0, we have C; = Cy_q4e = Cyr. [

Conclusion of the proof of Theorem 5.7a). From now on we fix i € Igy,q such that
d{i,df (n—1i) and (i,n — i) is regular. Let D = C;. We want to prove that
D = 0. The cases p = 2 and p > 2 will be treated in slightly different ways. Both
arguments are based on the same idea, but the one in the case p = 2 requires more
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computations. The exceptional cases (p,d) = (3,3) or (2,4) will be considered in
Section 7.

Case 1: p > 2. Let n1,m2 € w be such that tr(n) = tr(n2) = 0 and 72
generates w/f (so that na[j] # 0 if d 1 j). By (5.6) we have

D<a-771[?],,3> - —D<a,,,6-m[n—z‘]> — D(a,ﬂ-W). (5.9)

n2li] n2] moln — i

By Lemma 9.2, we can choose 71,792 as above and 1 € w such that n — o € f
and n? —n; € f. For every j not divisible by d we have n1[j] = 72[j], n2[j] = nlj],

and so - ] = 0/ (n) + n. Equation (5.9) can now be written as

n217]

D(a(a'(n) +n), 8) = D(a, B(a" " (1) + n)).
Lemma 5.9a) yields
D(a(o'(n) = n), 8) = —=D(a, B(a" " (1) = n))-
Taking half-sum and half-difference of the last two equations, we get
D(ac'(n), 8) = D(e, A1), (5.10)

D(am, B) = D(a, Bo" " (n))- (5.11)

It is easy to see that if 7, 51, 7o are replaced by o?(n), (1), o%(n2), respectively,
the whole argument can be repeated. Replacing n by o'(n) in (5.11), we have

D(aa'(n), ) = D(a, Bo"(n)). (5.12)

Subtracting (5.10) from (5.12), we get

Now n[n] # 0 since d { n, and it follows that D is identically zero. The proof in the
case p > 2 is complete.

Case 2: p=2. Let
R={(\u) ewxw]|D(a\p)=D(a,fu) for all a, 3 € w}.

Clearly, fR is a subring of w x w. Moreover, if (A, u) € R, (N, i) € R, with \, u # 0,
then (N/A, 1//p) € M. Lemma 5.9a) implies that (n[i],n[n —i]) € R if tr(n) = 0.
It follows that (A, \) € R for all A € f.

Now fix 1,71,7m2 € w such that n —n; € £~ —ng € f, tr(n) = tr(n2) = 0
and n generates w/f (existence of such elements is proved in Lemma 9.2). Since
nls] = mljl, n7'j] = mels] for all j, Lemma 5.9a) yields (n[i],nln — 1)) € R
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and (n~'[i],n"'[n —i]) € M, whence (ﬂn[li%i]’nn[ﬁn_i]ﬂ) c M. But 77[]']. _
n+ o’ (n)

m = no’(n) if d 1 j. Therefore, (na(n),ne™"4(n)) € M, that is,

D(anc'(n),B) = D(a,na""(n)B) for all a, € w. (5.13)

Now let E(a, 3) = D(an, ) — D(a,n3). We shall first prove that E is identically
zero and then deduce that D = 0 unless i =4 (n — ). Rewrite (5.6) as follows:

D(aai(n)7ﬁ) - D(O‘nvﬁ) = D(a7ﬁ0ﬂ_i(n)) - D(aaﬁn)

Therefore,

E(a, §) = D(an, B) = D(a, Bn) = D(ac’ (1), ) — D(a, "~ (n)) =

i ir B ir o\ B
D(ad*(n), 8) — D(anc*(n), 5) = E(ac'(n), 5),
where we used (5.13) at the next to last step. So, for all a, 3 € w we have
E(a,nB) = E(ac’(n), B). (5.14)

Similarly, one can show that
E(an, §) = E(a, o™ (1)) (5.15)

Now let & = {¢€ € w | E(a, B€) = E(ad'(€),3) for all o, 8 € w}. Clearly, G is an
f-subalgebra of w. Formula (5.14) implies that n € &, and since 7 generates w/f,
we have & = w.

It follows that E(a, 3) depends only on ac®(3). Since the map (u,v) — tro(uv)
is a non-degenerate [F,-valued bilinear form on w x w, we conclude that E(«, ) =
tr o(Aao’(3)) for some A € w. Similarly, (5.15) implies that E(a, 8) = tr (N ao?™(3))
for some \ € w.

Setting 5 =1 in the above formulas, we have tr o(Aa) = tro(N«) for all a € w,
whence A = ). Therefore, tro(Aa(c?(3) — o?~™(8))) = 0 for all a, 3 € w. Since
d 1 n, there exists 3 € w such that o*(8) — ¢*="(3) # 0. Therefore, A = 0 and E is
identically zero.

Thus, we proved that

D(an, ) = D(a,npB) for all a, 3 € w. (5.16)
Combining this with (5.13), we get

D(ac'(n), B) = D(a, ™ *(n)B) for all a, B € w. (5.17)
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Arguing as in the case p > 2, we conclude from (5.16) and (5.17) that D = 0 unless
i =4 (n—1).

Suppose now that i =4 (n—1i). Using Lemma 5.9b), we can assume that (i) > d.
Let j = 1 or d—1 be such that d 1 2(j —i) (such j exists unless d = 2 or d = 4). The
commutator map L;_._; X Leyj — L; is surjective by Claim 5.2, since j =4 £1 and
(i —e—j,e+j) is regular. According to the semi-cocycle identity (5.3), C' vanishes
on L; x Ly,_; as long as C' vanishes on L;__j X Ly_jjeqj and on Leyj X Ly_e_j.
The latter holds — as we just proved — unless (i — j) =4 (n — i+ j) or j =4 (n — 7).
Either of the last two conditions would contradict our assumptions. The proof is
complete. O

5.3 Proof of Theorem 5.7b)

Remark: Apart from the cases p = d = 3 and p = 2, d = 4, we will never use
skew-symmetry of C, so the assertion of Theorem 5.7b) holds if C' is only assumed
to be a semi-cocycle.

Lemma 5.11. Let I,eg ={i € N| e <i<n—e, (i,n—1) is regular and d { i}.

a) Leti,j € Ireq, and assume thati < j, (i) <e(j), pd| (j—i) andp | dy(j—1).
Then C; = Cj.

b) 6 For every 1 € Iyeq, with 1 =4 1, there exvists \; € w such that

Ci(a, B) = tro(Nao(B)) for all a, B € w.

Proof. a) Let k and [ be such that
dll, k=qi, e<k,}in—k—1, ek)+¢e(l)=e(k+1) and e(k+1) <e(n) (5.18)

(the last two conditions imply that the pairs (k,1), (k,n —k —1) and (Il,n — k — 1)
are regular). Applying the semi-cocycle identity to the triple ax®, na! and gz"*—!
(where tr (n) = 0) and simplifying, we have

Crlonil, ) = Culas (=nl=i))B) + Ciln, {ad' (A} [=il)  (5.19)
Let &€ = —n[—i]. Then n[i] = o%(¢), and the last equation can be rewritten as follows:
Crri(aa’(€), B) = Ci(a, BE) + Ci(n, {ac’ (B)} [—i)). (5.20)
Now suppose that i < n — 3e. Applications of (5.20) yield
Ciraelalo' (€)1, ) = Ci (a0'(€),5) + o (1, {ao(B)} [-i))  and

§

Tn the cases p = d = 3 and p = 2,d = 4, the assertion of Lemma 5.11b) will be proved in
Section 7.
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Curaelald'(€)2, ) = Cisela'(©).9) + o . {ac' (3} 1) =
Ci (e, B) +2C. (n, {ac"(B)} [i]) -
Combining these formulas, we conclude that
Ci(ao'(€), B) = Ci(a, BE) + R(ac'(B))  for some function R : w — F,.

Replacing a by ao?(€), we get

Ci(a(0'(€))%,8) = Ci(ad'(§), B¢) + R(ac'(8¢)) = Ci(a, B€%) + 2R(ac"(8E)).

By induction we have Cj(aci(¢™),8) = C;i(a, B6™) + m R(act(3¢™~1)) for any
m > 1. Setting m = ¢? = card (w) and noting that £ = ¢, we get

Ci(ad'(€),8) = Ci(a, BE). (5.21)

Case 1: d, (i) < dy(j). Our assumptions imply that ¢ < j—pe <n—(p+1)e <
n — 3e, whence (5.21) holds. Now let k =4 and | = (j —¢)/p. It is easy to check
that conditions (5.18) are satisfied. Applying (5.20) and combining the result with
(5.21), we get

Citi(ao'(€), B) = Ci(aa'(€), B) + Ci(n, {ac" (8)} [~i)). (5.22)

Arguing as before, we have

Ciypi(ac'(€), B) = Ci(ad'(€), B) +p Ci(n, {ac’(8)} [-i]) = Ci(ad'(€), ).

Now recall that & = n— o ~%(n). Since d {4, we can choose 7 so that £ # 0. Thus we
showed that C;i,; = Cj.

Case 2: d, (i) = du(j). If dy(i) > p+ 2, it follows from case 1 that C; = Cj_pe
and Cj_pe = C;. If dy, (i) < p+ 2, we have C; = Cjipe = Cj.

b) Let A = {A € w | Ci(ac(N),3) = Ci(a, BA) for all a, B € w}. Clearly, A
is a subring of w. Since i =4 1, (5.21) implies that A contains all elements of the
form o(n) —n, with tr(n) = 0. Since (p,d) # (3,3) or (2,4), we have A = w by
Lemma 9.3.” Therefore, C;(a, 3) depends only on ao(3), which implies the assertion
of part b). O

Note that if i =,4 1, then A(i) = X, whence D) ,(az’, 32" = tro(Aac(8))
(provided ¢ € Icy). Thus Lemma 5.11b) asserts that C coincides with Dy, ,, on
L; x Ly_; whenever i € I.4 and i =pq 1.

Now let {\;} be as in the conclusion of Lemma 5.11b). For the rest of the proof,
set t; = Njeq1 (fori=1,2,...,c¢—1). Note that yu; = p; if i =, j by Lemma 5.11b).

"This is the only place in the proof where we use that (p,d) # (3,3) or (2,4).
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Proposition 5.12. Let i € N be such that e < i < n —e, (i,n —1i) is reqular and
0 < e(i) <p. Letae{1,2,...,p} be such that d,,(i) =, ia. Then Ci(a, ) =
tro(ua(i)act(B)). In other words, C' coincides with Dy, n on L; X Ly_;.

First we state a simple technical lemma which follows directly from Claim 5.2.

Lemma 5.13. Let Sy and Sz be two semi-cocycles of L. Let J ={i e N|e <1i <
n —e and Sy coincides with Sy on L; X L,_;}. Suppose that j, k € J and k =4 1.
a) If (k,j) is reqular and d,(k+ j) < c—1, then j+ k € J.
b) If j — k > e and (n — j, k) is reqular, then j —k € J.

O

Proof of Proposition 5.12. Let J = {j € N| 1 <d,(j) < ¢—1 and C coincides with
Dy on Lj x Ly_j}. We will show that i € J by induction on &(3).
The case €(i) = 1 is clear. Indeed, if ¢ = ue 4 1, then a =), u, whence

Cuet1(a, B) = Caet1(a, B) = tro(paac(B)) = tro(,ua(i)ozai(ﬂ)).

Now suppose that 1 < (i) < p. If d,(i) > p, let j = i —ae — 1. Then
e(y) <e(i) < pand d,(j) = dw(i) —a =p ja, whence j € J by induction. Note that
i —j =ae+ 1 lies in J by definition of y,. So, i € J by Lemma 5.13a).

If d,, (i) < p and d 1 i, apply the above argument to i + pe and use the facts that
Citpe = C; (by Lemma 5.11a)) and pq(i) = pa(i + pe).

Finally, suppose that d (i) < p and d | i. Let j = i+ (p — a)e — 1. We
have €(j) < (i) < p and dy,(j) = dw(i) + p — a =, ja, so by induction j € J.
Applying Lemma 5.13a), we see that j +ae +1 € J and j + 2ae +2 € J. Now
jt2ee+2=i+(a+pe+1<Bp+1l)e<n—e Sincedt (i+ (a+p)e+1),
Lemma 5.11a) implies that i + ae + 1 € J, whence i € J by Lemma 5.13b). O

Next we establish a relation between the numbers {fi, }.

Lemma 5.14. There exist p € w and v € £ such that pu, = p+ av for all a.

Proof. Assume first that p > 2. Fix i,5 € {1,2,...,p} and apply the semi-cocycle
identity to the triple azt!, fziet! yan—(+)e=2 where a, B,y € w. If d > 2, o, 8
and v can be chosen arbitrarily; if d = 2, we must have tr (7) = 0 since in this case
d|(n—(i+j)e—2). We have
C(i+j)e+2(040'(5) — Bo(a),v) =
Ciet1(a, Bo(7) =70 2(8)) = Cjer1(B, a0 (y) = yo~*(a)).

By Proposition 5.12, the right-hand side is equal to

tro (nia(o(B)o*(y) — a(v)o~H(8)) — wiBlo(a)o?(7) — a(v)o (@) =
tro((ui + o (uy))ac(B)o’(v) = (o(p) + py)Bo(a)a’(y))
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while the left-hand side equals

tro(uiti (2)(ao(8) — fo(a))a?(7))

2

(by fizs We mean fig where a € {1,...,p} is such that 2a =, (i + j)).

Therefore,
tr o ((uao(8)o*(v)— vBo(a)o(y)) =0, (5.23)

whete u = 133 (2) — i — o) and v = pass (2) — 1 — o ju).

Applying (5.23) with various values of «, 3,7 € w, one can show that u = v = 0.
If d > 2, the argument is straightforward (since «a, 3,7 can be chosen arbitrarily).
If d = 2, we note that v = o(u) and o(vy) = —v (as tr () = 0). Therefore,

0 = tro(uac(8)0*(7) - vAo(a)o*(7)) =
tro(uao(B)o?(y) — o(vBo(a)o®(y))) = tro(2uac(B)y),

and we conclude that © = 0 (whence v = 0). So, we showed that

piti (2) = pi +o(pj) and M%(z) = pj + o (). (5.24)

2

It follows immediately that p; —p; = o(pi — pt5), whence p; —p; € £. Now let p = py,
and v; = p1; — pp for 1 <4 < p. Since v; € f for all i, (5.24) yields

2VH2-J' =v; + Vj. (525)

To finish the proof it remains to show that v, = ki for 1 < k < p. The assertion is
trivially true for k =1 and k =p. If 1 < k < p, applying (5.25) with ¢ = k — 1 and
j=k+1, we get vy — Vg1 = Vgy1 — Vk.

So, the difference § := v, — vp_1 is the same for 1 < k < p, whence v, =
1+ (k—1)6 for 1 < k < p. On the other hand, we know that 1, = 0, whence
0 = v1. This finishes the proof in the case p > 2.

Now assume that p = 2. Note that in this case we only have to prove that
w1 — pe € f. Formula (5.24) still holds if we assume that both i and j have the
same parity. Taking ¢ = 1 and j = 3, we get ua(2) = p1 + o(u1). Therefore,
p2 — p1 = o(p2 — p1), whence pg — pig € f. O

Conclusion of the proof of Theorem 5.7b). Let p and v be as in the conclusion
of Lemma 5.14. Let J = {j € N | C coincides with D, , +&,,, on L; x L,,_;}. Since
both C' and D, + &,,, are homogeneous of weight n, it is enough to show that
J2 Igood-

Fix i € Ijo0q. We can assume that (i,n — i) is regular for otherwise both C' and
D, + &y vanish on L X Ly, ;.
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Case 1: 0 < (i) < p. Let a :=d,(i)/i € Fp. According to Proposition 5.12 and
Lemma 5.14, we have

Claz, Bz" ") = tro({p + av}(@)ac’(B)) = tro((u(i) + vai)ac'(3)) =
tro((u(i) + vdu(i))ac’(8)) = Dyulaa’, B2"~) + Eynlaa’, B 7).

Case 2: (i) =0 (i.e. e| 7). We know that e+ 1 € Jand i + e+ 1 € J since
e(e+1)=¢e(i+e+1) =1, whence i € J by Lemma 5.13b).

Case 3: (i) > p. In this case we use induction on 6(i) = 3¢(i) — 2d,,(2) (it is
clear that possible values of 6(i) are bounded from below).

Ifdy(i) >3, let k=e+1and j =i— k. Then k € J since (k) = 1 < p, and
j € J by induction since 0(j) = 0(i) — 1. Therefore, i € J by Lemma 5.13a).

If dy(i) = 2 and €(i) < e — 1, apply Lemma 5.13b) with j = ¢ + pe + 1 and
k = pe + 1. Finally, if (i) = e — 1, then (i,n — i) cannot be regular (as d | n). O

5.4 Formulas for Z; and 3y

Theorem 5.7 can be applied to the weight n component of Z; (where n > N —p) for

any w-splitting f : L — L. If we choose the splitting in the ”right” way, a stronger
statement can be made:

Corollary 5.15. Let Igpeqt = {i € N| N —p <i < N}. Fiz A € w with tr (\) # 0.
Then there exists an w-splitting f such that for every i € Igreqr we have

0 if dti,
&y, i for some v; € f if d | i but pd i,

Zp,
B
Dy, i+ &y, for somev; € £ and N\ € £A if pd | i.

Lgood:XLgood
(5.26)
(recall that Zf|i is the weight i component of Zy).

Proof. Let fy be some w-splitting. As mentioned in Section 3, if B is a coboundary,
then Zy, + B = Z; for another splitting f; moreover, f is an w-splitting if and only
if B(Ly, LY) = 0 whenever i + j # c. The latter holds if and only if B is supported
on [ce, N] (we leave verification of this fact to the reader).

Since Igreqt C [ce, N|, Theorem 5.7 immediately implies that there exists an
w-splitting f1 such that for every i € Igreat,

0 if dfi

s = . .
Fli Lygoax Lyooa { Dyyi + &,y for some v; € £ and p; e w if d | 4.

It remains to show that for every i € Igcqr with d | ¢ there exists \; € fA such that

B; := Dy, ; — Dy, is a coboundary and A; = 0 if pd { 4. This will finish the proof

since then Zy, + Y. B; = Zy for some w-splitting f, and (5.26) clearly holds.
ie[g'reat, d|2
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First let i € Igreqt with d | ¢ and pd {i. We claim that tr (u;) = 0. Indeed, &, ;
is a cocycle by Proposition 5.5¢), since p divides ¢ = d,(i). Therefore, Z fli— Evii
is also a cocycle. On the other hand, D,,; is NOT a cocycle unless tr (1;) = 0 by
Proposition 5.5b). We know that qui — &y, coincides with D, ; on Lgooq X Lgood-
Even though Zy, |, — &, and Dy, ; may not coincide on L x L, the argument of
Proposition 5.5 still implies that tr (u;) = 0.

Now we are ready to finish the proof. Given i € Iycqr with d | ¢, let \; = ii,((’t)f)) A
Clearly, A; € fA and tr (\;) = tr (u;). If pd 1 i, then \; = 0 since tr (1;) = 0. Finally,
B; := D), ; — Dy, is a coboundary by Proposition 5.5a). O

In order to derive a formula for the group 1-cocycle 35 we use the following result.

Proposition 5.16. Let n < N, with d | n, and let ® be a derivation of A. Recall
that Cy n(a,b) = Ty (0(a)b) for every a,b € A. Define® cop : G x L — F), by setting
con(g9,0) = Tp(0(g)g ~tb) (recall that the map g — G was defined in Section /).
Then ¢, and Cy,, are compatible in the sense of (3.2).

Proof. Let ¢ = ¢p,, and C = (. Fix g € G and let £ = g € A. Recall that
w9 = k~uk for every u € A. Therefore for any u,v € L we have

C(u,v) — C(u?,v9) = Tp(0(u)v) — Tk uk)k™tok) =
T, (0(u)v) — To((@(k uk + k1o (w)k + k1 ud (k) k™ ok).
Since 0(k~!) = —k~o(k)k~!, Ty (ab) = T, (ba) and T, (k~tak) = T, (a), we have

C(u,v) = C(u?,v9) = Tp(0(u)v) = To(=0(k)k™ uv +d(w)v + ud(k)k~'v) =
T, (0(k) k™ uv — o(k)k ™ ou) = T, (0(k)E ™ u, v]) = ¢(g, [u, v]).

O
Let Lgreat = @ Li, where Igreqt = {i € N| N —p < i < N} as before. We

ie[g'reat
are now ready to give a formula for the restriction of 35 to G' X Lyreqt-

Proposition 5.17. If Ij.cqt does not contain multiples of pd, then 3; vanishes on
G X Lgreat for some w-splitting f. Otherwise, let Ny be the unique multiple of pd
lying in Iyreqr. Then there exist an w-splitting f and Ao € W such that 37 coincides
with €2y, No O G X Lgreqt- Moreover, given A € w, with tr (A) # 0, we can always
choose f so that Ag € .

Proof. Let f, {\i} and {v;} be as in the conclusion of Corollary 5.15. Let I = {i €
Igrear | pd divides i}, In = {i € Igreqt | d divides i} and let C = > Dy,i + > £
i€l i€l
Let S = {(4,7) € Igo0d % Igood | i +j > N —p} and let © be the linear span of the
set |J LixLjinLxL.
(4,9)€S

8This notation will be used for the rest of this section
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By Corollary 5.15, Z coincides with C' on Q. We know that Z; is compatible
with 3¢ (by Proposition 3.4). By Proposition 5.16, Dy, ; (resp. &,,;) is compatible

with ¢, i (resp. ¢, i) whence C is compatible with > ¢, i+ D €, -
’ ’ ieh, ' i€l "
It is easy to see that (2 is invariant under the diagonal action of G on L x L and

the set {{u,v] | (u,v) € Q} spans Lgyeq: . Therefore, by Claim 3.5 we have

3f = Z Coy, i + Z Ce,, i O1 G x Lgreat-

i€l 1€ls

The proof will be finished if we show that ¢, ; is identically zero for all 7. It
suffices to show that ¢,(g) = 0 for any g € G and v € f. The latter holds since

g G@f;éwxi for any g € G and e, (wx!) =0 for 0 <i<c— 1. O

Change of notation. In the next section we will write ¢y ,, for cp, 5.

6 Proof of finite presentability in the case (p,d) # (2,2)

We retain all notations from the previous section. Fix an w-splitting f for which
the assertion of Proposition 5.17 holds, and let Z = Z¢, 3 = 37. Throughout the
section A\g and Ny will be as in the conclusion of Proposition 5.17.

We are trying to reach a contradiction with Lemma 3.7, which asserts that 3
does not vanish on G x U, where U = yy_1G/Yn4+1G = LN—1 @ Ln C Lgrear. We
already know that 3 vanishes on G X Lgyeqt (and hence on G x U), if Igreqr does not
contain multiples of pd.

Next we show that 3 vanishes on G x U, if N is not a multiple of pd. Indeed, let
u € U and g € G. By Proposition 5.17, 3(g,u) = cx,.n, (9, u) (where N—p < Ng < N
and Ny is a multiple of pd). So, 3(g,u) is equal to the fy-trace of the coefficient of
N0 in 0, (g)g ~'u. Since 0),(g) has zero constant term and u € U = Ly_1® Ly C
V1A, the above coefficient is equal to zero unless Ny = N.

Finally, consider the case N = pdM for some M. In this case vanishing of 3 on
G x U will be proved using Lemma 3.6. The underlying computations have direct
analogues in [PR]; however, due to many differences in terminology and notations,
it seems more appropriate to reproduce the arguments from the above paper rather
than give vague references to it. For the reader’s convenience, throughout the section
we shall indicate which part of [PR] we are following.

To prove that 3 vanishes on G x U we must show that A\g = 0. By Proposi-
tion 5.17, Ag is an f-multiple of some element with nonzero f-trace, so it suffices to
prove that tr (A\g) = 0.

Case 1: p1{d (see [PR, pp.682-683)).

It will be enough to show that tro(Agf) = O for any § € f. Indeed, if this is
the case, then for any 6 € f we have trg g (trw/£(Ao)0) = tre/g (trye(Xol)) =
tro(Aof) = 0. Since trg/g, is a non-degenerate bilinear form on f x f, we conclude
that tr W/f()\O) =0.
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Fix 6 € f. Since p{d, G is isomorphic to the quotient of U = GL}(D) modulo
its center Z(U) = U N F*. Therefore, there exist «, 5 € mp such that the elements
g:=(1+m)(1+a)and h:= (14+07=1)(1+3) lie in G. Moreover, it is easy to see
that 8 € m¥, that is, 8 = DoisM B for some f3; € f. Now let u = LT ,(hP). Since
hP = (14 6PmN=P)(1+ BP), we have u = OPaN P + B8 aN € Ly, 0. Clearly, g and h

commute, so 3(g,u) = 0 by Lemma 3.6. Therefore, Tn(0x,(7)7 ~‘u) = 3(g,u) = 0.

Since p 1 d, the restriction of the trace map tr to f is nonzero, so by Proposi-
tion 5.17 we can assume that Ao lies in f. Let 9 =0),. We have g = (1+z)(1 + &),
whence 9(g) = MNx(1+a)+ (1 +2)0(@). Since a € mp and \g € f, both & and d(@)

belong to f[x?] and hence lie in the center of A. Hence, 9(g)g ' = Xz (1 +z)"' 47
where v = 3(a)(1 4+ @)~ ! € 24 f[z%. We have

2(3)7 tu= Nox(1+z) L) (0PN P4 R aN) = NfPaN TP (1 4 x) T pAgPa NP

since 2V

-a2® = 01if i > 0. We are interested in the fy-trace of the coefficient of
2V in the above expression. The second summand has zero coefficient of z!V since
v € flz%], pd divides N, and p does not divide d. The coefficient of zV in the first
summand is equal to A\ofP. Hence, tro(Nf?) = Tn(0(g)g 'u) = 0, and we are
done.

Case 2: p|dand p > 2 (see [PR, pp.684-685] and [PR, 4.7,4.8]).
Let K = f((7?)) and let D; be the centralizer of K in D. Let v C w be the (unique)
extension of f of degree p. Then Dy = v(()) is a division algebra of degree p over
its center K. Let H = SLi(D;) C G.

The following computational result is proved in [PR, p.684].

Lemma 6.1 ([PR]). Let § € f and s € N, and assume that p > 2. There exist
commuting elements g, h € H such that h? =1 +6PP*s—P 4GP s—1 mod 77192501)1
and g =1+ 7 — &xP mod 7PH1O0p,, where € € v and trye() =1

Note that N = pdM is divisible by p?. Let s = N/p?, let § € f be arbitrary,
and let g,h € H be as in the conclusion of Lemma 6.1. As before, we have the
equation 3(g,u) = 0 where u := LT, (hP) = P2V =P + P2V =1 + 52V for some 6 € v.
Computing 3(g,u) as in case 1, we conclude that

tr /g, (220 — EXo(p))0P) = 0.
Since try, g, (0 0F) = tre /g (try /p()0P) for any a € w, we get
try /£(200 — EAo(p)) = 0. (6.1)

We have try,/s(§Xo(p)) = try e(trw v(Ao(p))§). The Galois group Gal(w/v) is
generated by oP, whence

d/p—1  [p-1 -1
trwn(Ro®) = Y 0P [ D ol (h) | =) 0" (M) = tre(Mo).
=0 =0 i=0
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Therefore try, /¢(§Xo(p)) = try/e(Etrw/e(Ao)) = try/e()trw/e(Ao) = try e(No).
Combining this with (6.1), we finally conclude that tr, ¢(Ao) = 0.

Case 3: p=2 and d is even (see [PR, 5.6,6.6]).
Let K, Dq,v and H be as in Case 2. Let s = N/4. Fix 6 € f. By Lemma 8.2 (stated
later in the paper) there exist g,h € H such that

h=14+7%"1 mod 7 20p, and g=1+6r+ B> mod 730Op,,
where tr () = 62, It is easy to see that (g,h) =1+ 6*7*T! mod n***2Op,.
Now let § and h be any lifts of ¢ and h in G. We shall use the identity
(3,52 = (3, h)*((3,h), h). (6.2)
Since (g,h) € y2s41G (see above) and dep (G ©) = N > 25+ 1, we have (§,h) €

v2s+1G. Hence, (g, h) € ’YN+1G by Lemma 3.2.
Let

U =
u

It is easy to see that w = zV/2~1 4 = 2N=2 and v = 022V/241 .
It follows from (6.2) that
(h2)7 12 = ((9.7).h) mod wearG (= ).
Since d,,(h) = du((9, A)) = ¢/2 and d,,(h?) = ¢, projecting both sides of the above
equation to w, /wcHG we get & — @9 = [, 9]. It is clear that the elements @— f(u),

0 — f(v) and W — f(w) lie in V= VNG/7N+1G Since V' is central in L and is acted
trivially on by G, we have 4 — f(u) = 9 — f(u)? and [w, 0] = [f(w), f(v)]. Hence,

f(u) = f(w)? = [f(w), f(v)]. (6.3)
Applying the map fo. to both sides of (6.3) and subtracting the result from (6.3),
we get

3(9,u) = Z(w,v). (6.4)
Now let A = Ag. Since u € Lgyeqr, we have 3(g,u) = cx n(g,u) = TN(DA@) g ).
Clearly, § = 1+ 0x + B32% + ..., whence 0)(7) = 0 z + BA(2)z? + .... We have

0A(g) 7w =0T+ (BA(2) — 020)a™ = 02T + (B (A )—a(ﬁ)A)xN,
where at the last step we used that 02 = 3+0(3). So, 3(g,u) = tro(Ba(X) —a(B)N).
But 8 € v, whence 0%(3) = 3. Therefore, tro(Bo()\) — a(B)\) = tro(a(a(B)N) —
o(B)A) = 0. Thus, 3(g,u) = 0.

Finally, Z(w,v) = Tyx(0x(w)v) = tro(A(N/2 — 1)6?). Now A(N/2 — 1) =
AdM — 1) = Mtr(\) — o= Y(\). Since tr (Mtr()\)) = dMtr()\) = 0, we have
tro(Mtr (\)6?) = 0. Therefore, (6.4) implies that tro(c=1(A)#?) = 0. The last
equality holds for any 6 € f, and we conclude that tr (\) = tr (¢=1()\)) = 0. O

30



7 Exceptional cases

7.1 Preliminaries

In this section we will finish the proof of Theorem 5.7 in the cases p = d = 3 and
p =2, d = 4. The main difference with the regular case is that we will only be able
to classify admissible cocycles. Recall that the only results that require different
arguments are Lemma 5.11b) and the conclusion of the proof of Theorem 5.7a) (the
part following Lemma 5.9). We retain all notations introduced in Section 5.

A key role in the proof will be played by the following formula, describing the
action of elements of W* on L = L¥(G). Note that W*NG is generated by elements
of the form (14 h)~1o(1 + h), where h = A7* for some A € w and s € N.

Proposition 7.1 (W-action formula). Let A € w, s € N, and let

g=g\s) =1+ "H1 4+ o(N)7*) where T = 7.

Let o € w, k > e and let u = ax®. We have

w =u+ Z aF,(N)zF T where
n>1, dw (k+dn)=d. (k)

Fa(N) = oA (0(A) = A) + " (A" (0" (V) — " () +
Yo a)FEN) (V) = A" (V) = FHE)).

Proof. Direct computation. O

It will also be convenient to introduce one more definition.

Definition. Let k be a subfield of w. A map C' : w x w — F,, is called k-balanced,’
if C(ka, B) = C(a, kB) for all a, 8 € w and k € k.

Notations. Throughout the section n, C, Z are fixed and assumed to satisfy the
hypotheses of Theorem 5.7. Recall that Z is a regular admissible cocycle, and C' is
the weight n component of Z.

We will use shortcut notations

Zij(a,B) == Z(axi, Bz?) and Ci(a, B) := C(ax!, Bz"") = Zin—i(a, B).

Recall that n[i] = o'(n) —n ( where n € w and i € Z).
Finally, we will write d,, (7, j) for the pair (d,(7),d.(j)).

°T am thankful to Gopal Prasad for suggesting this term
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7.2 The case p=d = 3.

Proof of Theorem 5.7a). Recall that C; = 0 if either 3 | i or 3 | (n — 1) (by
Claim 5.8). So we can assume that 3 {7 and 3 { (n—1) (which implies that i =3 n—1).
It is easy to see that there exists 7 € w such that n[i] = n[n—i] = 1. Applying (5.6),
we have Cj(a, B) = Ci(a, —p) for all a, € w, whence C; is identically zero. O

Proof of Lemma 5.11b). First of all, let us explicitly write down W-action formula
for the case p =d = 3.

Given k,s € N, a, A € w, let u = az” and g = g(), s) be as in Proposition 7.1.
If £ =31, then

w? = a(zF —tr (V)23 4 tr (Ao (V) 2P0 + (0(A%) = N(N)zF %) + .. )
If £ =3 2, then

u? = a(zF 4 tr (V)23 4 tr (A2 4+ Ao(V)zF 05+
(tr (A\)tr (A%) — A3 + NP9 )

Here N denotes the norm map of the extension w/f.

We claim that it suffices to prove Lemma 5.11b) for all ¢ such that (i) < 27.
Indeed, if £(i) > 27, then d, (i) = do (i — 27) and ¢ — 27 € I,¢4, so by Lemma 5.11a)
we have C; = C;_97. Hence, we can replace ¢ by i — 27 and repeat the process several
times if needed. Note that if £(i) < 27, then dy(i,n — i) = d, (i + 27,n — i — 27),
since e(7) + 27 <bd <eand e(n —i) =¢e(n) —e(i) > e(N) -3 —27 > 73 > 27.

So, from now on we fix ¢ € I, and assume that d,, (i, n—i) = d, (i+27, n—i—27).
Take any A € w, and let g = g(\, 3) be defined as above.

Given a,3 € w, let u = az’, v = B2 27, Let ¢ : G x L — F, be a map
compatible with Z. We have

Z(u,v) = Z(w?,09) = ¢(g, [u,v]) = (g, (a0 (B) — fo~ (@)z" ") (7.1)

Note that the right-hand side of (7.1) depends only on ao () (if we keep X fixed).

Now compute u? and v¥ using W-action formula (note that i =3 1 and n—i =3 2).
The left-hand side of (7.1) can then be expanded by bilinearity. Note that Z; ; =0
when k + j > n + 3, since n > N — 3. Using this fact we get

Zitom—i—27(tr (N, B) — Zi n—i—18(a, tr (N)B) — Zit18n—i—27(tr (Ao (X))o, B)+
Zivom—i—1s(tr (N, tr (\)B) — Zin—i—o(a, tr (Aa(\) + A\?)B)—
Zivorn—i—21((0(A?) = N(A)a, B) = Ziy1g n—i-1s(tr (Aa(A))a, tr (V) 5)+
Zivom—i—o (tr N)a,tr (Aa(A) + A%)B) — Zin—i (a, (tr (A)tr (A%) — AP + N(N))B)
R(ao(3)) for some function R : w — F,. (7.2)
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Now let j,k be such that k,j > e, (j, k) is regular and ce < k+ j < N. Let
m = j + k. Applying the regular case argument of Lemma 5.11b) to the cocycle
Z)m, we have

Z;k(a,nB) = Zjp(na, B) for all n € A,

where A is the ring generated by {o(n) —n | tr (n) = 0}. In the case p =d = 3 it is
easy to see that A = f, so Zj;, is f-balanced. We also know that Z;; = Z;,9 g if
dw(j, k) =dw(j + 9,k —9) (Lemma 5.11a)).

Since dy(i,n — i) = dy(i + 27,n — i — 27), we have Z; i = Zijon—i—9 =
Zit18n—i-18 = Zit2Tn—i—27> Lin—i—9 = Zit9mn—i—18 = Zit18n—i—27 and Z; ;18 =
Zi+9n—i—o27. Using these observations and the fact that tr (Ao (X)) = tr (A?)—(tr \)?,
we can simplify the left-hand side of (7.2). After setting D = C; (= Z; ,,—i), we get

D (e, ASB) - D (a()\3)a, B) = R(ao(3)).

Now let o/ = o0(A3)a and B’ = % Clearly, oo (') = ao (), whence
D (U()\?’)a,ﬁ) - D <0()\6)a, )@) = R(ao(f)).

Similarly, we have
D <a()\6)a, ﬁ,}) - D <a(/\9)a, )i) = R(ao(B)).

Adding the last three equations, we get

p
D(a,\38) =D <J(/\9)a, SIE
Since A can be chosen arbitrarily, we conclude that D(«, 3) depends only on
ao (), whence D(«, ) = tro(pac(f)) for some p € w. m

7.3 The case p=2, d=4.

Let k be the unique field lying strictly between f and w (so that [k : f] = [w : k] = 2).
It is easy to show that tr = tr, ¢ vanishes on k, and k = {o(n) —7n | tr () = 0}.

Proof of Theorem 5.7a). First assume that n is odd, in which case the result is an
easy consequence of Lemma 5.9a). Indeed, let n be any element of k\f. If i € I 504
is even, then n[i] = 0, while n[n — i] # 0 since n — i is prime to d = 4. It follows
from (5.6) that C; = 0. The case of odd i is similar.

Now assume that n is even. Since 4 { n, we must have n =4 2. Preliminary
information about C' is given by the following result.
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Lemma 7.2. Fiz an integer ¢ such thate <1 <n —e.
a) If i is even, then C; = 0.
b) If i is odd, then C; is k-balanced and symmetric, that is, Ci(c, 3) = Ci(3, a).

Proof. a) If i is even, then either 4 | i or 4 | (n — i), so C; = 0 by Claim 5.8.

b) The fact that C; is k-balanced follows from (5.6) since k = {o(n)—n | tr (n) = 0}.
Showing that C; is symmetric is equivalent to showing that C; = C,,_;. Note that
i=4 (n—1i)sinceiisoddand n=42. Ifi >n—diande(i) >e(n—1) (ori<n—i
and (i) < e(n—1)), then C; = C),—; by Lemma 5.9b). If i > n—i and ¢(i) < e(n—1)
(or vice versa), use the fact that C; = Cijqe for 1 —d, (i) <a <c—1-d,(i) and

apply the above argument. ([l
Next we use W-action formula. Given a, A € w and k > e, let g = g(\, s) and
u = azk.
If Kk =41, then
w? = a(z® + (A + a2 (A) 2" 4 (0 (N2) + Aa? (V)28 ).
If k =4 3, then

u? = a(z® 4+ (c(\) + o3(A\) 2" + (tr (A2) + 62(\2) + (N3 (V)P 8 .. ).

Fix ¢ such that e < i <n — e and assume that i =4 1. As in the case p =d = 3,
we can assume that d,,(i,n — i) = dy(i +16,n —i —16). Now let ¢ : G x L — F,
be a map which is compatible with Z and linear in the second argument (unlike the
case p = d = 3, the last condition will be used). We shall apply the compatibility
equation Z(u,v) — Z(u?,v9) = ¢(g,[u,v]) to the elements u = ax?, v = Bz =16
and g = g(\, 2), where A, a, § are arbitrary elements of w.

Since k = {o(n) —n | tr(n) = 0}, it follows from Lemma 5.9a) that Zj ; is
k-balanced whenever k,j > e, ce < k+j < N, (k,j) is regular, k and j are odd, and
k =4 7. Computing w9 and v9 by W-action formula and simplifying the expression
Z(u,v) — Z(u9,v9) using the above observation, we get

Zin-i(o, B(o(N?) + Ao*(N)) + Zizsm-i—s(a(X + (X)), BA + 0> (V) +
ZHlG,n,i,lﬁ(a(J()\Z) + )\02()\)), B) = R\, ac(B) — Bo(a)), (7.3)

where R is linear in the second argument. Let D = C; (= Z;p—i = Zitgn—i—8 =
Zit16.m—i—16). Writing p for 0(A?) in (7.3) and simplifying further, we get

D(ap, 8) + D(a, Bo”(u)) + D(a, 3 - tr () = R(o™ (), ao(8) — Bo(a)). (7.4)
Before proving that D = 0, we establish an auxiliary result.

Claim 7.3. The following hold:
(i) D vanishes on kv x kv for any v € w.
(i) There exists A € k such that D(a, 3) = tro(Aac?(B)) for all a, B € w.
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Proof. Let u € w be such that o?(u) = o+ 1. It is clear that tr (u) = 0. Applying
(7.4) with this value of p and o = 3, we get
D(ap, ) + D(a, ap) + D(a, o) = 0.

Since D is symmetric, we conclude that D(a, a) = 0 for all a € w.

Now fix v € w. Given A, p € kv, let & = /A and kK = \/A/pu. Since k € k and
D is k-balanced, we have D(\, u) = D(ak, g) = D(a, ) = 0. So, we proved (i).

K

Part (ii) will be proved by dimension counting. Fix v € w such that w = k@ kw.
Let V be the space of bilinear maps from wxw to [F, that are k-balanced, symmetric
and vanish on k x k and kv x kv. Clearly, a map from V is uniquely determined by
its values on {(1,sv) | k € k}. Therefore, dimp, V' < [k : fo] (recall that fy = F).
On the other hand, every map of the form (a, 3) — tro(Aac?(3)), with X € k, lies
in V since k is the fixed field of o2. Clearly, the subspace of these trace maps has

dimension [k : fy], so we are done. O
An immediate consequence of part (ii) of the above claim is that

D(apu, B) = D(a, Bo* () for all o, B, 1 € w.
Thus (7.4) simplifies to

D(a, B-tr(p)) = R(o™ (i), ac(B) — Ba(a)).
Now fix p, with tr(u) = 1, and let F(z) = R(o~'(\/f),z). Thus, D(a,3) =
F(ao(B) — Bo(a)) for all a, € w, where F': w — [}, is linear.
Choose k € k with o(k) = k + 1. By Claim 7.3(i) for any o € w we have

0= D(a,ar) = F(ao(a)(o(k) — k) = F(ao(a))
Since F' is linear, for any «, 8 € w we have
F(ao(B) + fo(a)) = F((a+ B)o(a+ 3)) — Flao(a)) — F(Bo(f5)) = 0.

Hence, D is identically zero. Thus we showed that C; = 0if i =4 1. The case i =4 3
can be done in a similar way, but it can also be deduced from the case ¢ =4 1 using
the semi-cocycle identity. O

Proof of Lemma 5.11b). Arguing as in the regular case, we have
Zin—ilao(n),B) = Z; n—i(a,np) for all a, f € w and n € k. (7.5)
We must now prove the above formula for n € k. Once again, we can assume

that dg,(i,n — i) = dy(i + 16,n — i — 16). Arguing as before and taking (7.5) into
account, we get

D(ao(M\?),8) + D(a, fA?) = R(ac(B)) for any o, 3, € w, (7.6)

where D = Z; i = Zi+8n—i—8 = Zi+16,n—i—16 and R is some function. Now arguing

as in the case p = d = 3, we conclude that D(ac(\?*), %) = D(a,N?), and the
assertion of the Lemma follows. O
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8 The case p=d=2

This is the most demanding case. The main problem here is that the Lie algebra of
G with respect to any basic filtration (as defined in section 3) is solvable, and while
its second cohomology is computable, it does not yield enough information about
group cocycles via the compatibility equation.

The filtration we use in this case is less natural, the associated Lie algebra
has more complex structure, and the corresponding associative algebras cannot be
defined at all. The proof becomes more technical, although it is based on similar
ideas.

As before, let Gy, be the n*® congruence subgroup of G, and let E,, = W* N G,,.
The following relations are easy to check.

Lemma 8.1. The following hold:

a) G2 C Goyp for alln > 1;

b) 7G = Gop—2 for all n > 4;

c) (En,En) =1 for alln,m > 1;

d) (En,Gn) C Gppon for allm,m > 1.

As in the regular case, fix an elementary cover ((3* ,p)of Gand let N = dep (é ).
We shall assume that N > 100p3d = 1600 and try to reach a contradiction.

We start by defining the filtrations {w;G} of G and {wla} of G. Choose the
numbers ¢ and e such that 4 | ¢ and

(e+1)(2c—1) < N < 2ce (8.1)

Let wi1G = 73+1G and let le ’ye+1G For 2 < i < ¢, set w;G = (wi—1G,w1G) -
(wi— 1G) and le (wi— 1G le) (wi— 1G) Finally, for ¢ > ¢, set w,G = yn+1G
and le 7N+1G

The subgroups {w;G}¢{_; can be described explicitly as follows:

w1G = Goe, walG = Gee - Ege,  w3G = Groe - Ese,
qu;G == G(4k—2)e . E(4k—4)e+2 for 4 § k S C, wc+1G = GQN. (82)

While {w,a’} and {w;G} are not basic filtrations, the construction of Section 3 can
still be applied. There are a few things to check though. First, we need to show
that {w;G} and {w;G} are indeed 2-filtrations of G and G, respectively. Moreover,
in order to apply Lemma 3.6 and Lemma 3.7, we must show that w.G O yv_1G

and wCG D YN— 1G Clearly, it suffices to verify the following inclusions:

a) (WCG)Q Cwer1G b) (WG, w1G) Cwer1G ¢) weG 2 Y@e-1)et1G (8.3)

d) (@e@)? Cwe1G ) (WG, w1G) CwenG. ) Wl DYoo ye1G (8.4)

Inclusions a), b) and c¢) follow immediately from Lemma 8.1 and (8.2).
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d) By (8.2) and Lemma 8.1 we have wcG C Y(2e— 2)6+2G It is clear from the
definition that go(wcG) = w.G, whence wcG - 7(2672)6+2G Ker¢. Now Kerp
is central and has order 2, (wcé)z C (’}/(2072)6+2a)2. Finally, (7(20,2)e+26)2 C
’yNHG by Lemma 3.2 (Where fli)=2i—2).

e) Let E = ¢ 1(E,). Arguing as in d), we have wcG C Y(2e— 1)e+1G E(4C Det2>
whence

(WCG le) (7(20 1)e+1G E(4c 4)e+2>'76+1G) C '7206+2G ( (46_4)e+2176+10)-

By assumption 2ce > N, so ’)/266+2G - 7N+1G = wc+1G. Now

~

(E(4cf4)e+27’7€+1G) = (E(4cf4)e+27 (1eG, G)) €
((E(4c74)e+2’ G)? 7€G)((E(4c—4)e+27 7€G)7 G) - ((E(4C,4)e+2, G), G) (85)

For each n > 1 we have (E,, G) C Eopi by Lemma 8.1, whence (E é) A2n+1
It follows immediately that (E(4c—4)e+27G) C Y(de— 4)e+2G Kerp C ’YNG whence

(E(4c—4)e+2a7e+1a) C v 1G by (8.5).

f) We know that w.G O G (4c—2)e = V(2c—1)e+1G> Whence 7(20_1)e+1é - wca 7NE:.
Since N > (2¢ — 1)e + 1, a standard argument implies that 7(20_1)6+1(A§ - wca.

In order to describe the Lie algebra L = L“(G) we need the following lemma.

Lemma 8.2. Let « € w and n € N, and assume that o € £ if n is even. Then
there exists g = gan € G such that g =1+ an™ + Br*" mod Us,, for some 3 € w.
Moreover, if g is of the above form, then tr () = ac(a).

Proof. The proof is similar to that of Proposition 4.1a). O
Remark: Since [w: f] =2 and p =2, a € f if and only if tr (o)) = 0.

Let S = {(a,n) € w x N | n > 2e and a € f if n is even}. For each (a,n) € §
choose gq,n € G satisfying the conclusion of Lemma 8.2. It is clear that LT ,(ga.n)
does not depend on the choice of gqn, and LT ,,(ga,n) + LT o (98,n) = LT & (gat8,n)-

2N-1
Now we can identify L with a subspace of £ = @ wa® via the linear map
i=2e
defined by LT ,(ga,n) — az™. Under this identification the w-homogeneous compo-
nents {LY}¢_, are given as follows:

2e—1 3e—1

— @ foi D @ Wx2i+1
i=e i=e
4e—1 S5e—1

— @ foi o @ Wx2i+1
i=2e i=3e
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Te—1

Ge
cg _ @ f.’L‘2l ® @ Wx21+1

i=4e i=5e
2ke (2k+1)e—1
Ly = @ fz2 @ @ w2ttt ford<k<c-—1
i=(2k—2)e+1 i=(2k—1)e
N-1 N—-1
Lo — @ 22 @ @ w2t
i=(2¢—2)e+1 i=(2c—1)e

Given n € N, with 2e <n < 2N —1, let d,(n) be the unique number & such that
a" e LY. If n > 2N — 1, set d,(n) = oo.

Unlike the regular case, it is not true in general that [L N wa™ L N wa™] C
LNwz™™™ (although this is true if d,,(n) > 2 and d,,(m) > 2), so there is no direct
analogue of the "thin” grading on L. We will go around this problem by considering

N—1 . N-1 ,
the smaller algebra L8°°d := @ fz¥ & @ wa?*!. The Lie bracket on L8°°9 is
i=e i=2e
given by the following formulas:

[az?!, B2%] = af22?0F2H i d, (2 +1) 4+ 1 = dy (20 + 45 + 1)),

a1, B ) = (a0 (B) — Bo ()T,
if dy,(20 +1) +dw(2) + 1) = do,(2(i + 7 + 1)),

and all other commutators of the form [ax”, Bz!] are equal to zero.

Moreover, L8°°4 is invariant under the action of G. Finally, L8°°d admits another
2N-1
grading € L;, where

i=4e

n n/2 <n < _
Ln:{f:c Ptz if4|nand 4de <n <8 —4 (8.6)

LNwz", otherwise

If C is a cocycle of L and n > 8e, we define C), (the weight n component of C) to
be the cocycle of L8°°? (not the entire L) given as follows. If u € L; and v € L;, set

| Clu,v) ifi+j=mn

Finally, as before we set C; j(a, 3) = C(az?, Ba?).
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8.1 Cocycle descriptions

In this subsection we obtain partial information about homogeneous cocycles of
L#°°d, Fix n such that d,(n) = c¢. If n is even, assume in addition that n >
(4c — 2)e + 14 (note that 2N — 2 > (4¢c — 2)e 4+ 14 by (8.1)). Let C be the weight n
component of some admissible cocycle of L.

Case 1: n is odd. We claim that C is a coboundary. Replacing C by C — B for
some coboundary B, we can assume that C(z%¢, 32"~%¢) = 0 for all 8 € w. Under
this assumption, we shall prove that C' = 0.

It is enough to show that C(ax™ ™, fz™) = 0 for all odd m such that ax™~™, fz™ €
L#°°d. Assume first that 3 < d,,(m). Then we have

C(ax"_m,ﬁa:m) — C(Ozl‘n_m, [ﬁ$m_4e,l‘26]) —_

C([axn7m7ﬁxm74e]’x2e) + C([axnfm7x2e]7ﬁxmf4e)‘ (87)

In the last expression the first term is equal to zero by assumption, while the second
term is zero since [ax™ ™, x2¢] = 0 (as both n —m and 2e are even).
If d,,(m) < 2, write az™ ™ in the form [o; 2", asa!], where k and [ are both odd

and k,l > 4e + 1, and use semi-cocycle identity.

Case 2: n is even (recall that (4c—2)e+ 14 < n < 2N — 2 by our assumption).
In this case we will use W-action formula. When p = d = 2, it gives the following.
Assume that k > e is odd, a, A € w, s > 1. Let u = az”* and g = g(\,s). Then

u? = azF + tr (A2)zF £ o (A2)tr (A2)2P 8 4+ ) (8.8)

An argument similar to the ones we used in other exceptional cases yields the fol-
lowing. Let I,eq :={i € N|4e <i < N —4e and ¢ is odd}. If m > (4c —2)e+ 14 is
even and i € ¢4, then

Ci,mfi = Ci+4,mfif4 if d, (’L', m — l) = dw(l +4,m—1— 4), (89)
Cim—; is f-balanced. (8.10)

From now on we write C; for C;,,—;. Let r = n — (4c — 2)e. Note that by our
assumptions on n we have 14 < r < 2e.

Claim 8.3. Suppose that i = (4a + 2)e + (2b + 1), where 1 < a < ¢ — 2 and
0 <b<e+r/2. Then there exists \; € w such that C;(a, B) = tro(Nao(B)) for
all o, B € w. Moreover, \; depends only on the parity of a and b.

Proof. First we will show that if a is fixed, then C; depends only on the parity of b.
Indeed, let i = (4da+2)e+(2b+1) and i’ = (4da+2)e+(2b'+1), where b and b’ have the
same parity and 0 < b,b’ < e+r/2. Thenn—i = (4(c—a—2)+2)e+(2e—2b—1+7),
n—1i =A(c—a—2)+2)e+ (2e—2b —1+r), so clearly d,(i,n — 1) = d, (¢, n— 1),
whence \; = Ay by (8.9).
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Now fix b. To prove that C; depends only on the parity of a, we must show that
Ci = Ci+86 or, equivalently, Ci+4e - Cl = CiJrge — Ci+4e- We have

Ci+4e(0475) _ C’Z(a,ﬂ) — C’([Ozxi,x%],ﬁx”*i*%) _ C’(ami, [ﬁxnfifALe,xZe]) —
C([aa', Bz, 2%) = C((ao(B) — fo(a))a™ ¢, 2%,

The last expression is independent of 7, and we are done.

Now we establish the first assertion of the claim. Since C; = Cyqi)et(2b+1)
depends only the parity of a and b, we can assume that 0 < b < 2, in which case
dw(i,m —i —8) = dy(i + 8,n —i). Let ¢ be a map compatible with C. Given
o, B, 1 € w, we use the compatibility equation (3.2) with u = az?, v = 32" =8 and
g = 9(\/1,1). Applying W-action formula and using (8.9) and (8.10), we get

D(a, o(p)tr (1)B3) + D(tr (n)a, tr (1)B8) + D(ao(p)tr (n), B) = R(ac (),

where D = C; and R is some function. Since tr (1) = p+o0(p) and D is f-balanced,
we have

D(a, o(p)tr (n)B) + D(ptr (p)ev, B) = R(ao(B)).

Arguing as in other exceptional cases, we conclude that D(a, 3) = tr (A\;ao(f3)) for
some \; € w. O
For the rest of the section, we set

Pkl = A(ak+2)et(214+1), Where 1 <k <cand 0 <[l <e+r/2.

According to Claim 8.3, p; depends only on the parity of £ and .

Lemma 8.4. Let k,l be as above.
a) If n =4 2, then py,; € f£.
b) If 4| n, then pry = o(pgi41)-

Proof. a) Let i = (4k + 2)e + (20 + 1) and let r = n — (4c — 2)e as before. Since
Ci(a7 ﬂ) = Cn—i(/B7 Oé), we have
tr 0(/\(4k+2)e+(2z+1)a<7(5)) =tr 0()‘((4(071@72)+2)e+2e+r7(21+1)/80'(a))7

whence pg; = o(fte—k—2.6-1-14r/2)- Since ¢ and e are even, fio 9 | 1472 =
Pheml—14r/2 = Hiy/24140- Since n =4 2, 7/2 4+ 1 is even. We get py; = o(ux,),
whence pu € f.

Proof of b) is analogous. 0
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8.2 Proof of Theorem 5.1.

Let Z = Zy and 3 = 37 be defined as in Section 3. Recall that by Lemma 3.7, 3 does
not vanish on G x U, where U = yy_1G/yn+1G. On the other hand, 3 vanishes on
G x V, where V = ynyG/yn11G. Since U = VP wa?VN 3@ fz?V 4, there exists
o« € w and g € G such that either 3(g, az?N=%) # 0 or 3(g, ax?¥3) # 0. We are
going to construct an w-splitting f for which the above assertion does not hold, thus
reaching a contradiction.

We start with a simple observation.

Claim 8.5. Let n be even, with d,(n) = ¢, and let X\ € f. Define Dy, : Lgood
Leood F, by setting

o tro(Aao(B)) ifi+j=mn, dy(i) +d,(j) = c and i is odd,
1 J\ —
Danlaa’, fal) = { 0 otherwise.

Then Dy, is a coboundary.

Proof. Note that the above definition of D) ,, is essentially the same as the one used
in Section 5 (we simplified the formula using the fact that A(i) = i\ for A € f).
Thus we can simply adjust the argument of Proposition 5.5b). (|

Now let f be some w-splitting, and let Z = Z;. For the rest of the section we
set C' = Zjgn_2, and let Ag, pig,; be as in the conclusion of Claim 8.3 applied to C'.

Proposition 8.6. We can choose f so that the following conditions are satisfied:
a) Zy,, =0 for all odd n, with d,(n) = c.
b) Either pri2 =0 or 12 ¢ £.

Proof. a) In the last subsection we showed that Z,, is a coboundary (of L#°°d) for
any choice of f. Therefore, by changing f, we can assume that Z},, = 0.
b) This is a direct consequence of Claim 8.5. 0

From now we assume that f satisfies the conclusion of Proposition 8.6. Note
that Z = Z; vanishes on L; x L; if either

A) i+ jisodd and d, (i + j) = cor

B)1%i+j>2N.

Indeed, A) holds by Proposition 8.6a). If both i and j are odd, B) can be proved
in the same way as Claim 5.3. Finally, B) in the case of ¢ and j even follows from
B) in the case of i and j odd and the semi-cocycle identity.

Now let g € G and o € w be arbitrary. Write ¢ in the form 1 4 am 4 br? + .. .,
where a,b € w. By Lemma 8.2, we have tr (b) = ao(a). If m is odd and v = az™,
direct computation shows that

u? = az™ + tr (ac(a))z™ + d*o(a)z™ T + ...

ONote that 22¢ lies in Lae, not in Lo, according to (8.6).

41



It is also easy to see that
(1_26)9 _ $2e + CLCE46+1.

Using properties A) and B) above we have

2N—3) $2N—3—4e’ 5626})

=3(9, [
Z((Ozl‘2N_3_4e)g, ($26)g) . Z(Oé.’E2N_3_4e, x2e) _
Z(Oé$2N_3_4e +tr (ao(a))xQN_2_4e,1:2€ + a$4e+1) _ Z(Oé$2N_3_4e,$2e) _
Z(ax2N—3—4e’ax4e+1) + Z(tl‘ (ao_(a))x2N—2—4e’x2e) _
Z([OZ$2N_3_86 x2e] am4e+1) + Z([am4e+1 Ozsz_3_8e] x2e) _

Z([xQe,a$4e+1],a$2N_3_86) — Z(ax8e+1’ax2N—3—8e) — tro(,LLLQCLO'(Oé)) (8.11)

3(g, ax

Next we compute 3(g, az?¥~*) (this time a € f). Choose odd numbers k& and
[ such that k +1 = 2N — 4 and d, (k) = d,,(I) = ¢/2. Choose (3,7 € w such that
a =tr(Bo(y)). We have

3(g, ™™™ = 3(g, [Ba*,v2!]) = Z(B2" + tr (ac(B))2" ™ + a’o(B)z" T2,
va! +tr (ao(7))z"™ + a’o(y)2"?) — Z(Ba*,yal) =
Z(Ba*, a0 (v)22) + Z(a?0(8)2* 2, yal) = tro(\ + N)Brya(a?)). (8.12)

We are now ready to prove that 3 vanishes on G x (wa?V =3 @ fz?V—4).

Case 1: N is odd. First of all, we claim that 3(g, az?V=*) = 0 for all a € f and
g € G. Indeed, if k and [ are as in (8.12), then k =4 [, whence \;, = \;.

Now let 6 € f, and let ¢ = 1 + 67 + .... Arguing as in Section 6 (case 3),
we conclude that Z(zV=2,0%zN) = 3(g, 22V ~*) (see (6.4)). We just showed that
3(g,2*N=%) = 0. Therefore, tro(An0?) = Z(xV72,622N) = 0 for all § € f, whence
tr(Ay) =0, iie. Ay € f. Now N = (4(¢/2 — 1) + 2)e + r where e < r < 2e.
Since 4 | ¢, we have \y = )\C/Q_M = p1,1 or pi2. Since C' has weight 2N — 2
and 4 | (2N —2), p12 = o(p1,1) by Lemma 8.4b). Therefore, p12 = p11 € £. By
Proposition 8.6b) we have u1 9 = 0, so according to (8.11), 3(g, ax?V=3) = 0 for all
a€wandgeQqG.

Case 2: N is even. We apply the procedure described in [PR, 7.3]. Let w € D

be such that
w? + wr? =72 (8.13)
Then w € mp; moreover, w = 7 + &2 + ..., where tr (€) = 1, and 1 +w € G. Note
that w?/(1 — w) = 72, whence K := f((w)) is an extension of F' = f((7?)) of degree

2. Now . ¥ is also a root of (8.13), whence there exists A € Gal (K/F') such that
—w
w
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Fix 0 € f. Let b := (1 + 6wV 3)7TA(1 + 0w™=3). Note that Ng z(b) = 1,
whence b € G. An easy computation shows that b = 1 4+ 0w™ =2 mod w™~f[[w]]
and b2 =1+ 6?72V =% mod 7*N20p, so

LTw(bz) =022*N"1 4 v, wherev e V = YNG /YN+1G.

Let h = 1 +w. Note that h and b both lie in K and therefore commute,
so 3(h,LT,(b*)) = 0 by Lemma 3.6. Since v € ywG/yn+1G, 3(h,v) = 0 by
Lemma 3.7c). Therefore, 3(h, 02x2N %) = 0.

Now let a = 62 and fix ¢ € w such that tr (¢) = 1. Then o = tr (30(y)) where
B =1and v = 0%, and (8.12) yields

3(h, 0?2V ™) = tr o((p 2 + 111)0%€). (8.14)

Since (2N —2) =4 2, Lemma 8.4a) implies that p; 1, p1,2 € f. By Proposition 8.6b),
the latter implies that 12 = 0.
It follows from (8.14) that

0 = tro(p1,10%) = tr g, (11,10° tr () = tr /g, (112,16°).

Since the above equality holds for all ¢ € f, we conclude that j1,; = 0.
So, we showed that p11 = p12 = 0. Therefore, 3(g,az?N=*) = 0 for all a € f
and g € G by (8.12), and 3(g,a2z*N3) =0 for all « € w and g € G by (8.11). O

9 Some properties of finite fields

Here we collect several properties of extensions of finite fields, which are used for
computation of Lie algebra cohomology. We retain all notations from previous
sections. Recall that f = F, and w = F .

Lemma 9.1 (see [Ri, Lemma 4]). If p # 2 or d # 2, then there exists n € w,
with tr (n) = 0, such that n generates w over f (as a field).

Lemma 9.2. Assume that the pair (p,d) is different from (2,2), (2,4) and (3,3).
Letk=2,ifp>2, and let k = —1 if p = 2. Then there exist elements n,m1,172 € W
such that tr (ny) = tr (n2) =0, n —m € £, nF —ny € £ and n generates w over f.

Proof. Case 1: p t d. In this case for any u € w there exists A € f such that
tr (A + p) = 0 since tr (A + p) = d\ + tr (1) when X € f, and the assertion of the
Lemma follows trivially.

Case 2: p|d and p > 2. Note that in this case d > 5, since we assume (p,d) #
(3,3). By aresult of Cohen and Mills [CM], for any a, b € Fy, there exists a primitive
polynomial f(z) € F,[z] of degree d such that f(z) = 2%+ az? ' +bz? 2+ ... (fis
said to be primitive if it is irreducible and any of its roots generates the multiplicative
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group of F a). If we set a = b = 0 and let n be any root of f(z), then clearly
tr (n) = tr (n%) = 0 and 71 generates w over f.

Case 3: p| d and p = 2. In this case we use a result of Chou and Cohen [CC],
which says that if d > 5 and the pair (g, d) is different from (4, 5), (2,6) and (3, 6),
there exists a primitive polynomial f(x) € Fy[x] of degree d whose coefficients of x
and 297! are both zero. If 7 is a root of f(x), then obviously tr () = tr (n~!) = 0.

Since q is a power of 2 and d is even, the only remaining pair is ¢ =2, d = 6. In
this case we let 17 be any root of the polynomial 2% + 23 + 1, which is easily seen to
be irreducible over Fs.

O

Lemma 9.3. Let S = {o(n) —n | tr (n) = 0} and let A be the subring(=subfield) of
w generated by S. Then A = w with the exception of the casesp=d=3,p=d =2
andp=2,d=4.

Proof. Given A € w, let AS = {As | s € S}. Note that if A\ # 0, then AS is an
f-subspace of w which has codimension 1 if p { d and codimension 2 if p | d. Since
w is a d-dimensional space over f, we conclude that AS N .S # 0 as long as d > 2
and ptd, or d > 4. This implies that every element of w is a ratio of two elements
of Sunlessd=2orp=d=3o0orp=2,d=4.

It remains to prove the Lemma in the case d = 2, p > 2, which is very easy.
Indeed, A is a subfield of w containing f, and since [w : f] =2, A = w or A = f.
The latter is clearly impossible since card (A) > card (S) = card (f) and f does not
contain nonzero elements of zero trace. (|

Lemma 9.4. Let i and j be integers. Let A;; be the linear span of the set S; ; =
{ac'(B) — o7 (a)B | o, B € w}. Assume that j is prime to d. Then

”:{w if df(i+7)
irJ {newltr(n) =0} ifd|(i+7)

Proof. Tt is clear that A;; is a o-invariant f-subspace of w. Setting 5 = 1, we see
that S; ; contains all elements of the form o — o7(c). Since j is prime to d, there
exists k such that jk =5 1. Then a — o(a) = Zi:ol odi(a — o’ (a)) € A; j, whence
A; ;j contains all elements of zero trace.

If d | (i+ j), it is clear that every element of S; ; has zero trace. On the other

hand, if d { (i + j), at least one element of S; ; has nonzero trace. Since elements of

zero trace form an f-subspace of codimension 1, it follows that A; ; = w. O
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