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Abstract

Let D be a finite dimensional division algebra over a local field of charac-
teristic p and let SL1(D) denote the group of elements of reduced norm 1 in D.
In this paper we prove that SL1(D) is finitely presented as a profinite group.

1 Introduction

Let F be a local field of (positive) characteristic p. Let D be a finite dimensional
central division algebra over F , and let SL1(D) denote the group of elements of
reduced norm 1 in D. The goal of this paper is to prove the following result.

Theorem 1.1. The group SL1(D) is finitely presented as a profinite group.

The notion of finite presentability for profinite groups is defined in the usual
sense of category theory, but in general is hard to analyze. Things become easier
if one considers pro-p groups instead of profinite groups, in which case a simple
cohomological criterion is available (see [Wil]):

Theorem 1.2. A finitely generated pro-p group G is finitely presented (as a pro-p
group) if and only if H2(G,Fp) is finite. 1

Remark: By a theorem of Lubotzky [Lu1], a pro-p group is finitely presented as a
pro-p group if and only if it is finitely presented as a profinite group.

Just as in the case of abstract groups, finite presentability of profinite groups
is a commensurability invariant (recall that two groups are called commensurable
if they have isomorphic subgroups of finite index). Since SL1(D) contains a finite
index pro-p subgroup, the assertion of Theorem 1.1 is equivalent to finiteness of
H2(G,Fp) for some (hence arbitrary) open pro-p subgroup G of SL1(D).

∗This work is part of the author’s Ph.D. Thesis at Yale University.
1Here Fp is a finite field with p elements, considered as a trivial G-module, and cohomology is

based on continuous cochains. Recall that H2(G, Fp) is in bijective correspondence with equivalence
classes of topological central extensions of G by Fp.
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In [PR], Prasad and Raghunathan established vanishing of H2(SL1(D),Q/Z)
(where Q/Z is given discrete topology and the action of SL1(D) is trivial), which
immediately implies that H2(SL1(D),Fp) = 0. The assertion of Theorem 1.1 does
not follow from this result, since finiteness of cohomology is not necessarily preserved
under the passage to a finite index subgroup. Still, many ideas from [PR] are used
in the present paper, although they are often expressed in different language.

Theorem 1.1 settles the last open case of the following question posed by Yiftach
Barnea.

Question. Let G be a connected, simply-connected, (absolutely almost) simple alge-
braic group defined over a (nonarchimedean) local field F . If U is an open compact
subgroup of G(F ), is U finitely presented as a profinite group?

If F has characteristic zero, then U must be p-adic analytic and hence finitely
presented (see [DDMS]). Recently, Lubotzky [Lu2] answered the above question
in the affirmative for all isotropic groups. Finally, if G is a connected simply-
connected simple algebraic group defined and anisotropic over a local field F ,
then by Tits’ classification G(F ) is isomorphic to SL1(D) for some division algebra
D. Since SL1(D) is compact, its open subgroups are of finite index and hence
finitely presented by Theorem 1.1.

The proof of Theorem 1.1 is based on certain relations between cohomology of
pro-p groups and associated graded Lie algebras. Our method 2 is described in detail
in Section 3; here we just explain how Lie algebras come into play and motivate some
of the later definitions. Some notations and terminology below are introduced for
expository purposes and will not be used in the rest of the paper.

Given a finitely generated pro-p group G, let L(G) be the Lie algebra of G with
respect to the lower central series. The following result was suggested to the author
by Efim Zelmanov:

Proposition 1.3. If L(G) is finitely presented (as a Lie algebra over the ring of
p-adic integers), then G is finitely presented (as a pro-p group).

Unfortunately, we do not know any interesting examples where the hypothesis
of Proposition 1.3 holds. Nevertheless, we would like to sketch a proof of this result.
We give not the shortest argument, but the one which will lead us to a suitable
generalization.

By Theorem 1.2, a finitely generated pro-p group G is finitely presented if and
only if G has only finitely many (non-equivalent) topological central extensions
by Fp; we will call such extensions elementary. With each elementary extension
E = 1 → Fp → Ĝ → G → 1 one can associate an elementary extension of Lie
algebras L(E) := 0 → Fp → L(Ĝ) → L(G) → 0. The correspondence E 7→ L(E)

2A somewhat similar method was used in [Er], but the language in that paper is different.
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is not injective; however extensions L(E) and L(E ′) are non-equivalent provided E
and E ′ have different depths. The depth of an extension 1 → Fp → Ĝ

ϕ−→ G→ 1 is
defined to be the largest integer n such that Kerϕ ⊆ γnĜ. Now suppose that G is
not finitely presented. Then it is easy to show that G has elementary extensions of
arbitrarily large depth. It follows from the above argument that L(G) has infinitely
many elementary extensions and therefore L(G) is not finitely presented. This
finishes the sketch of a proof of Proposition 1.3.

Let us say that an elementary extension of L(G) is integrable, if it is of the form
L(E) for some extension E of G. Now suppose that G is finitely presented, while
L(G) is not. This means that L(G) has infinitely many elementary extensions,
but only finitely many integrable ones. So, if we want to prove that G is finitely
presented by classifying extensions of L(G), we need to find necessary conditions for
an extension of L(G) to be integrable. The latter seems to be a hard task.

The problem can be resolved by considering Lie algebras with respect to filtra-
tions other than the lower central series. One natural choice is the ”e-step lower
central series” (where e is a fixed positive integer), i.e. the series γeG ⊃ γ2eG ⊃
γ3eG ⊃ . . .. Let Le(G) be the corresponding Lie algebra. As above, there is a
correspondence E 7→ Le(E) between elementary extensions of G and elementary ex-
tensions of Le(G), and we can define the notion of an integrable extension. The new
feature is that Le(G) is acted on by G in a non-trivial way (for e > 1). As a result,
one can write down easily verifiable conditions which must hold for every integrable
extension of Le(G). ”Ideally”, one would like to find e such that only finitely many
extensions of Le(G) satisfy those conditions. However, even if we are unable to do
that, we may still be able to prove finite presentability of G as follows:

a) for every e ∈ N classify elementary extensions of Le(G);
b) show that for any sufficiently large n there exists e = e(n) with the following

property: if an elementary extension of Le(G) is of the form Le(E), then the depth
of E cannot be equal to n (hence G has no elementary extensions of depth n).

The point is that if E is an elementary extension of G, then Le(E) carries some
information about the depth of E . So, even if we cannot show directly that Le(G)
has only finitely many integrable extensions, we may still be able to establish b).

As far as part a) is concerned, note that in general not all elementary extensions
of Le(G) are accounted for by the cohomology group H2(Le(G),Fp), since some of
those extensions do not split even on the level of abelian groups. However, if G is
the first congruence subgroup of SL1(D) (which is our case of interest), this problem
does not arise: we will show that for any central extension 1 → Fp → Ĝ→ G→ 1,
both Le(G) and Le(Ĝ) are Fp-Lie algebras for a suitable choice of e, whence every
integrable extension of Le(G) is represented by some element of H2(Le(G),Fp).

Final remark. The filtrations we will use in the actual proof of Theorem 1.1 are
not ”e-step lower central series”, but their truncated versions (which we call basic
filtrations ). This minor technical modification does not affect the idea of the proof.
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Organization. In Section 2 we recall basic facts about filtrations in pro-p
groups and associated Lie algebras. The general method used to prove Theorem 1.1
is described in Section 3. In Section 4 we review the structure of division algebras
over local fields. Section 5 is concerned with computation of the second cohomology
of Lie algebras associated with basic filtrations of SL1

1(D). In Section 6 we use the
obtained information to complete the proof of Theorem 1.1. In the cases p = 2,
d = 4, and p = d = 3 (where d is the degree of D over F ), some of the results
of Section 5 require different proofs – these are given in Sections 7. The proof of
Theorem 1.1 in the case p = d = 2 (which requires more serious modifications) is
given in Section 8.

Acknowledgements. I am extremely grateful to Alex Lubotzky for posing
the problem and to Efim Zelmanov for proposing the use of Lie methods for finite
presentability questions. I would like to thank Alex Lubotzky, Gregory Margulis
and Gopal Prasad for very interesting conversations and useful remarks on earlier
versions of this paper, and Uzi Vishne for suggesting good references on finite fields.

Basic notations. Throughout the paper Z will stand for integers, and N for
positive integers. A finite field of order q will be denoted by Fq, and the ring of
p-adic integers by Zp. If x is real number, then [x] is the largest integer which does
not exceed x. Finally, we will write a ≡n b for a ≡ b mod n.

2 Filtrations of pro-p groups and associated graded Lie
algebras.

Let G be a pro-p group. As usual, given g, h ∈ G, we set (g, h) = g−1h−1gh. If
A and B are subsets of G, let (A,B) be the closed subgroup generated by the set
{(a, b) | a ∈ A, b ∈ B}. The nth term of the lower central series of G is denoted by
γnG.

Let ω = {ω1G ⊇ ω2G ⊇ . . .} be a descending chain of closed normal subgroups
of a pro-p group G. We will call ω a filtration of G if (ωiG,ωjG) ⊆ ωi+jG for
all i, j > 0. Note that our definition does not include standard requirements a)
ω1G = G, b) ∩ ωiG = {1} and c) ωiG is open in G.

The graded Lie algebra of G associated with the filtration ω will be denoted by

Lω(G). As a graded abelian group, Lω(G) =
∞⊕

n=1
ωnG/ωn+1G, and the bracket is de-

fined as follows: given g ∈ ωiG\ωi+1G and h ∈ ωjG\ωj+1G, set [g ωi+1G, hωj+1G] =
(g, h)ωi+j+1G. For each n ≥ 1, the quotient ωnG/ωn+1G has the structure of a right
G-module with respect to the ”conjugation” action. More precisely, given g ∈ ωnG
and h ∈ G, we set (gωn+1G)h := ghωn+1G where gh = h−1gh. Extending by lin-
earity, we obtain a grading-preserving action of G on Lω(G), which respects the Lie
bracket. Note that if ω1G = G, this action is necessarily trivial.

Since G is pro-p, for every g ∈ G and a ∈ Zp, there is a well-defined element ga;
it follows that Lω(G) has the structure of a Lie algebra over Zp. If (ωiG)p ⊆ ωi+1G
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for all i, ω will be called a p-filtration; in this case pLω(G) = 0, so Lω(G) becomes
a Lie algebra over Fp.

Once again, fix a filtration ω = {ωiG} of a pro-p group G. Let g ∈ G. If
g ∈ ωnG\ωn+1G for some n, the coset g ωn+1G (which can be thought of as an
element of Lω(G)) will be called the ω-leading term of g and denoted by LT ω(g).
The number n will be referred to as the ω-degree of g and denoted by deg ω(g). If
g ∈

⋂
i≥1

ωiG, we set LT ω(g) = 0 and deg ω(g) = ∞. If g 6∈ ω1G, both the ω-degree

and the ω-leading term will be undefined.

Given a subgroup H of G, the Lie subalgebra of Lω(G) corresponding to H is

Lω
G(H) :=

∞⊕
i=1

(H ∩ ωiG)ωi+1G/ωi+1G. Since (H ∩ ωiG)ωi+1G/ωi+1G is naturally

isomorphic to (H ∩ωiG)/(H ∩ωi+1G) for all i, we can identify Lω
G(H) with the Lie

algebra of H associated with the filtration {ωiG ∩H}∞i=1.

3 Lie algebras as a tool for proving finite presentability
of pro-p groups

3.1 Finite presentations and covering maps.

Finiteness of the second cohomology group H2(G,Fp) is one of several conditions
that are equivalent to finite presentability of a pro-p group G. In order to state the
other conditions we introduce the following definition.

Definition. Let G be a pro-p group. A cover of G is a pair (Ĝ, ϕ), where Ĝ is
another pro-p group and ϕ : Ĝ→ G is a surjective homomorphism. We say that

a) (Ĝ, ϕ) is a non-trivial cover, if Kerϕ 6= 1,
b) (Ĝ, ϕ) is an elementary cover, if Kerϕ ∼= Fp.

The depth of a non-trivial cover (Ĝ, ϕ) is the largest integer n such that Kerϕ ⊆ γnĜ.
We will write dep (Ĝ, ϕ) = n.

Note that if (Ĝ, ϕ) is an elementary cover, then Kerϕ is central in Ĝ. Indeed,
the order of the group A = Aut (Fp) is not divisible by p, so there is no nontrivial
homomorphism from Ĝ to A.
Remark: The difference between an elementary cover and an elementary extension
(extension of G by Fp) is that in the definition of an elementary cover we do not
specify the embedding of Fp into Ĝ. Thus, each elementary cover corresponds to
(p− 1) non-equivalent elementary extensions.

Proposition 3.1. Let G be a finitely generated pro-p group. The following are
equivalent:

a) G is finitely presented;
b) H2(G,Fp) is finite;
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c) G has finitely many equivalence classes of elementary extensions;
d) The depths of all non-trivial covers of G are uniformly bounded;
e) The depths of all elementary covers of G are uniformly bounded.

Proof. The equivalence of a), b) and c) is well known (see [Wil]), and it is clear that
c) implies e). So, it is enough to show that e) implies d) and d) implies a).

e)⇒ d) Let N be a bound for the depths of elementary covers of G. Let (Ĝ, ϕ)
be a non-trivial cover of G, let n = dep (Ĝ, ϕ), and let K = Kerϕ. We know
that K ⊆ γnĜ and K 6⊆ γn+1Ĝ, so there exists a subgroup H of K such that
K ∩ γn+1Ĝ ⊆ H and |K : H| = p. It is easy to see that H is a normal subgroup
of Ĝ, and (Ĝ/H, ϕ̄) is an elementary cover of G (where ϕ̄ is defined in an obvious
way). Therefore, dep (Ĝ/H, ϕ̄) ≤ N by assumption. On the other hand, we have
dep (Ĝ/H, ϕ̄) ≥ n since Ker ϕ̄ ⊆ γnĜ/H = γn(Ĝ/H). Hence, n ≤ N .

d)⇒ a) Since G is finitely generated, it has a presentation 〈x1, . . . , xm | r1, r2, . . .〉
with the following property: for every n > 0 all but finitely many relators {ri} lie in
γnF , where F is the free pro-p group on {x1, x2, . . . , xm} (this is true because each
quotient γnF/γn+1F is a finitely generated Zp-module).

Now let N be a bound for the depths of non-trivial covers of G, and let r1, . . . , rl
be all defining relators in the above presentation which do NOT lie in γN+1F .
Clearly, the group Ĝ = 〈x1, . . . , xm | r1, . . . , rl〉 is a cover of G of depth at least
N + 1. Therefore, G is isomorphic to Ĝ and hence finitely presented. �

3.2 Central extensions: from pro-p groups to Lie algebras

Let G be a pro-p group whose finite presentability we are trying to establish. For the
rest of this section we fix an elementary cover (Ĝ, ϕ) of G, and let N = dep (Ĝ, ϕ).
We will describe a Lie algebra method which can be used to show that no such cover
exists for sufficiently large N (and hence G is finitely presented by Proposition 3.1).

In this subsection we define a suitable filtration of G and an Fp-valued 2-cocycle
of the associated Lie algebra Lω(G) which carries a lot of useful information about
the cover (Ĝ, ϕ). At some point we will need to assume that Ĝ satisfies certain
condition, which holds automatically if (γiG)p ⊆ γpiG for all i.

Fix a positive integer e such that e ≤ N , and let c = [N/e]. Given a pro-p group
H, let {ωiH} be the filtration of H defined by setting ωiH = γeiH for i ≤ c and
ωiH = γN+1H for i > c. In what follows, we refer to this filtration as the basic

filtration of type (N, e). Let Lω(H) =
∞⊕
i=1

Lω
i (H) be the associated graded Lie

algebra. Note that Lω
i (H) = 0 for i > c.

Recall that we have a ”conjugation” action of Ĝ on Lω(Ĝ) and of G on Lω(G).
Since Kerϕ is central in Ĝ, Kerϕ acts trivially on Lω(Ĝ). Hence both Lω(Ĝ)
and Lω(G) are G-modules. Moreover, the G-submodules Lω

i (G) and Lω
i (Ĝ) are

isomorphic for i < c, since dep (Ĝ, ϕ) > ce.
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From now on we use shortcut notations L = Lω(G), L̂ = Lω(Ĝ) and Lω
i = Lω

i (G),
L̂

ω

i = Lω
i (Ĝ) for i ∈ N (of course, Lω

i = 0 and L̂
ω

i = 0 for i > c).
Define ϕ∗ : L → L̂ by setting ϕ∗(ĝωi+1Ĝ) = ϕ(ĝ)ωi+1G for ĝ ∈ ωiĜ. Let ϕi be

the restriction of ϕ∗ to L̂
ω

i . Clearly, ϕ∗ is a Lie algebra homomorphism preserving
the G-action, ϕi is surjective for all i and injective for i 6= c, while Kerϕc

∼= Fp.
In order to proceed we need the following technical lemma:

Lemma 3.2. Let G, Ĝ and N be as above. Let f : N → N be a function such
that (γiG)p ⊆ γf(i)G. Then for all i ∈ N we have (γiĜ)p ⊆ γmin(f(i),N)Ĝ and
(γiĜ)p ⊆ γmin(p(i−1)+1,f(i−1)+1)Ĝ.

Proof. The first half of the statement is clear since Kerϕ ⊆ γN Ĝ. The second half
can be proved using the following well-known congruence (see [LM]):

(xp, y) ≡ (x, y)p mod K(x, (x, y)),
where K(a, b) is the normal closure of γp〈a, b〉 · (γ2〈a, b〉)p in 〈x, y〉.

We omit the details and refer the reader to [Er, Lemma 4.2], where a very similar
statement is proved. �

Corollary 3.3. Suppose that c ≥ 2 and (γiG)p ⊆ γpiG for all i ≥ 1. Then {ωiĜ}
is a p-filtration, i.e. (ωiĜ)p ⊆ ωi+1Ĝ for all i.

From now on we will assume that the conclusion (not necessarily the hypothesis)
of Corollary 3.3 holds. It follows that L̂ is a Lie algebra over Fp (and so is L). After
choosing an isomorphism between Kerϕ∗ and Fp, we obtain a central extension of
graded Fp-Lie algebras:

0 → Fp → L̂
ϕ∗−→ L→ 0. (3.1)

This extension splits on the level of graded Fp-vector spaces. In other words, there
exists a linear map f : L → L̂, such that ϕ∗f = id and f(Lω

i ) ⊆ L̂
ω

i for 1 ≤ i ≤ c.
We shall call such map an ω-graded splitting or simply an ω-splitting. Note that the
restriction of an ω-splitting to Lω

i is uniquely determined for i 6= c.
Next we introduce two functions which encode the above central extension.

Given f as above, define zf : G× L→ L̂ as follows:

zf (g, u) = f(u)g − f(ug).

Note that ϕ∗(zf (g, u)) = ϕ∗(f(u)g)−ϕ∗(f(ug)) = (ϕ∗f(u))g−ϕ∗f(ug) = ug−ug = 0,
whence Im (zf ) ⊆ Kerϕ∗. Now define Zf : L× L→ L̂ by setting

Zf (u, v) = f([u, v])− [f(u), f(v)].

Once again, we have Im (Zf ) ⊆ Kerϕ∗.
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Of course, Zf is a 2-cocycle of L with values in the trivial L-module Fp, and
the cohomology class of Zf in H2(L,Fp) does not depend on the choice of f . Any
2-cocycle cohomologous to Zf is equal to Zf ′ for another splitting f ′; however f ′ is
not necessarily an ω-splitting. It is important to know when the latter is the case.

Let us say that a map C : L×L→ L̂ is ω-graded if C(Lω
i , L

ω
j ) ⊆ L̂

ω

i+j for i, j ∈ N.
Under the chosen identification of Fp with Kerϕ∗, a map C : L×L→ Fp is ω-graded
if and only if C(Lω

i , L
ω
j ) = 0 whenever i + j 6= c (since Kerϕ∗ ⊆ L̂

ω

c ). Clearly, Zf

is an ω-graded 2-cocycle. Now define the graded cohomology group 3 H2
gr(L,Fp) to

be the quotient space of ω-graded 2-cocycles modulo ω-graded 2-coboundaries. It is
easy to see that a 2-cocycle C is equal to Zf ′ for some ω-splitting f ′ if and only if

a) C is ω-graded,
b) C and Zf represent the same class in H2

gr(L,Fp).

Cohomological interpretation of zf will not be needed, but let us state it anyway.
Define the left G-module structure on Hom (L,Fp) in the usual way: given l : L→ Fp

and u ∈ L, set (g ∗ l)(u) = l(ug). One can check that the function from G to
Hom (L,Fp) given by g 7→ (u 7→ zf (g, u)) is a 1-cocycle, and its cohomology class
[zf ] ∈ H1(G,Hom (L,Fp)) does not depend on f .

Definition. Let C : L×L→ Fp and c : G×L→ Fp be any maps. We will say that
C and c are compatible if

c(g, [u, v]) = C(u, v)− C(ug, vg) for any g ∈ G and u, v ∈ L. (3.2)

The key relation between Lie algebra and group cohomology is provided by the
following result.

Proposition 3.4. The maps Zf and zf are compatible.

Proof. Note that G acts trivially on Kerϕ∗, whence Zf (u, v)g = Zf (u, v) for all
u, v ∈ L. Thus the right-hand side of (3.2) is equal to

Zf (u, v)g − Zf (ug, vg) = f([u, v])g − [f(u), f(v)]g − f([ug, vg]) + [f(ug), f(vg)] =
f([u, v])g − [f(u)g, f(v)g]− f([u, v]g) + [f(ug), f(vg)] =

zf (g, [u, v])− [f(u)g, f(v)g] + [f(ug), f(vg)].

Now f(w)g − f(wg) ∈ Kerϕ∗ for any w ∈ L, and Kerϕ∗ lies in the center of L.
Therefore, [f(u)g, f(v)g] = [f(ug), f(vg)], and we are done. �

The following simple observation is recorded here for future use.

Claim 3.5. Let Ω be a subset of L×L such that if (u, v) ∈ Ω, then (ug, vg) ∈ Ω for
any g ∈ G. If C : L × L → Fp and c : G × L → Fp are compatible, then the values
of C on Ω determine the values of c on G× Ω′, where Ω′ = {[u, v] | (u, v) ∈ Ω}.

3This notion is introduced for expository purposes only. In the actual proof we will always work
with cocycles and not their cohomology classes.
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3.3 Computing the group 1-cocycle zf

Suppose now that we explicitly constructed ω-graded 2-cocycles C1, . . . , Ck whose
cohomology classes form a basis for H2

gr(L,Fp). Then for a suitable ω-splitting f we
have Zf =

∑
λiCi for some λi ∈ Fp. Proposition 3.4 enables us to write a formula

for z = zf (or rather its restriction to G× [L,L]) in terms of {λi}.
The next step is to find restrictions on the values of λi. These can be obtained

by finding suitable pairs of commuting elements of G:

Lemma 3.6. Let g and h be commuting elements of G. Assume that deg ω(hp) = c
and let u = LT ω(hp) ∈ Lω

c . Then z(g, u) = 0.

Proof. It is enough to show that f(u)g = f(u). Indeed, this would imply that
ug = (ϕ∗f(u))g = ϕ∗(f(u)g) = ϕ∗(f(u)) = u, whence f(ug) = f(u).

Choose ĝ, ĥ ∈ Ĝ such that ϕ(ĥ) = h and ϕ(ĝ) = g, and let û = LT ω(ĥp). Clearly,
û − f(u) ∈ Kerϕ∗. Since G acts trivially on Kerϕ∗, f(u)g = f(u) if and only if
ûg = û. The latter holds if and only if (ĥp, ĝ) ∈ γN+1Ĝ. Let k = (ĥ, ĝ). It follows
from the Hall-Petrescu formula (see [DDMS, Appendix A]) that (ĥp, ĝ) = kpw where
w is a product of elements of the form {(k, s) | s ∈ Ĝ}. Since g and h commute,
k ∈ Kerϕ. But Kerϕ is central in Ĝ and has order p. Therefore kp = w = 1, whence
(ĥp, ĝ) = 1. �

The objective is to find enough restrictions on the {λi} to conclude that z van-
ishes on G × U , where U = γN−1G/γN+1G ⊂ Lω

c . The latter would contradict the
following lemma.

Lemma 3.7. Let U = γN−1G/γN+1G, V = γNG/γN+1G, Û = γN−1Ĝ/γN+1Ĝ,
V̂ = γN Ĝ/γN+1Ĝ (note that V ⊂ U ⊂ Lω

c and V̂ ⊂ Û ⊂ L̂
ω

c ). The following hold:

a) V̂ is the linear span of elements of the form f(u)g − f(u), where u ∈ U and
g ∈ G.

b) The restriction of z to G× U is nontrivial.

c) The restriction of z to G× V is trivial.

Proof. a) First observe that f(u)g − f(u) ∈ V̂ for any u ∈ U and g ∈ G, since
f(U) ⊂ Û and ûg − û ∈ V̂ for any û ∈ Û .

Given v̂ ∈ V̂ , let h ∈ γN Ĝ be such that LT ω(h) = v̂. There exist elements hi ∈
γN−1Ĝ and ki ∈ Ĝ such that h ≡

∏
(hi, ki) mod γN+1Ĝ. Since (hi, ki) = h−1

i hki
i ,

we have
v̂ = LT ω(h) =

∑
(ûki

i − ûi) where ûi = LT ω(hi) ∈ Û .

Now let ui = ϕ∗(ûi) ∈ U . Clearly, ûi − f(ui) ∈ Kerϕ∗. Since Ĝ acts trivially on
Kerϕ∗, we conclude that ûki

i − ûi = f(ui)ki − f(ui) which takes care of a).
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b) Suppose that z vanishes on G × U . Then for any u ∈ U and g ∈ G we
have f(u)g = f(ug), whence f(u)g − f(u) = f(ug − u). Since ug − u ∈ V for any
u ∈ U , part a) implies that V̂ ⊆ f(V ). Since V̂ ⊃ Kerϕ∗ and Im f ∩Kerϕ∗ = 0, we
conclude that Kerϕ∗ = 0, which is impossible.

c) This is very easy and left to the reader. �

Remark: The method we just described may fail or succeed depending on the
choice of the number e (appearing in the definition of ω). In general, the larger e
is, the more relations between {λi} Lemma 3.6 yields. However, the dimension of
the group H2(L,Fp) also grows with increasing e. The optimal choice of e depends
largely on G, but the basic guideline is that neither e nor N/e should be too small.
As a rule, the larger N is, the easier it is to find a suitable value of e.

4 The group SL1(D)

We start by reviewing the structure of division algebras over local fields. For more
details the reader is referred to a paper of Riehm [Ri].

Let F be a local field of characteristic p. Let D be a finite-dimensional central
division algebra over F and let d be the degree of D over F . Then there exists
an unramified extension W of F of degree d, a generator σ of the Galois group
Gal (W/F ) and a uniformizer π of D such that

πwπ−1 = σ(w) for all w ∈W. (4.1)

Denote by OF , OW and OD the valuation rings of F , W and D, and by mF , mW ,
mD the corresponding maximal ideals. It is easy to see that τ := πd is a uniformizer
of F , so we have mD = πOD, mF = τOF and mW = τOW .

Let w (resp. f) be the residue field of W (resp. F ). So f ∼= Fq, where q is a
power of p, and w ∼= Fqd . Let f0 be the prime subfield of f (so f0 ∼= Fp). We will
denote the trace map of the extension w/f (resp. w/f0) by tr (resp. tr 0).

Since F has characteristic p, we can canonically identify f (resp. w) with a
subfield of F (resp. w). We will also identify the Galois groups Gal (W/F ) and
Gal (w/f) via the restriction map (which is an isomorphism). So we can write
F = f((τ)), W = w((τ)), OF = f [[τ ]] and OW = w[[τ ]]. Similarly, D can be
identified (as a set) with Laurent series w((π)). Using (4.1), it is easy to see that
multiplication in D is given by the formula

απi · βπj = ασi(β)πi+j for α, β ∈ w and i, j ∈ Z.

Let Nred (resp. Tred ) denote the reduced norm (resp. reduced trace) map
from D to F . Recall that if a ∈ D, then Nred (a) (resp. Tred (a)) is equal to the
determinant (resp. trace) of the endomorphism of the left W -vector space D given
by x 7→ xa. The restriction of Nred (resp. Tred ) to W coincides with the norm
(resp. trace) map of the extension W/F .
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Let GL1
1(D) = {g ∈ D∗ | g ≡ 1 mod mD} and let SL1(D) be the group of

elements of reduced norm one in D. The group SL1
1(D) = GL1

1(D)∩SL1(D), which
is an open pro-p subgroup of SL1(D), will be our main object of study. For the rest
of the paper we denote SL1

1(D) by G and GL1
1(D) by U . Let {Ui} (resp. {Gi}) be

the congruence filtration of U (resp. G), that is, set Ui = {g ∈ U | g ≡ 1 mod mi
D}

and Gi = G ∩ Ui. It is known that

a) Gp
i ⊆ Gpi for all i ≥ 1, b) Gi = γiG for all i ≥ 1 unless d = p = 2. (4.2)

Let Lie(U) be the Lie algebra of U with the respect to the congruence filtration.
It is easy to see that Lie(U) can be identified with the subalgebra w[π] ⊂ OD via
the map LT (1 + απi) 7→ απi. Therefore, the Lie bracket on Lie(U) is given by the
formula

[λπi, µπj ] = (λσi(µ)− µσj(λ))πi+j .

The subalgebra LieU (G) =
∞⊕

n=1
(G ∩ Un)Un+1/Un+1 consists of elements of reduced

trace zero in w[π]. More explicitly, LieU (G) =
∞⊕

n=1
Mn, where Mn = wπn if d - n ,

and Mn = {λπn | tr (λ) = 0} if d | n.
Our next goal is to describe the Lie algebras of G with respect to various ba-

sic filtrations. These Lie algebras are similar to LieU (G), and they can be nicely
embedded into certain associative algebras, which are defined below.

Fix integers N and e such that 1 ≤ e ≤ N . Let A = A(N, e) be the Fp-vector

space
N⊕

i=0
wxi (where x is a formal variable) with the associative multiplication

defined as follows. Given i ∈ N, let ε(i) be the remainder of i modulo e. For any
α, β ∈ w and i, j ∈ N we set

αxi · βxj =
{
ασi(β)xi+j if ε(i) + ε(j) < e and i+ j ≤ N,
0 otherwise.

(4.3)

The associative algebra A has two natural gradings:

• thin grading A =
∞⊕
i=0

Ai where Ai = wxi for i ≤ N and Ai = 0 for i ≥ N ;

• thick grading A =
∞⊕
i=0

Aω
i where Aω

i =
e(i+1)−1⊕

j=ei
Aj .

Given a ∈ A, we write deg (a) = i (resp. deg ω(a) = i ) if a ∈ Ai (resp. a ∈ Aω
i ).

Below we list some of the key properties of A. Their proofs are straightforward
and left to the reader. Recall that tr (resp. tr 0) denotes the trace map of w/f
(resp. w/f0).
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(P1) The map ¯ : OD → A, defined by

g =
∞∑
i=0

αiπ
i 7→ g :=

e−1∑
i=0

αix
i,

is a homomorphism of associative algebras. Therefore, we can define an action
of U on A by setting ag = g −1ag for a ∈ A and g ∈ U .

(P2) Let I = {i ∈ N | i ≤ N and d | i}. For every i ∈ I define the function
Ti : A → Fp as follows: if a =

∑N
j=0 αjx

j , set Ti(a) = tr 0(αi). Each Ti is a
trace form, that is, Ti(a+b) = Ti(a)+Ti(b) and Ti(ab) = Ti(ba) for a, b ∈ A.

(P3) Consider A as a Lie algebra (with the usual bracket [a, b ] = ab−ba). The sub-

set sl(A) :=
{

N∑
i=0

αix
i | tr (αi) = 0 for all i divisible by d

}
is a Lie subalgebra

of A, which is invariant under the action of U .

Now consider the filtrations {ωiU}∞i=1 of U and {ωiG}∞i=1 of G defined by setting
ωiU = Umin(ei,N+1) and ωiG = Gmin(ei,N+1). Let Lω(G) (resp. Lω(U) ) be the
associated Lie algebra of G (resp. U). Clearly, ωiG = ωiU ∩ G for all i, and
therefore, Lω(G) can be canonically identified with a subalgebra of Lω(U). Note
that if p 6= 2 or d 6= 2, then {ωiG} is the basic filtration of type (N, e) by (4.2)b).

Proposition 4.1. Let A+ =
c⊕

i=1
Aω

i and sl(A)+ = sl(A)∩A+. Let ψ : A+ → Lω(U)

be the unique linear map such that ψ(αxi) = LT ω(1 + απi) for all α ∈ w and
i ≥ e. Then ψ is an isomorphism of Lie algebras, which preserves the action of U .
Moreover, ψ(Aω

i ) = ωiU/ωi+1U for all i ≥ 1, and ψ(sl(A)+) = Lω(G).

Proof. First we prove that ψ is a homomorphism. Take any α, β ∈ w and i, j ∈ N,
with e ≤ i, j ≤ N . Let u = ψ(αxi) = LT ω(1+απi) and v = ψ(βxj) = LT ω(1+βπj).
Note that u ∈ Lω

k (U) and v ∈ Lω
l (U) where k = [i/e] and l = [j/e]. By definition,

[u, v] = [ψ(αxi), ψ(βxj)] = (1 + απi, 1 + βπj)ωk+l+1U . It is easy to see that

(1 + απi, 1 + βπj) ≡ 1 + (ασi(β)− βσj(α))πi+j mod Umin(i+2j,j+2i). (4.4)

Since i = ke+ ε(i) and j = le+ ε(j), it is clear that Umin(i+2j,j+2i) ⊆ ωk+l+1U .

Now [u, v] 6= 0 if and only if (1 + απi, 1 + βπj) 6∈ ωk+l+1U . By (4.4), the latter
happens if and only if ε(i)+ ε(j) < e, i+ j ≤ N and ασi(β)−βσj(α) 6= 0. By (4.3),
the last three conditions hold precisely when [αxi, βxj ] 6= 0. Thus [u, v] = 0 if and
only if [αxi, βxj ] = 0. If [u, v] 6= 0, then [u, v] = LT ω(1+ (ασi(β)−βσj(α))πi+j) by
(4.4). In either case, we conclude that [u, v] = ψ([αxi, βxj ]). So, ψ : A+ → Lω(U) is
a homomorphism of Lie algebras. Clearly ψ is bijective, since every element of ω1U
is uniquely expressible in the form

∏
i≥e(1 + αiπ

i) for some αi ∈ w. The facts that
ψ preserves the U -action and ψ(Aω

i ) = ωiU/ωi+1U for i ≥ 1 follow directly from
definitions.
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Now let us prove that ψ maps sl(A)+ to Lω(G). Fix i ∈ N and α ∈ w such that
αxi ∈ sl(A)+. It will be enough to show that there exists g = g(i, α) of reduced
norm 1 such that g ≡ 1 + απi mod U2i.

First assume that d - i. Let h = 1 + απi. A direct computation shows that
Nred (h) ≡ 1 mod Um, where m is the least common multiple of i and d; in partic-
ular, m ≥ 2i. Since W/F is unramified, we have NW/F (W ∩ Ui) = F ∩ Ui for all
i ≥ 1, where NW/F is the norm map of W/F . Therefore, there exists k ∈ W ∩ Um

such that Nred (k) = Nred (h), whence g = hk−1 has the desired properties.

Now consider the case d | i. This time the assumption αxi ∈ sl(A)+ yields
tr (α) = 0. So, α = σ(λ) − λ for some λ ∈ w. Let h = 1 + λπi = 1 + λτ i/d,
and let g = σ(h)h−1 = (1 + σ(λ)πi)(1 + λπi)−1. Since h ∈ W , we have Nred (g) =
NW/F (σ(h)h−1) = 1. On the other hand, g ≡ 1 + (σ(λ)− λ)πi mod U2i.

It remains to show ψ(sl(A)+) is the entire Lω(G). If this was not the case, there
would exist g ∈ G such that g ≡ 1 + απi mod Ui+1, where d | i and tr (α) 6= 0.
This is impossible since Nred (Ui+1) ⊆ Ui+1, Nred (1 + απi) = NW/F (1 + απi) (as
d | i) and NW/F (1 + απi) ≡ 1 + tr (α)πi mod Ui+1. �

5 Lie algebra cohomology

Our ultimate goal (which will be accomplished at the end of Section 6) is to prove
the following theorem using the method described in Section 3:

Theorem 5.1. The depth of any elementary cover of G = SL1
1(D) does not exceed

100p3d.

Throughout this section some restrictions on p and d will be made. The case
p = d = 2 is excluded from our considerations here and will be dealt with in
Section 8. When p = d = 3, or p = 2 and d = 4, the general scheme of the
proof remains the same as in the ”regular” case, but a couple of key results require
different arguments. The proofs of those results in these exceptional cases are given
in Section 7. Throughout the proof we shall use several facts about extensions of
finite fields. These facts are collected in Section 9.

Fix an elementary cover (Ĝ, ϕ) of G. Let N = dep (Ĝ, ϕ), and fix4 a positive
integer e < N . Let ω = {ωi} be the basic filtration of type (N, e), and let c = [N/e].
Throughout this section we write L = Lω(G), L̂ = Lω(Ĝ), and for i ≤ c we set
Lω

i = Lω
i (G) = ωiG/ωi+1G and L̂

ω

i = Lω
i (Ĝ) = ωiĜ/ωi+1Ĝ. Given an ω-graded

splitting f : L→ L̂, let Zf (resp. zf ) be the corresponding Fp-valued 2-cocycle of L
(resp. Hom (L,Fp)-valued 1-cocycle of G), as defined in Section 3. The goal of this
section is to find an explicit formula for the restriction of Zf to some large subset
of L× L (under the assumption N ≥ 100p3d), and then use compatibility equation

4We will impose certain restrictions on the choice of e later in this section.
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(3.2) to find a formula for zf . In the next section we will show that the obtained
formula leads to a contradiction using Lemma 3.6 and Lemma 3.7.

5.1 Cocycle descriptions

Let A = A(N, e) be defined as in the previous section, and identify L with sl+(A)
as in Proposition 4.1. For e ≤ i ≤ N let Li = wxi ∩ L, that is,

Li =
{

wxi if d - i;
{αxi | tr (α) = 0} if d | i.

We also set Li = 0 for i > N and i < e. Note that

Li = {LT ω(g) | g ∈ γiG\γi+1G} ∪ {0} for e ≤ i ≤ N. (5.1)

Given a non-negative integer n ≤ N , let dω(n) := [n/e]. If n > N , set dω(n) = ∞.
Then for 1 ≤ i ≤ c we have

Lω
i =

⊕
dω(j)=i

Lj .

As in the previous section, let ε(n) be the remainder of n modulo e. Thus,
ε(n) = n−dω(n)e for 0 ≤ n ≤ N . It is natural to introduce the following definition.

Definition. A pair of non-negative integers (i, j) is regular if i + j ≤ N and the
following equivalent conditions hold:

a) dω(i+ j) = dω(i) + dω(j); b) ε(i+ j) = ε(i) + ε(j); d) ε(i+ j) ≥ ε(i);
c) ε(i) + ε(j) < e; e) ε(i+ j) ≥ ε(j).

In view of (4.3), the formula for the Lie bracket in L can be written as follows:

[αxi, βxj ] =
{

(ασi(β)− βσj(α))xi+j if (i, j) is regular,
0 otherwise.

Claim 5.2. If the pair (i, j) is regular and j is prime to d, then [Li, Lj ] = Li+j. If
(i, j) is not regular, then [Li, Lj ] = 0.

Proof. The first assertion follows from Lemma 9.4 if d - (i+ j) and from Lemma 9.1
if d | (i+ j). The second assertion is obvious. �

Now recall that a bilinear map C : L × L → Fp is a 2-cocycle, if it satisfies the
following two conditions:

C(u, u) = 0 for all u ∈ L, (5.2)

C([u, v], w) = C(u, [v, w])− C(v, [u,w]) for all u, v, w ∈ L. (5.3)

A cocycle B : L×L→ Fp is a coboundary, if there exists a linear function h : L→ Fp

such that B(x, y) = h([x, y]) for all x, y ∈ L.
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Definition. A bilinear map satisfying (5.3), but not necessarily (5.2), will be called
a semi-cocycle.5 We will refer to (5.3) as the semi-cocycle identity.

Next we introduce more auxiliary definitions.

Definition. Let C : L× L→ Fp be a bilinear map.

a) Let I be a subset of N. We will say that C is supported on I, if C vanishes on
Li × Lj whenever i+ j /∈ I. If C is supported on {n} for some n, we will say
that C is homogeneous of weight n (or simply of weight n).

b) C is regular, if C vanishes on Li × Lj whenever (i, j) is NOT regular.

c) C is admissible, if there exists a function c : G× L→ Fp linear in the second
argument such that C and c are compatible in the sense of (3.2).

Remark: Every coboundary is a regular map, since [Li, Lj ] = 0 whenever (i, j) is
not regular.

Definition. Let C : L × L → Fp be a bilinear map. For every positive integer
n ≤ N let C|n : L× L→ Fp be the unique bilinear map such that

C|n(αxi, βxj) =
{
C(αxi, βxj) if i+ j = n
0 if i+ j 6= n.

We will call C|n the weight n component of C.

Note that C =
∑N

n=2eC|n and C|n is of weight n for every n. Moreover, C is a
semi-cocycle (resp. cocycle, regular cocycle) if and only if each C|n is a semi-cocycle
(resp. cocycle, regular cocycle). On the other hand, if C is admissible, C|n need not
be admissible.

Claim 5.3. Let f be an ω-splitting. Then Zf is an admissible regular cocycle sup-
ported on the set [ce,N ] := {i | ce ≤ i ≤ N}.

Proof. Admissibility of Zf is an immediate consequence of Proposition 3.4. Next
we claim that Zf |n = 0 for n < ce. Indeed, let u ∈ Li, v ∈ Lj , where i + j < ce.

Then Zf (u, v) = f([u, v])− [f(u), f(v)] ∈ L̂
ω

k , where k = dω(i+ j) < c. On the other
hand, Zf (u, v) ∈ Kerϕ∗. Since Kerϕ∗ ⊂ L̂

ω

c , we conclude that Zf (u, v) = 0.
It remains to prove that Zf (Li, Lj) = 0 whenever (i, j) is not regular (this will

also imply that Zf |n = 0 for n > N). If i > N (resp. j > N), then Li = 0 (resp.
Lj = 0), and there is nothing to prove. So, fix a pair (i, j) which is NOT regular,
with i, j ≤ N , and set k = dω(i) and l = dω(j).

Let u ∈ Li, v ∈ Lj . Choose ĝ, ĥ ∈ Ĝ such that f(u) = ĝ ωk+1Ĝ and f(v) =
ĥ ωl+1Ĝ, and let g = ϕ(ĝ), h = ϕ(ĥ). Then u = ϕ∗(ĝ ωk+1Ĝ) = g ωk+1G and

5The reason for using such terminology will be clear shortly.
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v = hωl+1H. So, LT ω(g) ∈ Li and LT ω(h) ∈ Lj , whence g ∈ γiG and h ∈ γjG by
(5.1). Since Kerϕ ⊂ γN Ĝ (and i, j ≤ N), we have ĝ ∈ γiĜ and ĥ ∈ γjĜ.

We are trying to prove that f([u, v]) = [f(u), f(v)]. Since [u, v] = ϕ∗([f(u), f(v)]),
it will be enough to show that [f(u), f(v)] = 0. By definition,

[f(u), f(v)] = [ĝ ωk+1Ĝ, ĥ ωl+1Ĝ] = (ĝ, ĥ)ωk+l+1Ĝ.

Now (ĝ, ĥ) ∈ γi+jĜ ⊆ ωdω(i+j)Ĝ. Since (i, j) is not regular, dω(i + j) ≥ dω(i) +
dω(j) + 1 = k + l + 1. Therefore, [f(u), f(v)] = 0. �

So, we should try to describe regular homogeneous cocycles of weights in [ce,N ].
The following proposition gives a method of constructing Lie algebra semi-cocycles.

Proposition 5.4. Let d be a derivation of A, that is, d(ab) = ad(b) + d(a)b for all
a, b ∈ A. Let n ≤ N be divisible by d. Then the function C = Cd,n : L × L → Fp

defined by C(a, b) = Tn(d(a)b) is a homogeneous semi-cocycle of weight n.

Proof. The assertion follows directly from the facts that Tn is linear and Tn(ab) =
Tn(ba) for all a, b ∈ A. �

The following notation is taken from [PR]: given λ ∈ w and i ∈ Z≥0, we set
λ(i) := λ + σ(λ) + . . . + σi−1(λ). Now define two families {dλ}λ∈w and {eµ}µ∈f of
derivations of A by setting

dλ(αxi) = λ(i)αxi and eµ(αxi) = αµdω(i)xi.

For convenience we give special names to the corresponding semi-cocycles: Dλ,n =
Cdλ,n and Eµ,n = Ceµ,n. It is clear that

Dλ,n(αxi, βxj) =
{

tr 0(λ(i)ασi(β)) if i+ j = n and (i, j) is regular
0 otherwise,

Eµ,n(αxi, βxj) =
{

tr 0(µdω(i)ασi(β)) if i+ j = n and (i, j) is regular
0 otherwise.

The next result tells us which of the above semi-cocycles are cocycles.

Proposition 5.5. Fix an integer n divisible by d, with 2e ≤ n ≤ N . Assume, in
addition, that ε(n) ≥ 2. The following hold:

a) If pd | n, then Dλ,n is a cocycle for every λ ∈ w. Moreover, if tr (λ) = tr (µ),
then Dλ,n −Dµ,n is a coboundary.

b) If pd - n, then Dλ,n is a cocycle if and only if tr (λ) = 0. Every such cocycle
is a coboundary.

c) Eµ,n is a cocycle if and only if dω(n) is divisible by p or µ = 0.
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Proof. a) First assume that p 6= 2. Fix λ ∈ w, and let C = Dλ,n. To prove that C
is a cocycle, it suffices to show that C(u, v) + C(v, u) = 0 for all u, v ∈ L such that
u = αxi, v = βxn−i, where α, β ∈ w and the pair (i, n− i) is regular. We have

C(u, v) + C(v, u) = tr 0(λ(i)ασi(β)) + tr 0(λ(n− i)βσn−i(α))

= tr 0(λ(i)ασi(β)) + tr 0(σi(λ(n− i))σi(β)σn(α)) since tr 0 is σ-invariant

= tr 0((λ(i) + σi(λ(n− i)))ασi(β)) since σn(α) = α (as d | n). (5.4)

Now λ(i) + σi(λ(n − i)) = λ(n) =
n

d
tr (λ) = 0 since

n

d
is divisible by p. Thus we

proved the first assertion.
Now assume that tr (λ) = 0. Then λ = ν − σ(ν) for some ν, and therefore

λ(i) = ν − σi(ν). We have

C(u, v) = C(αxi, βxn−i) = tr 0((ν − σi(ν))ασi(β)) = tr 0(ν(ασi(β)− σ−i(α)β)).

On the other hand, [u, v] = (ασi(β)−σn−i(α)β)xn. Thus C(u, v) = h([u, v]), where
h(a) is equal to f0-trace of the coefficient of xn in νa. Therefore, C is a coboundary.

Finally, if λ, µ ∈ w are arbitrary and tr (λ) = tr (µ), then Dλ,n−Dµ,n = Dλ−µ,n

is a coboundary by the above argument.

Now consider the case p = 2 (in which case the identity C(u, v) + C(v, u) = 0
does not imply that C(u, u) = 0). Since C is bilinear and has weight n, it suffices to
show that C(u, u) = 0 for u ∈ Ln/2. Recall that n = 2dm for some m. If u ∈ Ln/2,
then u = αxdm, where tr (α) = 0. Therefore,

C(u, u) = tr 0(λ(dm)ασdm(α)) = tr 0(m tr (λ)α2) = tr f/f0(tr (m tr (λ)α2)) =

tr f/f0(m tr (λ)tr (α2)) = 0 since tr (α2) = (trα)2.

b) The assertion follows immediately from the calculations in the proof of part
a). Here is where we use the assumption ε(n) ≥ 2 – it ensures that there exists a
regular pair (i, n− i) with d - i and d - (n− i), whence one can use arbitrary α and
β in (5.4). The case p = 2 does not require special consideration.

c) Let C = Eµ,n. Let u = αxi, v = βxn−i, where (i, n − i) is regular. Since
µ ∈ f , we have

C(u, v) + C(v, u) = tr 0(µdω(i)ασi(β)) + tr 0(µdω(n− i)βσn−i(α)) =

tr 0(µ(dω(i) + dω(n− i))ασi(β)) = tr 0(µdω(n)ασi(β)).

The above expression vanishes for all α, β and i if and only if p | dω(n) or µ = 0,
so we are done if p 6= 2. If p = 2, we can use the same argument as in the proof of
part a). �

From now on we assume that N ≥ 100p3d and e satisfies the conclusion of the
following claim (whose verification is left to the reader).
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Claim 5.6. If N ≥ 100p3d, we can choose e so that a) pd | e , b) [N/e] = 4p (that
is, c = 4p) and c) ε(N) ≥ p+ 100.

Let Igood = [2e, (c − 1)e − 1] = {i ∈ N | 2 ≤ dω(i) ≤ c − 2}, and let Lgood =⊕
i∈Igood

Li =
c−2⊕
k=2

Lω
k . The main part of this section will be devoted to the proof of the

following result.

Theorem 5.7. Fix n such that ce + 2 ≤ n ≤ N , and let C be a regular cocycle
of weight n. If the pair (p, d) is equal to (2, 4) or (3, 3), assume in addition that
n ≥ N − p and C is the weight n component of some regular admissible cocycle Z.

a) If d - n, there exists a coboundary B of weight n which coincides with C on
Lgood × Lgood.

b) If d | n, there exist µ ∈ w and ν ∈ f such that C and Dµ,n + Eν,n coincide on
Lgood × Lgood.

5.2 Proof of Theorem 5.7a)

We will use the following shortcut notations:

Ci(α, β) = C(αxi, βxn−i) for e ≤ i ≤ n− e and λ[i] = σi(λ)− λ for λ ∈ w, i ∈ Z.

Fix η0 ∈ w such that tr (η0) = 0 and η0 generates w as a field over f (such η0

exists by Lemma 9.1). We claim that the map αxn−e 7→ [αxn−e, η0x
e] from Ln−e to

Ln is injective. Indeed,

[αxn−e, η0x
e] =

(
ασn−e(η0)− σe(α)η0

)
xn = α(σn(η0)−η0)xn = α·η0[n]xn (as d | e)

and η0[n] 6= 0 since d - n. Therefore, there exists a coboundary B of weight n such
that C(αxn−e, η0x

e) = B(αxn−e, η0x
e) for all α ∈ w. Clearly, it is enough to prove

the theorem for C − B instead of C (note that C − B is also regular since every
coboundary is regular). Thus, after replacing C by C −B, we can assume that

C(αxn−e, η0x
e) = 0 for all α ∈ w. (5.5)

We are going to deduce from (5.5) that C vanishes on Lgood × Lgood.

Claim 5.8. Suppose that d | i and 1 ≤ dω(i) ≤ c− 2. Then Ci is identically zero.

Proof. First of all, we can assume that (i, n− i) is regular (otherwise Ci = 0 because
C is regular). Since dω(i) ≤ c− 2, we have dω(n− i) = dω(n)− dω(i) ≥ 2, whence
n− i− e ≥ e. Thus given α, β ∈ w, with tr (α) = 0, we have

Ci(α, β) = C(αxi, βxn−i) = C

(
αxi,

[
β

η0[n− i]
xn−i−e, η0x

e

])
=

C

([
αxi,

β

η0[n− i]
xn−i−e

]
, η0x

e

)
+ C

(
β

η[n− i]
xn−i−e, [αxi, η0x

e]
)

= 0.
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The first summand in the last expression is equal to zero by (5.5), and the second
summand is zero because [αxi, η0x

e] = 0 (as d | i). �

Note that if i ∈ Igood, then 1 ≤ dω(n− i) ≤ c− 2. Since C is skew-symmetric, it
follows from Claim 5.8 that Ci = 0 whenever i ∈ Igood and either d | (n− i) or d | i.
It remains to prove that Ci = 0 for every i ∈ Igood such that d - i, d - (n− i).

Lemma 5.9. The following hold:

a) Let i ∈ Igood, and let α, β, η ∈ w, with tr (η) = 0. Then

Ci(α · η[i], β) = −Ci(α, β · η[n− i]). (5.6)

b) Let i, i′ ∈ N be such that i′ ≡d i. Assume in addition that e ≤ i < i′ ≤ n− e,
d - i, d - (n− i) and ε(i) ≤ ε(i′) ≤ ε(n). Then Ci = Ci′.

First we will prove an auxiliary statement:

Claim 5.10. Let i and i′ satisfy the hypotheses of Lemma 5.9b), and assume that
dω(i′ − i) > 0. Then for any α, β, η ∈ w, with tr (η) = 0, we have

Ci′(α · η[i], β) = Ci(α,−β · η[n− i]). (5.7)

Proof. Applying the semi-cocycle identity we have

C([αxi, ηxi′−i], βxn−i′) = C(αxi, [ηxi′−i, βxn−i′ ])− C(ηxi′−i, [αxi, βxn−i′ ]). (5.8)

Since ε(i) ≤ ε(i′) ≤ ε(n), the pairs (i, n−i), (i′, n−i′) and (i, i′−i) are regular. Since
d | (i′ − i), we have [αxi, ηxi′−i] = α · η[i]xi′ and [ηxi′−i, βxn−i′ ] = −β · η[n− i]xn−i.
The second summand on the right-hand side of (5.8) vanishes by Claim 5.8, and
(5.7) follows. �

Proof of Lemma 5.9. a) We can assume that (i, n−i) is regular (otherwise the result
is trivial). Applying (5.7) three times, we get

Ci(α · η[i], β) = −Ci+e(α, β · η[n − i]) = Ci−e(α · η[i], β) = −Ci(α, β · η[n − i]).

b) If dω(i′−i) > 0 and either i ∈ Igood or i′ ∈ Igood, the result follows immediately
from (5.6) and (5.7) (since d - i and d - (n− i), there exists η, with tr (η) = 0, such
that η[i] 6= 0 and η[n− i] 6= 0).

In the general case, choose a 6= 0 such that i − ae ∈ Igood. If a > 0, we have
Ci = Ci−ae = Ci′ by the above argument. If a < 0, we have Ci = Ci′−ae = Ci′ . �

Conclusion of the proof of Theorem 5.7a). From now on we fix i ∈ Igood such that
d - i, d - (n − i) and (i, n − i) is regular. Let D = Ci. We want to prove that
D = 0. The cases p = 2 and p > 2 will be treated in slightly different ways. Both
arguments are based on the same idea, but the one in the case p = 2 requires more
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computations. The exceptional cases (p, d) = (3, 3) or (2, 4) will be considered in
Section 7.

Case 1: p > 2. Let η1, η2 ∈ w be such that tr (η1) = tr (η2) = 0 and η2

generates w/f (so that η2[j] 6= 0 if d - j). By (5.6) we have

D

(
α · η1[i]

η2[i]
, β

)
= −D

(
α

η2[i]
, β · η1[n− i]

)
= D

(
α, β · η1[n− i]

η2[n− i]

)
. (5.9)

By Lemma 9.2, we can choose η1, η2 as above and η ∈ w such that η − η2 ∈ f
and η2 − η1 ∈ f . For every j not divisible by d we have η1[j] = η2[j], η2[j] = η[j],

and so
η1[j]
η2[j]

= σj(η) + η. Equation (5.9) can now be written as

D(α(σi(η) + η), β) = D(α, β(σn−i(η) + η)).

Lemma 5.9a) yields

D(α(σi(η)− η), β) = −D(α, β(σn−i(η)− η)).

Taking half-sum and half-difference of the last two equations, we get

D(ασi(η), β) = D(α, βη), (5.10)

D(αη, β) = D(α, βσn−i(η)). (5.11)

It is easy to see that if η, η1, η2 are replaced by σi(η), σi(η1), σi(η2), respectively,
the whole argument can be repeated. Replacing η by σi(η) in (5.11), we have

D(ασi(η), β) = D(α, βσn(η)). (5.12)

Subtracting (5.10) from (5.12), we get

D(α, β · η[n]) = 0.

Now η[n] 6= 0 since d - n, and it follows that D is identically zero. The proof in the
case p > 2 is complete.

Case 2: p = 2. Let

R = {(λ, µ) ∈ w ×w | D(αλ, β) = D(α, βµ) for all α, β ∈ w}.

Clearly, R is a subring of w×w. Moreover, if (λ, µ) ∈ R, (λ′, µ′) ∈ R, with λ, µ 6= 0,
then (λ′/λ, µ′/µ) ∈ R. Lemma 5.9a) implies that (η[i], η[n − i]) ∈ R if tr (η) = 0.
It follows that (λ, λ) ∈ R for all λ ∈ f .

Now fix η, η1, η2 ∈ w such that η − η1 ∈ f , η−1 − η2 ∈ f , tr (η1) = tr (η2) = 0
and η generates w/f (existence of such elements is proved in Lemma 9.2). Since
η[j] = η1[j], η−1[j] = η2[j] for all j, Lemma 5.9a) yields (η[i], η[n − i]) ∈ R
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and (η−1[i], η−1[n − i]) ∈ R, whence
(

η[i]
η−1[i]

,
η[n− i]
η−1[n− i]

)
∈ R. But

η[j]
η−1[j]

=

η + σj(η)
η−1 + σj(η−1)

= ησj(η) if d - j. Therefore, (ησi(η), ησn−i(η)) ∈ R, that is,

D(αησi(η), β) = D(α, ησn−i(η)β) for all α, β ∈ w. (5.13)

Now let E(α, β) = D(αη, β)−D(α, ηβ). We shall first prove that E is identically
zero and then deduce that D = 0 unless i ≡d (n− i). Rewrite (5.6) as follows:

D(ασi(η), β)−D(αη, β) = D(α, βσn−i(η))−D(α, βη).

Therefore,

E(α, β) = D(αη, β)−D(α, βη) = D(ασi(η), β)−D(α, βσn−i(η)) =

D(ασi(η), β)−D(αησi(η),
β

η
) = E(ασi(η),

β

η
),

where we used (5.13) at the next to last step. So, for all α, β ∈ w we have

E(α, ηβ) = E(ασi(η), β). (5.14)

Similarly, one can show that

E(αη, β) = E(α, σn−i(η)β). (5.15)

Now let S = {ξ ∈ w | E(α, βξ) = E(ασi(ξ), β) for all α, β ∈ w}. Clearly, S is an
f -subalgebra of w. Formula (5.14) implies that η ∈ S, and since η generates w/f ,
we have S = w.

It follows that E(α, β) depends only on ασi(β). Since the map (µ, ν) 7→ tr 0(µν)
is a non-degenerate Fp-valued bilinear form on w ×w, we conclude that E(α, β) =
tr 0(λασi(β)) for some λ ∈ w. Similarly, (5.15) implies that E(α, β) = tr 0(λ′ασi−n(β))
for some λ′ ∈ w.

Setting β = 1 in the above formulas, we have tr 0(λα) = tr 0(λ′α) for all α ∈ w,
whence λ = λ′. Therefore, tr 0(λα(σi(β) − σi−n(β))) = 0 for all α, β ∈ w. Since
d - n, there exists β ∈ w such that σi(β)− σi−n(β) 6= 0. Therefore, λ = 0 and E is
identically zero.

Thus, we proved that

D(αη, β) = D(α, ηβ) for all α, β ∈ w. (5.16)

Combining this with (5.13), we get

D(ασi(η), β) = D(α, σn−i(η)β) for all α, β ∈ w. (5.17)
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Arguing as in the case p > 2, we conclude from (5.16) and (5.17) that D = 0 unless
i ≡d (n− i).

Suppose now that i ≡d (n−i). Using Lemma 5.9b), we can assume that ε(i) > d.
Let j = 1 or d−1 be such that d - 2(j− i) (such j exists unless d = 2 or d = 4). The
commutator map Li−e−j ×Le+j → Li is surjective by Claim 5.2, since j ≡d ±1 and
(i− e− j, e+ j) is regular. According to the semi-cocycle identity (5.3), C vanishes
on Li × Ln−i as long as C vanishes on Li−e−j × Ln−i+e+j and on Le+j × Ln−e−j .
The latter holds – as we just proved – unless (i− j) ≡d (n− i+ j) or j ≡d (n− j).
Either of the last two conditions would contradict our assumptions. The proof is
complete. �

5.3 Proof of Theorem 5.7b)

Remark: Apart from the cases p = d = 3 and p = 2, d = 4, we will never use
skew-symmetry of C, so the assertion of Theorem 5.7b) holds if C is only assumed
to be a semi-cocycle.

Lemma 5.11. Let Ireg = {i ∈ N | e ≤ i ≤ n− e, (i, n− i) is regular and d - i}.

a) Let i, j ∈ Ireg, and assume that i < j, ε(i) ≤ ε(j), pd | (j−i) and p | dω(j−i).
Then Ci = Cj.

b) 6 For every i ∈ Ireg, with i ≡d 1, there exists λi ∈ w such that

Ci(α, β) = tr 0(λiασ(β)) for all α, β ∈ w.

Proof. a) Let k and l be such that

d | l, k ≡d i, e ≤ k, l, n− k − l, ε(k) + ε(l) = ε(k + l) and ε(k + l) < ε(n) (5.18)

(the last two conditions imply that the pairs (k, l), (k, n − k − l) and (l, n − k − l)
are regular). Applying the semi-cocycle identity to the triple αxk, ηxl and βxn−k−l

(where tr (η) = 0) and simplifying, we have

Ck+l(αη[i], β) = Ck(α, (−η[−i])β)) + Cl(η, {ασi(β)}[−i]) (5.19)

Let ξ = −η[−i]. Then η[i] = σi(ξ), and the last equation can be rewritten as follows:

Ck+l(ασi(ξ), β) = Ck(α, βξ) + Cl(η,
{
ασi(β)

}
[−i]). (5.20)

Now suppose that i ≤ n− 3e. Applications of (5.20) yield

Ci+2e(α(σi(ξ))2,
β

ξ
) = Ci

(
ασi(ξ), β

)
+ C2e

(
η,

{
ασi(β)

}
[−i]

)
and

6In the cases p = d = 3 and p = 2, d = 4, the assertion of Lemma 5.11b) will be proved in
Section 7.
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Ci+2e(α(σi(ξ))2,
β

ξ
) = Ci+e(ασi(ξ), β) + Ce

(
η,

{
ασi(β)

}
[−i]

)
=

Ci (α, βξ) + 2Ce

(
η,

{
ασi(β)

}
[−i]

)
.

Combining these formulas, we conclude that

Ci(ασi(ξ), β) = Ci(α, βξ) +R(ασi(β)) for some function R : w → Fp.

Replacing α by ασi(ξ), we get

Ci(α(σi(ξ))2, β) = Ci(ασi(ξ), βξ) + R(ασi(βξ)) = Ci(α, βξ2) + 2R(ασi(βξ)).

By induction we have Ci(ασi(ξm), β) = Ci(α, βξm) + mR(ασi(βξm−1)) for any
m ≥ 1. Setting m = qd = card (w) and noting that ξm = ξ, we get

Ci(ασi(ξ), β) = Ci(α, βξ). (5.21)

Case 1: dω(i) < dω(j). Our assumptions imply that i ≤ j−pe ≤ n− (p+1)e ≤
n − 3e, whence (5.21) holds. Now let k = i and l = (j − i)/p. It is easy to check
that conditions (5.18) are satisfied. Applying (5.20) and combining the result with
(5.21), we get

Ci+l(ασi(ξ), β) = Ci(ασi(ξ), β) + Cl(η,
{
ασi(β)

}
[−i]). (5.22)

Arguing as before, we have

Ci+pl(ασi(ξ), β) = Ci(ασi(ξ), β) + pCl(η,
{
ασi(β)

}
[−i]) = Ci(ασi(ξ), β).

Now recall that ξ = η− σ−i(η). Since d - i, we can choose η so that ξ 6= 0. Thus we
showed that Ci+pl = Ci.

Case 2: dω(i) = dω(j). If dω(i) ≥ p+ 2, it follows from case 1 that Ci = Ci−pe

and Ci−pe = Cj . If dω(i) < p+ 2, we have Ci = Cj+pe = Cj .

b) Let Λ = {λ ∈ w | Ci(ασ(λ), β) = Ci(α, βλ) for all α, β ∈ w}. Clearly, Λ
is a subring of w. Since i ≡d 1, (5.21) implies that Λ contains all elements of the
form σ(η) − η, with tr (η) = 0. Since (p, d) 6= (3, 3) or (2, 4), we have Λ = w by
Lemma 9.3.7 Therefore, Ci(α, β) depends only on ασ(β), which implies the assertion
of part b). �

Note that if i ≡pd 1, then λ(i) = λ, whence Dλ,n(αxi, βxn−i) = tr 0(λασ(β))
(provided i ∈ Ireg). Thus Lemma 5.11b) asserts that C coincides with Dλi,n on
Li × Ln−i whenever i ∈ Ireg and i ≡pd 1.

Now let {λk} be as in the conclusion of Lemma 5.11b). For the rest of the proof,
set µi = λie+1 (for i = 1, 2, . . . , c−1). Note that µi = µj if i ≡p j by Lemma 5.11b).

7This is the only place in the proof where we use that (p, d) 6= (3, 3) or (2, 4).
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Proposition 5.12. Let i ∈ N be such that e ≤ i ≤ n − e, (i, n − i) is regular and
0 < ε(i) < p. Let a ∈ {1, 2, . . . , p} be such that dω(i) ≡p ia. Then Ci(α, β) =
tr 0(µa(i)ασi(β)). In other words, C coincides with Dµa,n on Li × Ln−i.

First we state a simple technical lemma which follows directly from Claim 5.2.

Lemma 5.13. Let S1 and S2 be two semi-cocycles of L. Let J = {i ∈ N | e ≤ i ≤
n− e and S1 coincides with S2 on Li × Ln−i}. Suppose that j, k ∈ J and k ≡d 1.

a) If (k, j) is regular and dω(k + j) ≤ c− 1, then j + k ∈ J .
b) If j − k ≥ e and (n− j, k) is regular, then j − k ∈ J .

�

Proof of Proposition 5.12. Let J = {j ∈ N | 1 ≤ dω(j) ≤ c−1 and C coincides with
Dµa,n on Lj × Ln−j}. We will show that i ∈ J by induction on ε(i).

The case ε(i) = 1 is clear. Indeed, if i = ue+ 1, then a ≡p u, whence

Cue+1(α, β) = Cae+1(α, β) = tr 0(µaασ(β)) = tr 0(µa(i)ασi(β)).

Now suppose that 1 < ε(i) < p. If dω(i) > p, let j = i − ae − 1. Then
ε(j) < ε(i) < p and dω(j) = dω(i)− a ≡p ja, whence j ∈ J by induction. Note that
i− j = ae+ 1 lies in J by definition of µa. So, i ∈ J by Lemma 5.13a).

If dω(i) ≤ p and d - i, apply the above argument to i+ pe and use the facts that
Ci+pe = Ci (by Lemma 5.11a)) and µa(i) = µa(i+ pe).

Finally, suppose that dω(i) ≤ p and d | i. Let j = i + (p − a)e − 1. We
have ε(j) < ε(i) < p and dω(j) = dω(i) + p − a ≡p ja, so by induction j ∈ J .
Applying Lemma 5.13a), we see that j + ae + 1 ∈ J and j + 2ae + 2 ∈ J . Now
j + 2ae + 2 = i + (a + p)e + 1 ≤ (3p + 1)e ≤ n − e. Since d - (i + (a + p)e + 1),
Lemma 5.11a) implies that i+ ae+ 1 ∈ J , whence i ∈ J by Lemma 5.13b). �

Next we establish a relation between the numbers {µa}.

Lemma 5.14. There exist µ ∈ w and ν ∈ f such that µa = µ+ aν for all a.

Proof. Assume first that p > 2. Fix i, j ∈ {1, 2, . . . , p} and apply the semi-cocycle
identity to the triple αxie+1, βxje+1, γxn−(i+j)e−2, where α, β, γ ∈ w. If d > 2, α, β
and γ can be chosen arbitrarily; if d = 2, we must have tr (γ) = 0 since in this case
d | (n− (i+ j)e− 2). We have

C(i+j)e+2(ασ(β)− βσ(α), γ) =

Cie+1(α, βσ(γ)− γσ−2(β))− Cje+1(β, ασ(γ)− γσ−2(α)).

By Proposition 5.12, the right-hand side is equal to

tr 0

(
µiα(σ(β)σ2(γ)− σ(γ)σ−1(β))− µjβ(σ(α)σ2(γ)− σ(γ)σ−1(α))

)
=

tr 0((µi + σ(µj))ασ(β)σ2(γ)− (σ(µi) + µj)βσ(α)σ2(γ))
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while the left-hand side equals

tr 0(µ i+j
2

(2)(ασ(β)− βσ(α))σ2(γ))

(by µ i+j
2

we mean µa where a ∈ {1, . . . , p} is such that 2a ≡p (i+ j)).

Therefore,
tr 0

(
(uασ(β)σ2(γ)− vβσ(α)σ2(γ)

)
= 0, (5.23)

where u = µ i+j
2

(2)− µi − σ(µj) and v = µ i+j
2

(2)− µj − σ(µi).

Applying (5.23) with various values of α, β, γ ∈ w, one can show that u = v = 0.
If d > 2, the argument is straightforward (since α, β, γ can be chosen arbitrarily).
If d = 2, we note that v = σ(u) and σ(γ) = −γ (as tr (γ) = 0). Therefore,

0 = tr 0(uασ(β)σ2(γ)− vβσ(α)σ2(γ)) =

tr 0(uασ(β)σ2(γ)− σ(vβσ(α)σ2(γ))) = tr 0(2uασ(β)γ),

and we conclude that u = 0 (whence v = 0). So, we showed that

µ i+j
2

(2) = µi + σ(µj) and µ i+j
2

(2) = µj + σ(µi). (5.24)

It follows immediately that µi−µj = σ(µi−µj), whence µi−µj ∈ f . Now let µ = µp

and νi = µi − µp for 1 ≤ i ≤ p. Since νi ∈ f for all i, (5.24) yields

2ν i+j
2

= νi + νj . (5.25)

To finish the proof it remains to show that νk = kν1 for 1 ≤ k ≤ p. The assertion is
trivially true for k = 1 and k = p. If 1 < k < p, applying (5.25) with i = k − 1 and
j = k + 1, we get νk − νk−1 = νk+1 − νk.

So, the difference δ := νk − νk−1 is the same for 1 < k < p, whence νk =
ν1 + (k − 1)δ for 1 ≤ k ≤ p. On the other hand, we know that νp = 0, whence
δ = ν1. This finishes the proof in the case p > 2.

Now assume that p = 2. Note that in this case we only have to prove that
µ1 − µ2 ∈ f . Formula (5.24) still holds if we assume that both i and j have the
same parity. Taking i = 1 and j = 3, we get µ2(2) = µ1 + σ(µ1). Therefore,
µ2 − µ1 = σ(µ2 − µ1), whence µ1 − µ2 ∈ f . �

Conclusion of the proof of Theorem 5.7b). Let µ and ν be as in the conclusion
of Lemma 5.14. Let J = {j ∈ N | C coincides with Dµ,n +Eν,n on Lj×Ln−j}. Since
both C and Dµ,n + Eν,n are homogeneous of weight n, it is enough to show that
J ⊇ Igood.

Fix i ∈ Igood. We can assume that (i, n− i) is regular for otherwise both C and
Dµ,n + Eν,n vanish on Li × Ln−i.
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Case 1: 0 < ε(i) < p. Let a := dω(i)/i ∈ Fp. According to Proposition 5.12 and
Lemma 5.14, we have

C(αxi, βxn−i) = tr 0({µ+ aν}(i)ασi(β)) = tr 0((µ(i) + νai)ασi(β)) =

tr 0((µ(i) + νdω(i))ασi(β)) = Dµ,n(αxi, βxn−i) + Eν,n(αxi, βxn−i).

Case 2: ε(i) = 0 (i.e. e | i). We know that e + 1 ∈ J and i + e + 1 ∈ J since
ε(e+ 1) = ε(i+ e+ 1) = 1, whence i ∈ J by Lemma 5.13b).

Case 3: ε(i) ≥ p. In this case we use induction on θ(i) = 3ε(i) − 2dω(i) (it is
clear that possible values of θ(i) are bounded from below).

If dω(i) ≥ 3, let k = e + 1 and j = i − k. Then k ∈ J since ε(k) = 1 < p, and
j ∈ J by induction since θ(j) = θ(i)− 1. Therefore, i ∈ J by Lemma 5.13a).

If dω(i) = 2 and ε(i) < e − 1, apply Lemma 5.13b) with j = i + pe + 1 and
k = pe+ 1. Finally, if ε(i) = e− 1, then (i, n− i) cannot be regular (as d | n). �

5.4 Formulas for Zf and zf

Theorem 5.7 can be applied to the weight n component of Zf (where n ≥ N −p) for
any ω-splitting f : L→ L̂. If we choose the splitting in the ”right” way, a stronger
statement can be made:

Corollary 5.15. Let Igreat = {i ∈ N | N − p ≤ i ≤ N}. Fix λ ∈ w with tr (λ) 6= 0.
Then there exists an ω-splitting f such that for every i ∈ Igreat we have

Zf |i Lgood×Lgood
=


0 if d - i,
Eνi,i for some νi ∈ f if d | i but pd - i,
Dλi,i + Eνi,i for some νi ∈ f and λi ∈ fλ if pd | i.

(5.26)
(recall that Zf |i is the weight i component of Zf ).

Proof. Let f0 be some ω-splitting. As mentioned in Section 3, if B is a coboundary,
then Zf0 +B = Zf for another splitting f ; moreover, f is an ω-splitting if and only
if B(Lω

i , L
ω
j ) = 0 whenever i+ j 6= c. The latter holds if and only if B is supported

on [ce,N ] (we leave verification of this fact to the reader).

Since Igreat ⊂ [ce,N ], Theorem 5.7 immediately implies that there exists an
ω-splitting f1 such that for every i ∈ Igreat,

Zf1 |i Lgood×Lgood
=

{
0 if d - i
Dµi,i + Eνi,i for some νi ∈ f and µi ∈ w if d | i.

It remains to show that for every i ∈ Igreat with d | i there exists λi ∈ fλ such that
Bi := Dλi,i − Dµi,i is a coboundary and λi = 0 if pd - i. This will finish the proof
since then Zf1 +

∑
i∈Igreat, d|i

Bi = Zf for some ω-splitting f , and (5.26) clearly holds.
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First let i ∈ Igreat with d | i and pd - i. We claim that tr (µi) = 0. Indeed, Eνi,i

is a cocycle by Proposition 5.5c), since p divides c = dω(i). Therefore, Zf1 |i − Eνi,i

is also a cocycle. On the other hand, Dµi,i is NOT a cocycle unless tr (µi) = 0 by
Proposition 5.5b). We know that Zf1 |i − Eνi,i coincides with Dµi,i on Lgood × Lgood.
Even though Zf1 |i − Eνi,i and Dµi,i may not coincide on L × L, the argument of
Proposition 5.5 still implies that tr (µi) = 0.

Now we are ready to finish the proof. Given i ∈ Igreat with d | i, let λi = tr (µi)
tr (λ) λ.

Clearly, λi ∈ fλ and tr (λi) = tr (µi). If pd - i, then λi = 0 since tr (µi) = 0. Finally,
Bi := Dλi,i −Dµi,i is a coboundary by Proposition 5.5a). �

In order to derive a formula for the group 1-cocycle zf we use the following result.

Proposition 5.16. Let n ≤ N , with d | n, and let d be a derivation of A. Recall
that Cd,n(a, b) = Tn(d(a)b) for every a, b ∈ A. Define 8 cd,n : G×L→ Fp by setting
cd,n(g, b) = Tn(d(g )g −1b) (recall that the map g 7→ g was defined in Section 4).
Then cd,n and Cd,n are compatible in the sense of (3.2).

Proof. Let c = cd,n and C = Cd,n. Fix g ∈ G and let k = g ∈ A. Recall that
ug = k−1uk for every u ∈ A. Therefore for any u, v ∈ L we have

C(u, v)− C(ug, vg) = Tn(d(u)v)−Tn(d(k−1uk)k−1vk) =

Tn(d(u)v)−Tn((d(k−1)uk + k−1d(u)k + k−1ud(k))k−1vk).

Since d(k−1) = −k−1d(k)k−1, Tn(ab) = Tn(ba) and Tn(k−1ak) = Tn(a), we have

C(u, v)− C(ug, vg) = Tn(d(u)v)−Tn(−d(k)k−1uv + d(u)v + ud(k)k−1v) =

Tn(d(k)k−1uv − d(k)k−1vu) = Tn(d(k)k−1[u, v]) = c(g, [u, v]).

�
Let Lgreat =

⊕
i∈Igreat

Li, where Igreat = {i ∈ N | N − p ≤ i ≤ N} as before. We

are now ready to give a formula for the restriction of zf to G× Lgreat.

Proposition 5.17. If Igreat does not contain multiples of pd, then zf vanishes on
G × Lgreat for some ω-splitting f . Otherwise, let N0 be the unique multiple of pd
lying in Igreat. Then there exist an ω-splitting f and λ0 ∈ w such that zf coincides
with cdλ0

,N0 on G× Lgreat. Moreover, given λ ∈ w, with tr (λ) 6= 0, we can always
choose f so that λ0 ∈ fλ.

Proof. Let f , {λi} and {νi} be as in the conclusion of Corollary 5.15. Let I1 = {i ∈
Igreat | pd divides i}, I2 = {i ∈ Igreat | d divides i} and let C =

∑
i∈I1

Dλi,i +
∑
i∈I2

Eνi,i.

Let S = {(i, j) ∈ Igood × Igood | i + j ≥ N − p} and let Ω be the linear span of the
set

⋃
(i,j)∈S

Li × Lj in L× L.

8This notation will be used for the rest of this section
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By Corollary 5.15, Zf coincides with C on Ω. We know that Zf is compatible
with zf (by Proposition 3.4). By Proposition 5.16, Dλi,i (resp. Eνi,i) is compatible
with cdλi

,i (resp. ceνi ,i
) whence C is compatible with

∑
i∈I1

cdλi
,i +

∑
i∈I2

ceνi ,i
.

It is easy to see that Ω is invariant under the diagonal action of G on L×L and
the set {[u, v] | (u, v) ∈ Ω} spans Lgreat . Therefore, by Claim 3.5 we have

zf =
∑
i∈I1

cdλi
,i +

∑
i∈I2

ceνi ,i
on G× Lgreat.

The proof will be finished if we show that ceνi ,i
is identically zero for all i. It

suffices to show that eν(g ) = 0 for any g ∈ G and ν ∈ f . The latter holds since
g ∈

⊕c−1
i=0 wxi for any g ∈ G and eν(wxi) = 0 for 0 ≤ i ≤ c− 1. �

Change of notation. In the next section we will write cλ,n for cdλ,n.

6 Proof of finite presentability in the case (p, d) 6= (2, 2)

We retain all notations from the previous section. Fix an ω-splitting f for which
the assertion of Proposition 5.17 holds, and let Z = Zf , z = zf . Throughout the
section λ0 and N0 will be as in the conclusion of Proposition 5.17.

We are trying to reach a contradiction with Lemma 3.7, which asserts that z

does not vanish on G× U , where U = γN−1G/γN+1G = LN−1
⊕
LN ⊂ Lgreat. We

already know that z vanishes on G×Lgreat (and hence on G×U), if Igreat does not
contain multiples of pd.

Next we show that z vanishes on G×U , if N is not a multiple of pd. Indeed, let
u ∈ U and g ∈ G. By Proposition 5.17, z(g, u) = cλ0,N0(g, u) (whereN−p ≤ N0 ≤ N
and N0 is a multiple of pd). So, z(g, u) is equal to the f0-trace of the coefficient of
xN0 in dλ0(g )g −1u. Since dλ0(g ) has zero constant term and u ∈ U = LN−1⊕LN ⊆
xN−1A, the above coefficient is equal to zero unless N0 = N .

Finally, consider the case N = pdM for some M . In this case vanishing of z on
G × U will be proved using Lemma 3.6. The underlying computations have direct
analogues in [PR]; however, due to many differences in terminology and notations,
it seems more appropriate to reproduce the arguments from the above paper rather
than give vague references to it. For the reader’s convenience, throughout the section
we shall indicate which part of [PR] we are following.

To prove that z vanishes on G × U we must show that λ0 = 0. By Proposi-
tion 5.17, λ0 is an f -multiple of some element with nonzero f -trace, so it suffices to
prove that tr (λ0) = 0.

Case 1: p - d (see [PR, pp.682-683]).
It will be enough to show that tr 0(λ0θ) = 0 for any θ ∈ f . Indeed, if this is
the case, then for any θ ∈ f we have tr f/f0(trw/f (λ0)θ) = tr f/f0(trw/f (λ0θ)) =
tr 0(λ0θ) = 0. Since tr f/f0 is a non-degenerate bilinear form on f × f , we conclude
that trw/f (λ0) = 0.
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Fix θ ∈ f . Since p - d, G is isomorphic to the quotient of U = GL1
1(D) modulo

its center Z(U) = U ∩ F ∗. Therefore, there exist α, β ∈ mF such that the elements
g := (1+π)(1+α) and h := (1+θπdM−1)(1+β) lie in G. Moreover, it is easy to see
that β ∈ mM

F , that is, β =
∑

i≥M βiπ
di for some βi ∈ f . Now let u = LT ω(hp). Since

hp = (1 + θpπN−p)(1 + βp), we have u = θpxN−p + βp
Mx

N ∈ Lgreat. Clearly, g and h
commute, so z(g, u) = 0 by Lemma 3.6. Therefore, TN (dλ0(g )g −1u) = z(g, u) = 0.

Since p - d, the restriction of the trace map tr to f is nonzero, so by Proposi-
tion 5.17 we can assume that λ0 lies in f . Let d = dλ0 . We have g = (1 + x)(1 + ᾱ),
whence d(g ) = λ0x(1+ ᾱ)+(1+x)d(ᾱ). Since α ∈ mF and λ0 ∈ f , both ᾱ and d(ᾱ)
belong to f [xd] and hence lie in the center of A. Hence, d(g )g −1 = λ0x(1+x)−1 +γ
where γ = d(ᾱ)(1 + ᾱ)−1 ∈ xd f [xd]. We have

d(g )g −1u = (λ0x(1+x)−1+γ)(θpxN−p+βp
Mx

N ) = λ0θ
pxN−p+1(1+x)−1+γθpxN−p

since xN · xi = 0 if i > 0. We are interested in the f0-trace of the coefficient of
xN in the above expression. The second summand has zero coefficient of xN since
γ ∈ f [xd], pd divides N , and p does not divide d. The coefficient of xN in the first
summand is equal to λ0θ

p. Hence, tr 0(λ0θ
p) = TN (d(g )g −1u) = 0, and we are

done.
Case 2: p | d and p > 2 (see [PR, pp.684-685] and [PR, 4.7,4.8]).

Let K = f((πp)) and let D1 be the centralizer of K in D. Let v ⊆ w be the (unique)
extension of f of degree p. Then D1 = v((π)) is a division algebra of degree p over
its center K. Let H = SL1

1(D1) ⊆ G.
The following computational result is proved in [PR, p.684].

Lemma 6.1 ([PR]). Let θ ∈ f and s ∈ N, and assume that p > 2. There exist
commuting elements g, h ∈ H such that hp ≡ 1+ θpπp2s−p + θpπp2s−1 mod πp2sOD1

and g ≡ 1 + π − ξπp mod πp+1OD1, where ξ ∈ v and tr v/f (ξ) = 1.

Note that N = pdM is divisible by p2. Let s = N/p2, let θ ∈ f be arbitrary,
and let g, h ∈ H be as in the conclusion of Lemma 6.1. As before, we have the
equation z(g, u) = 0 where u := LT ω(hp) = θpxN−p + θpxN−1 + δxN for some δ ∈ v.
Computing z(g, u) as in case 1, we conclude that

trw/f0((2λ0 − ξλ0(p))θp) = 0.

Since trw/f0(α θ
p) = tr f/f0(trw/f (α)θp) for any α ∈ w, we get

trw/f (2λ0 − ξλ0(p)) = 0. (6.1)

We have trw/f (ξλ0(p)) = tr v/f (trw/v(λ0(p))ξ). The Galois group Gal (w/v) is
generated by σp, whence

trw/v(λ0(p)) =
d/p−1∑
i=0

σpi

p−1∑
j=0

σj(λ0)

 =
d−1∑
i=0

σi(λ0) = trw/f (λ0).
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Therefore trw/f (ξλ0(p)) = tr v/f (ξ trw/f (λ0)) = tr v/f (ξ)trw/f (λ0) = trw/f (λ0).
Combining this with (6.1), we finally conclude that trw/f (λ0) = 0.

Case 3: p = 2 and d is even (see [PR, 5.6,6.6]).
Let K,D1,v and H be as in Case 2. Let s = N/4. Fix θ ∈ f . By Lemma 8.2 (stated
later in the paper) there exist g, h ∈ H such that

h ≡ 1 + π2s−1 mod π4s−2OD1 and g ≡ 1 + θπ + βπ2 mod π3OD1 ,

where tr v/f (β) = θ2. It is easy to see that (g, h) ≡ 1 + θ2π2s+1 mod π2s+2OD1 .

Now let ĝ and ĥ be any lifts of g and h in Ĝ. We shall use the identity

(ĝ, ĥ2) = (ĝ, ĥ)2((ĝ, ĥ), ĥ). (6.2)

Since (g, h) ∈ γ2s+1G (see above) and dep (Ĝ, ϕ) = N > 2s + 1, we have (ĝ, ĥ) ∈
γ2s+1Ĝ. Hence, (ĝ, ĥ)2 ∈ γN+1Ĝ by Lemma 3.2.

Let

û = LT ω(ĥ2), v̂ = LT ω((ĝ, ĥ)), ŵ = LT ω(ĥ),

u = LT ω(h2), v = LT ω((g, h)), w = LT ω(h).

It is easy to see that w = xN/2−1, u = xN−2 and v = θ2xN/2+1 + . . ..

It follows from (6.2) that

(ĥ−2)ĝ · ĥ2 ≡ ((ĝ, ĥ), ĥ) mod ωc+1Ĝ (= γN+1Ĝ).

Since dω(ĥ) = dω((ĝ, ĥ)) = c/2 and dω(ĥ2) = c, projecting both sides of the above
equation to ωcĜ/ωc+1Ĝ, we get û−ûg = [ŵ, v̂]. It is clear that the elements û−f(u),
v̂− f(v) and ŵ− f(w) lie in V̂ = γN Ĝ/γN+1Ĝ. Since V̂ is central in L̂, and is acted
trivially on by G, we have û− f(u) = ûg − f(u)g and [ŵ, v̂] = [f(w), f(v)]. Hence,

f(u)− f(u)g = [f(w), f(v)]. (6.3)

Applying the map fϕ∗ to both sides of (6.3) and subtracting the result from (6.3),
we get

z(g, u) = Z(w, v). (6.4)

Now let λ = λ0. Since u ∈ Lgreat, we have z(g, u) = cλ,N (g, u) = TN (dλ(g ) · g −1u).
Clearly, g = 1 + θx+ βx2 + . . ., whence dλ(g ) = θλx+ βλ(2)x2 + . . .. We have

dλ(g ) · g −1u = θλxN−1 + (βλ(2)− θ2λ)xN = θλxN−1 + (βσ(λ)− σ(β)λ)xN ,

where at the last step we used that θ2 = β+σ(β). So, z(g, u) = tr 0(βσ(λ)−σ(β)λ).
But β ∈ v, whence σ2(β) = β. Therefore, tr 0(βσ(λ) − σ(β)λ) = tr 0(σ(σ(β)λ) −
σ(β)λ) = 0. Thus, z(g, u) = 0.

Finally, Z(w, v) = TN (dλ(w)v) = tr 0(λ(N/2 − 1)θ2). Now λ(N/2 − 1) =
λ(dM − 1) = Mtr (λ) − σ−1(λ). Since tr (Mtr (λ)) = dMtr (λ) = 0, we have
tr 0(Mtr (λ)θ2) = 0. Therefore, (6.4) implies that tr 0(σ−1(λ)θ2) = 0. The last
equality holds for any θ ∈ f , and we conclude that tr (λ) = tr (σ−1(λ)) = 0. �
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7 Exceptional cases

7.1 Preliminaries

In this section we will finish the proof of Theorem 5.7 in the cases p = d = 3 and
p = 2, d = 4. The main difference with the regular case is that we will only be able
to classify admissible cocycles. Recall that the only results that require different
arguments are Lemma 5.11b) and the conclusion of the proof of Theorem 5.7a) (the
part following Lemma 5.9). We retain all notations introduced in Section 5.

A key role in the proof will be played by the following formula, describing the
action of elements of W ∗ on L = Lω(G). Note that W ∗∩G is generated by elements
of the form (1 + h)−1σ(1 + h), where h = λτ s for some λ ∈ w and s ∈ N.

Proposition 7.1 (W -action formula). Let λ ∈ w, s ∈ N, and let

g = g(λ, s) = (1 + λτ s)−1(1 + σ(λ)τ s) where τ = πd.

Let α ∈ w, k ≥ e and let u = αxk. We have

ug = u+
∑

n≥1, dω(k+dn)=dω(k)

αFn(λ)xk+dns,where

Fn(λ) = σ(λn−1)(σ(λ)− λ) + σk(λn−1)(σk(λ)− σk+1(λ))+∑
i+j=n−2, i,j≥0

σ(λi)σk(λj)(σ(λ)− λ)(σk(λ)− σk+1(λ)).

Proof. Direct computation. �

It will also be convenient to introduce one more definition.

Definition. Let k be a subfield of w. A map C : w×w → Fp is called k-balanced,9

if C(κα, β) = C(α, κβ) for all α, β ∈ w and κ ∈ k.

Notations. Throughout the section n, C, Z are fixed and assumed to satisfy the
hypotheses of Theorem 5.7. Recall that Z is a regular admissible cocycle, and C is
the weight n component of Z.

We will use shortcut notations

Zi,j(α, β) := Z(αxi, βxj) and Ci(α, β) := C(αxi, βxn−i) = Zi,n−i(α, β).

Recall that η[i] = σi(η)− η ( where η ∈ w and i ∈ Z).
Finally, we will write dω(i, j) for the pair (dω(i),dω(j)).

9I am thankful to Gopal Prasad for suggesting this term
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7.2 The case p = d = 3.

Proof of Theorem 5.7a). Recall that Ci = 0 if either 3 | i or 3 | (n − i) (by
Claim 5.8). So we can assume that 3 - i and 3 - (n−i) (which implies that i ≡3 n−i).
It is easy to see that there exists η ∈ w such that η[i] = η[n− i] = 1. Applying (5.6),
we have Ci(α, β) = Ci(α,−β) for all α, β ∈ w, whence Ci is identically zero. �

Proof of Lemma 5.11b). First of all, let us explicitly write down W -action formula
for the case p = d = 3.

Given k, s ∈ N, α, λ ∈ w, let u = αxk and g = g(λ, s) be as in Proposition 7.1.
If k ≡3 1, then

ug = α(xk − tr (λ)xk+3s + tr (λσ(λ))xk+6s + (σ(λ3)−N(λ)xk+9s) + . . .)

If k ≡3 2, then

ug = α(xk + tr (λ)xk+3s + tr (λ2 + λσ(λ))xk+6s+

(tr (λ)tr (λ2)− λ3 + N(λ))xk+9s + . . .)

Here N denotes the norm map of the extension w/f .
We claim that it suffices to prove Lemma 5.11b) for all i such that ε(i) ≤ 27.

Indeed, if ε(i) > 27, then dω(i) = dω(i− 27) and i− 27 ∈ Ireg, so by Lemma 5.11a)
we have Ci = Ci−27. Hence, we can replace i by i−27 and repeat the process several
times if needed. Note that if ε(i) ≤ 27, then dω(i, n − i) = dω(i + 27, n − i − 27),
since ε(i) + 27 ≤ 54 < e and ε(n− i) = ε(n)− ε(i) ≥ ε(N)− 3− 27 ≥ 73 > 27.

So, from now on we fix i ∈ Ireg and assume that dω(i, n−i) = dω(i+27, n−i−27).
Take any λ ∈ w, and let g = g(λ, 3) be defined as above.

Given α, β ∈ w, let u = αxi, v = βxn−i−27. Let c : G × L → Fp be a map
compatible with Z. We have

Z(u, v)− Z(ug, vg) = c(g, [u, v]) = c(g, (ασ(β)− βσ−1(α))xn−27) (7.1)

Note that the right-hand side of (7.1) depends only on ασ(β) (if we keep λ fixed).
Now compute ug and vg usingW -action formula (note that i ≡3 1 and n−i ≡3 2).

The left-hand side of (7.1) can then be expanded by bilinearity. Note that Zk,j = 0
when k + j > n+ 3, since n ≥ N − 3. Using this fact we get

Zi+9,n−i−27(tr (λ)α, β)− Zi,n−i−18(α, tr (λ)β)− Zi+18,n−i−27(tr (λσ(λ))α, β)+

Zi+9,n−i−18(tr (λ)α, tr (λ)β)− Zi,n−i−9(α, tr (λσ(λ) + λ2)β)−
Zi+27,n−i−27((σ(λ3)−N(λ))α, β)− Zi+18,n−i−18(tr (λσ(λ))α, tr (λ)β)+

Zi+9,n−i−9

(
tr (λ)α, tr (λσ(λ) + λ2)β

)
− Zi,n−i

(
α, (tr (λ)tr (λ2)− λ3 + N(λ))β

)
= R(ασ(β)) for some function R : w → Fp. (7.2)
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Now let j, k be such that k, j ≥ e, (j, k) is regular and ce < k + j ≤ N . Let
m = j + k. Applying the regular case argument of Lemma 5.11b) to the cocycle
Z|m, we have

Zj,k(α, ηβ) = Zj,k(ηα, β) for all η ∈ Λ,

where Λ is the ring generated by {σ(η)− η | tr (η) = 0}. In the case p = d = 3 it is
easy to see that Λ = f , so Zj,k is f -balanced. We also know that Zj,k = Zj+9,k−9 if
dω(j, k) = dω(j + 9, k − 9) (Lemma 5.11a)).

Since dω(i, n − i) = dω(i + 27, n − i − 27), we have Zi,n−i = Zi+9,n−i−9 =
Zi+18,n−i−18 = Zi+27,n−i−27, Zi,n−i−9 = Zi+9,n−i−18 = Zi+18,n−i−27 and Zi,n−i−18 =
Zi+9,n−i−27. Using these observations and the fact that tr (λσ(λ)) = tr (λ2)−(trλ)2,
we can simplify the left-hand side of (7.2). After setting D = Ci (= Zi,n−i), we get

D
(
α, λ3β

)
−D

(
σ(λ3)α, β

)
= R(ασ(β)).

Now let α′ = σ(λ3)α and β′ =
β

λ3
. Clearly, α′σ(β′) = ασ(β), whence

D
(
σ(λ3)α, β

)
−D

(
σ(λ6)α,

β

λ3

)
= R(ασ(β)).

Similarly, we have

D

(
σ(λ6)α,

β

λ3

)
−D

(
σ(λ9)α,

β

λ6

)
= R(ασ(β)).

Adding the last three equations, we get

D(α, λ3β) = D

(
σ(λ9)α,

β

λ6

)
.

Since λ can be chosen arbitrarily, we conclude that D(α, β) depends only on
ασ(β), whence D(α, β) = tr 0(µασ(β)) for some µ ∈ w. �

7.3 The case p = 2, d = 4.

Let k be the unique field lying strictly between f and w (so that [k : f ] = [w : k] = 2).
It is easy to show that tr = trw/f vanishes on k, and k = {σ(η)− η | tr (η) = 0}.

Proof of Theorem 5.7a). First assume that n is odd, in which case the result is an
easy consequence of Lemma 5.9a). Indeed, let η be any element of k\f . If i ∈ Igood

is even, then η[i] = 0, while η[n − i] 6= 0 since n − i is prime to d = 4. It follows
from (5.6) that Ci = 0. The case of odd i is similar.

Now assume that n is even. Since 4 - n, we must have n ≡4 2. Preliminary
information about C is given by the following result.
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Lemma 7.2. Fix an integer i such that e ≤ i ≤ n− e.
a) If i is even, then Ci = 0.
b) If i is odd, then Ci is k-balanced and symmetric, that is, Ci(α, β) = Ci(β, α).

Proof. a) If i is even, then either 4 | i or 4 | (n− i), so Ci = 0 by Claim 5.8.
b) The fact that Ci is k-balanced follows from (5.6) since k = {σ(η)−η | tr (η) = 0}.
Showing that Ci is symmetric is equivalent to showing that Ci = Cn−i. Note that
i ≡4 (n− i) since i is odd and n ≡4 2. If i > n− i and ε(i) ≥ ε(n− i) (or i < n− i
and ε(i) ≤ ε(n−i)), then Ci = Cn−i by Lemma 5.9b). If i > n−i and ε(i) < ε(n−i)
(or vice versa), use the fact that Ci = Ci+ae for 1 − dω(i) ≤ a ≤ c − 1 − dω(i) and
apply the above argument. �

Next we use W -action formula. Given α, λ ∈ w and k ≥ e, let g = g(λ, s) and
u = αxk.
If k ≡4 1, then

ug = α(xk + (λ+ σ2(λ))xk+4s + (σ(λ2) + λσ2(λ))xk+8s + . . .).

If k ≡4 3, then

ug = α(xk + (σ(λ) + σ3(λ))xk+4s + (tr (λ2) + σ2(λ2) + σ(λ)σ3(λ))xk+8s + . . .).

Fix i such that e ≤ i ≤ n− e and assume that i ≡4 1. As in the case p = d = 3,
we can assume that dω(i, n − i) = dω(i + 16, n − i − 16). Now let c : G × L → Fp

be a map which is compatible with Z and linear in the second argument (unlike the
case p = d = 3, the last condition will be used). We shall apply the compatibility
equation Z(u, v) − Z(ug, vg) = c(g, [u, v]) to the elements u = αxi, v = βxn−i−16

and g = g(λ, 2), where λ, α, β are arbitrary elements of w.
Since k = {σ(η) − η | tr (η) = 0}, it follows from Lemma 5.9a) that Zk,j is

k-balanced whenever k, j ≥ e, ce ≤ k+j ≤ N , (k, j) is regular, k and j are odd, and
k ≡4 j. Computing ug and vg by W -action formula and simplifying the expression
Z(u, v)− Z(ug, vg) using the above observation, we get

Zi,n−i(α, β(σ(λ2) + λσ2(λ))) + Zi+8,n−i−8(α(λ+ σ2(λ)), β(λ+ σ2(λ)))+

Zi+16,n−i−16(α(σ(λ2) + λσ2(λ)), β) = R(λ, ασ(β)− βσ(α)), (7.3)

where R is linear in the second argument. Let D = Ci (= Zi,n−i = Zi+8,n−i−8 =
Zi+16,n−i−16). Writing µ for σ(λ2) in (7.3) and simplifying further, we get

D(αµ, β) +D(α, βσ2(µ)) +D(α, β · tr (µ)) = R(σ−1(
√
µ), ασ(β)− βσ(α)). (7.4)

Before proving that D = 0, we establish an auxiliary result.

Claim 7.3. The following hold:
(i) D vanishes on kυ × kυ for any υ ∈ w.
(ii) There exists λ ∈ k such that D(α, β) = tr 0(λασ2(β)) for all α, β ∈ w.
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Proof. Let µ ∈ w be such that σ2(µ) = µ+ 1. It is clear that tr (µ) = 0. Applying
(7.4) with this value of µ and α = β, we get

D(αµ, α) +D(α, αµ) +D(α, α) = 0.

Since D is symmetric, we conclude that D(α, α) = 0 for all α ∈ w.
Now fix υ ∈ w. Given λ, µ ∈ kυ, let α =

√
λµ and κ =

√
λ/µ. Since κ ∈ k and

D is k-balanced, we have D(λ, µ) = D(ακ,
α

κ
) = D(α, α) = 0. So, we proved (i).

Part (ii) will be proved by dimension counting. Fix υ ∈ w such that w = k⊕kυ.
Let V be the space of bilinear maps from w×w to Fp that are k-balanced, symmetric
and vanish on k×k and kυ×kυ. Clearly, a map from V is uniquely determined by
its values on {(1, κυ) | κ ∈ k}. Therefore, dimFp V ≤ [k : f0] (recall that f0 ∼= Fp).
On the other hand, every map of the form (α, β) 7→ tr 0(λασ2(β)), with λ ∈ k, lies
in V since k is the fixed field of σ2. Clearly, the subspace of these trace maps has
dimension [k : f0], so we are done. �

An immediate consequence of part (ii) of the above claim is that

D(αµ, β) = D(α, βσ2(µ)) for all α, β, µ ∈ w.

Thus (7.4) simplifies to

D(α, β · tr (µ)) = R(σ−1(
√
µ), ασ(β)− βσ(α)).

Now fix µ, with tr (µ) = 1, and let F (x) = R(σ−1(
√
µ), x). Thus, D(α, β) =

F (ασ(β)− βσ(α)) for all α, β ∈ w, where F : w → Fp is linear.

Choose κ ∈ k with σ(κ) = κ+ 1. By Claim 7.3(i) for any α ∈ w we have

0 = D(α, ακ) = F (ασ(α)(σ(κ)− κ)) = F (ασ(α))

Since F is linear, for any α, β ∈ w we have

F (ασ(β) + βσ(α)) = F ((α+ β)σ(α+ β))− F (ασ(α))− F (βσ(β)) = 0.

Hence, D is identically zero. Thus we showed that Ci = 0 if i ≡4 1. The case i ≡4 3
can be done in a similar way, but it can also be deduced from the case i ≡4 1 using
the semi-cocycle identity. �

Proof of Lemma 5.11b). Arguing as in the regular case, we have

Zi,n−i(ασ(η), β) = Zi,n−i(α, ηβ) for all α, β ∈ w and η ∈ k. (7.5)

We must now prove the above formula for η 6∈ k. Once again, we can assume
that dω(i, n − i) = dω(i + 16, n − i − 16). Arguing as before and taking (7.5) into
account, we get

D(ασ(λ2), β) +D(α, βλ2) = R(ασ(β)) for any α, β, λ ∈ w, (7.6)

where D = Zi,n−i = Zi+8,n−i−8 = Zi+16,n−i−16 and R is some function. Now arguing

as in the case p = d = 3, we conclude that D(ασ(λ4),
β

λ2
) = D(α, βλ2), and the

assertion of the Lemma follows. �
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8 The case p = d = 2

This is the most demanding case. The main problem here is that the Lie algebra of
G with respect to any basic filtration (as defined in section 3) is solvable, and while
its second cohomology is computable, it does not yield enough information about
group cocycles via the compatibility equation.

The filtration we use in this case is less natural, the associated Lie algebra
has more complex structure, and the corresponding associative algebras cannot be
defined at all. The proof becomes more technical, although it is based on similar
ideas.

As before, let Gn be the nth congruence subgroup of G, and let En = W ∗ ∩Gn.
The following relations are easy to check.

Lemma 8.1. The following hold:
a) G2

n ⊆ G2n for all n ≥ 1;
b) γnG = G2n−2 for all n ≥ 4;
c) (En, Em) = 1 for all n,m ≥ 1;
d) (En, Gm) ⊆ Gm+2n for all n,m ≥ 1.

As in the regular case, fix an elementary cover (Ĝ, ϕ) ofG and letN = dep (Ĝ, ϕ).
We shall assume that N ≥ 100p3d = 1600 and try to reach a contradiction.

We start by defining the filtrations {ωiG} of G and {ωiĜ} of Ĝ. Choose the
numbers c and e such that 4 | c and

(e+ 1)(2c− 1) < N < 2ce (8.1)

Let ω1G = γe+1G and let ω1Ĝ = γe+1Ĝ. For 2 ≤ i ≤ c, set ωiG = (ωi−1G,ω1G) ·
(ωi−1G)2 and ωiĜ = (ωi−1Ĝ, ω1Ĝ) · (ωi−1Ĝ)2. Finally, for i > c, set ωiG = γN+1G

and ωiĜ = γN+1Ĝ.
The subgroups {ωiG}c

i=1 can be described explicitly as follows:

ω1G = G2e, ω2G = G6e · E4e, ω3G = G10e · E8e,

ωkG = G(4k−2)e · E(4k−4)e+2 for 4 ≤ k ≤ c, ωc+1G = G2N . (8.2)

While {ωiĜ} and {ωiG} are not basic filtrations, the construction of Section 3 can
still be applied. There are a few things to check though. First, we need to show
that {ωiG} and {ωiĜ} are indeed 2-filtrations of G and Ĝ, respectively. Moreover,
in order to apply Lemma 3.6 and Lemma 3.7, we must show that ωcG ⊇ γN−1G

and ωcĜ ⊇ γN−1Ĝ. Clearly, it suffices to verify the following inclusions:

a) (ωcG)2 ⊆ ωc+1G b) (ωcG,ω1G) ⊆ ωc+1G c) ωcG ⊇ γ(2c−1)e+1G (8.3)

d) (ωcĜ)2 ⊆ ωc+1Ĝ e) (ωcĜ, ω1Ĝ) ⊆ ωc+1Ĝ. f) ωcĜ ⊇ γ(2c−1)e+1Ĝ (8.4)

Inclusions a), b) and c) follow immediately from Lemma 8.1 and (8.2).

36



d) By (8.2) and Lemma 8.1 we have ωcG ⊆ γ(2c−2)e+2G. It is clear from the
definition that ϕ(ωcĜ) = ωcG, whence ωcĜ ⊆ γ(2c−2)e+2Ĝ · Kerϕ. Now Kerϕ
is central and has order 2, so (ωcĜ)2 ⊆ (γ(2c−2)e+2Ĝ)2. Finally, (γ(2c−2)e+2Ĝ)2 ⊆
γN+1Ĝ by Lemma 3.2 (where f(i) = 2i− 2).

e) Let Ên = ϕ−1(En). Arguing as in d), we have ωcĜ ⊆ γ(2c−1)e+1Ĝ ·Ê(4c−4)e+2,
whence

(ωcĜ, ω1Ĝ) ⊆ (γ(2c−1)e+1Ĝ · Ê(4c−4)e+2, γe+1Ĝ) ⊆ γ2ce+2Ĝ · (Ê(4c−4)e+2, γe+1Ĝ).

By assumption 2ce > N , so γ2ce+2Ĝ ⊆ γN+1Ĝ = ωc+1Ĝ. Now

(Ê(4c−4)e+2, γe+1Ĝ) = (Ê(4c−4)e+2, (γeĜ, Ĝ)) ⊆

((Ê(4c−4)e+2, Ĝ), γeĜ)((Ê(4c−4)e+2, γeĜ), Ĝ) ⊆ ((Ê(4c−4)e+2, Ĝ), Ĝ). (8.5)

For each n ≥ 1 we have (En, G) ⊆ E2n+1 by Lemma 8.1, whence (Ên, Ĝ) ⊆ Ê2n+1.
It follows immediately that (Ê(4c−4)e+2, Ĝ) ⊆ γ(4c−4)e+2Ĝ · Kerϕ ⊆ γN Ĝ, whence

(Ê(4c−4)e+2, γe+1Ĝ) ⊆ γN+1Ĝ by (8.5).

f) We know that ωcG ⊃ G(4c−2)e = γ(2c−1)e+1G, whence γ(2c−1)e+1Ĝ ⊆ ωcĜ γN Ĝ.
Since N > (2c− 1)e+ 1, a standard argument implies that γ(2c−1)e+1Ĝ ⊆ ωcĜ.

In order to describe the Lie algebra L = Lω(G) we need the following lemma.

Lemma 8.2. Let α ∈ w and n ∈ N, and assume that α ∈ f if n is even. Then
there exists g = gα,n ∈ G such that g ≡ 1 + απn + βπ2n mod U3n for some β ∈ w.
Moreover, if g is of the above form, then tr (β) = ασ(α).

Proof. The proof is similar to that of Proposition 4.1a). �

Remark: Since [w : f ] = 2 and p = 2, α ∈ f if and only if tr (α) = 0.

Let S = {(α, n) ∈ w × N | n ≥ 2e and α ∈ f if n is even}. For each (α, n) ∈ S
choose gα,n ∈ G satisfying the conclusion of Lemma 8.2. It is clear that LT ω(gα,n)
does not depend on the choice of gα,n, and LT ω(gα,n) + LT ω(gβ,n) = LT ω(gα+β,n).

Now we can identify L with a subspace of L =
2N−1⊕
i=2e

wxi via the linear map

defined by LT ω(gα,n) 7→ αxn. Under this identification the ω-homogeneous compo-
nents {Lω

i }c
i=1 are given as follows:

Lω
1 =

2e−1⊕
i=e

fx2i ⊕
3e−1⊕
i=e

wx2i+1

Lω
2 =

4e−1⊕
i=2e

fx2i ⊕
5e−1⊕
i=3e

wx2i+1
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Lω
3 =

6e⊕
i=4e

fx2i ⊕
7e−1⊕
i=5e

wx2i+1

Lω
k =

2ke⊕
i=(2k−2)e+1

fx2i ⊕
(2k+1)e−1⊕
i=(2k−1)e

wx2i+1 for 4 ≤ k ≤ c− 1

Lω
c =

N−1⊕
i=(2c−2)e+1

fx2i ⊕
N−1⊕

i=(2c−1)e

wx2i+1.

Given n ∈ N, with 2e ≤ n ≤ 2N − 1, let dω(n) be the unique number k such that
xn ∈ Lω

k . If n > 2N − 1, set dω(n) = ∞.
Unlike the regular case, it is not true in general that [L ∩ wxn, L ∩ wxm] ⊆

L∩wxn+m (although this is true if dω(n) ≥ 2 and dω(m) ≥ 2), so there is no direct
analogue of the ”thin” grading on L. We will go around this problem by considering

the smaller algebra Lgood :=
N−1⊕
i=e

fx2i ⊕
N−1⊕
i=2e

wx2i+1. The Lie bracket on Lgood is

given by the following formulas:

[αx2i+1, βx2j ] = αβ2x2(i+2j)+1, if dω(2i+ 1) + 1 = dω(2i+ 4j + 1)),

[αx2i+1, βx2j+1] = (ασ(β)− βσ(α))x2(i+j+1),

if dω(2i+ 1) + dω(2j + 1) = dω(2(i+ j + 1)),

and all other commutators of the form [αxk, βxl] are equal to zero.
Moreover, Lgood is invariant under the action of G. Finally, Lgood admits another

grading
2N−1⊕
i=4e

Li, where

Ln =
{

fxn
⊕

fxn/2 if 4 | n and 4e ≤ n ≤ 8e− 4
L ∩wxn, otherwise

(8.6)

If C is a cocycle of L and n ≥ 8e, we define C|n (the weight n component of C) to
be the cocycle of Lgood (not the entire L) given as follows. If u ∈ Li and v ∈ Lj , set

C|n(u, v) =
{
C(u, v) if i+ j = n
0 if i+ j 6= n

Finally, as before we set Ci,j(α, β) = C(αxi, βxj).
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8.1 Cocycle descriptions

In this subsection we obtain partial information about homogeneous cocycles of
Lgood. Fix n such that dω(n) = c. If n is even, assume in addition that n ≥
(4c− 2)e+ 14 (note that 2N − 2 ≥ (4c− 2)e+ 14 by (8.1)). Let C be the weight n
component of some admissible cocycle of L.

Case 1: n is odd. We claim that C is a coboundary. Replacing C by C −B for
some coboundary B, we can assume that C(x2e, βxn−4e) = 0 for all β ∈ w. Under
this assumption, we shall prove that C = 0.

It is enough to show that C(αxn−m, βxm) = 0 for all oddm such that αxn−m, βxm ∈
Lgood. Assume first that 3 ≤ dω(m). Then we have

C(αxn−m, βxm) = C(αxn−m, [βxm−4e, x2e]) =

C([αxn−m, βxm−4e], x2e) + C([αxn−m, x2e], βxm−4e). (8.7)

In the last expression the first term is equal to zero by assumption, while the second
term is zero since [αxn−m, x2e] = 0 (as both n−m and 2e are even).

If dω(m) ≤ 2, write αxn−m in the form [α1x
k, α2x

l], where k and l are both odd
and k, l ≥ 4e+ 1, and use semi-cocycle identity.

Case 2: n is even (recall that (4c− 2)e+ 14 ≤ n ≤ 2N − 2 by our assumption).
In this case we will use W -action formula. When p = d = 2, it gives the following.
Assume that k ≥ e is odd, α, λ ∈ w, s ≥ 1. Let u = αxk and g = g(λ, s). Then

ug = α(xk + tr (λ2)xk+4s + σ(λ2)tr (λ2)xk+8s + . . .) (8.8)

An argument similar to the ones we used in other exceptional cases yields the fol-
lowing. Let Ireg := {i ∈ N | 4e ≤ i ≤ N − 4e and i is odd}. If m ≥ (4c− 2)e+ 14 is
even and i ∈ Ireg, then

Ci,m−i = Ci+4,m−i−4 if dω(i,m− i) = dω(i+ 4,m− i− 4); (8.9)
Ci,m−i is f -balanced. (8.10)

From now on we write Ci for Ci,n−i. Let r = n − (4c − 2)e. Note that by our
assumptions on n we have 14 ≤ r < 2e.

Claim 8.3. Suppose that i = (4a + 2)e + (2b + 1), where 1 ≤ a ≤ c − 2 and
0 ≤ b < e + r/2. Then there exists λi ∈ w such that Ci(α, β) = tr 0(λiασ(β)) for
all α, β ∈ w. Moreover, λi depends only on the parity of a and b.

Proof. First we will show that if a is fixed, then Ci depends only on the parity of b.
Indeed, let i = (4a+2)e+(2b+1) and i′ = (4a+2)e+(2b′+1), where b and b′ have the
same parity and 0 ≤ b, b′ < e+r/2. Then n−i = (4(c−a−2)+2)e+(2e−2b−1+r),
n− i′ = (4(c− a− 2)+2)e+(2e− 2b′− 1+ r), so clearly dω(i, n− i) = dω(i′, n− i′),
whence λi = λi′ by (8.9).
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Now fix b. To prove that Ci depends only on the parity of a, we must show that
Ci = Ci+8e or, equivalently, Ci+4e − Ci = Ci+8e − Ci+4e. We have

Ci+4e(α, β)− Ci(α, β) = C([αxi, x2e], βxn−i−4e)− C(αxi, [βxn−i−4e, x2e]) =

C([αxi, βxn−i−4e], x2e) = C((ασ(β)− βσ(α))xn−4e, x2e).

The last expression is independent of i, and we are done.

Now we establish the first assertion of the claim. Since Ci = C(4a+2)e+(2b+1)

depends only the parity of a and b, we can assume that 0 < b < 2, in which case
dω(i, n − i − 8) = dω(i + 8, n − i). Let c be a map compatible with C. Given
α, β, µ ∈ w, we use the compatibility equation (3.2) with u = αxi, v = βxn−i−8 and
g = g(

√
µ, 1). Applying W -action formula and using (8.9) and (8.10), we get

D(α, σ(µ)tr (µ)β) +D(tr (µ)α, tr (µ)β) +D(ασ(µ)tr (µ), β) = R(ασ(β)),

where D = Ci and R is some function. Since tr (µ) = µ+σ(µ) and D is f -balanced,
we have

D(α, σ(µ)tr (µ)β) +D(µ tr (µ)α, β) = R(ασ(β)).

Arguing as in other exceptional cases, we conclude that D(α, β) = tr (λiασ(β)) for
some λi ∈ w. �

For the rest of the section, we set

µk,l = λ(4k+2)e+(2l+1), where 1 ≤ k < c and 0 ≤ l < e+ r/2.

According to Claim 8.3, µk,l depends only on the parity of k and l.

Lemma 8.4. Let k, l be as above.
a) If n ≡4 2, then µk,l ∈ f .
b) If 4 | n, then µk,l = σ(µk,l+1).

Proof. a) Let i = (4k + 2)e + (2l + 1) and let r = n − (4c − 2)e as before. Since
Ci(α, β) = Cn−i(β, α), we have

tr 0(λ(4k+2)e+(2l+1)ασ(β)) = tr 0(λ((4(c−k−2)+2)e+2e+r−(2l+1)βσ(α)),

whence µk,l = σ(µc−k−2,e−l−1+r/2). Since c and e are even, µc−k−2,e−l−1+r/2 =
µk,e−l−1+r/2 = µk,r/2+1+l. Since n ≡4 2, r/2 + 1 is even. We get µk,l = σ(µk,l),
whence µk,l ∈ f .

Proof of b) is analogous. �
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8.2 Proof of Theorem 5.1.

Let Z = Zf and z = zf be defined as in Section 3. Recall that by Lemma 3.7, z does
not vanish on G×U , where U = γN−1G/γN+1G. On the other hand, z vanishes on
G × V , where V = γNG/γN+1G. Since U = V

⊕
wx2N−3

⊕
fx2N−4, there exists

α ∈ w and g ∈ G such that either z(g, αx2N−4) 6= 0 or z(g, αx2N−3) 6= 0. We are
going to construct an ω-splitting f for which the above assertion does not hold, thus
reaching a contradiction.

We start with a simple observation.

Claim 8.5. Let n be even, with dω(n) = c, and let λ ∈ f . Define Dλ,n : Lgood ×
Lgood → Fp by setting

Dλ,n(αxi, βxj) =
{

tr 0(λασ(β)) if i+ j = n, dω(i) + dω(j) = c and i is odd,
0 otherwise.

Then Dλ,n is a coboundary.

Proof. Note that the above definition of Dλ,n is essentially the same as the one used
in Section 5 (we simplified the formula using the fact that λ(i) = iλ for λ ∈ f).
Thus we can simply adjust the argument of Proposition 5.5b). �

Now let f be some ω-splitting, and let Z = Zf . For the rest of the section we
set C = Z|2N−2, and let λk, µk,l be as in the conclusion of Claim 8.3 applied to C.

Proposition 8.6. We can choose f so that the following conditions are satisfied:
a) Z|n = 0 for all odd n, with dω(n) = c.
b) Either µ1,2 = 0 or µ1,2 6∈ f .

Proof. a) In the last subsection we showed that Z|n is a coboundary (of Lgood) for
any choice of f . Therefore, by changing f , we can assume that Z|n = 0.

b) This is a direct consequence of Claim 8.5. �

From now we assume that f satisfies the conclusion of Proposition 8.6. Note
that Z = Zf vanishes on Li × Lj if either

A) i+ j is odd and dω(i+ j) = c or
B)10 i+ j ≥ 2N .
Indeed, A) holds by Proposition 8.6a). If both i and j are odd, B) can be proved

in the same way as Claim 5.3. Finally, B) in the case of i and j even follows from
B) in the case of i and j odd and the semi-cocycle identity.

Now let g ∈ G and α ∈ w be arbitrary. Write g in the form 1 + aπ + bπ2 + . . .,
where a, b ∈ w. By Lemma 8.2, we have tr (b) = aσ(a). If m is odd and u = αxm,
direct computation shows that

ug = αxm + tr (aσ(α))xm+1 + a2σ(α)xm+2 + . . . .

10Note that x2e lies in L4e, not in L2e, according to (8.6).
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It is also easy to see that
(x2e)g = x2e + ax4e+1.

Using properties A) and B) above we have

z(g, αx2N−3) = z(g, [αx2N−3−4e, x2e]) =

Z((αx2N−3−4e)g, (x2e)g)− Z(αx2N−3−4e, x2e) =

Z(αx2N−3−4e + tr (aσ(α))x2N−2−4e, x2e + ax4e+1)− Z(αx2N−3−4e, x2e) =

Z(αx2N−3−4e, ax4e+1) + Z(tr (aσ(α))x2N−2−4e, x2e) =

Z([αx2N−3−8e, x2e], ax4e+1) + Z([ax4e+1, αx2N−3−8e], x2e) =

Z([x2e, ax4e+1], αx2N−3−8e) = Z(ax8e+1, αx2N−3−8e) = tr 0(µ1,2aσ(α)) (8.11)

Next we compute z(g, αx2N−4) (this time α ∈ f). Choose odd numbers k and
l such that k + l = 2N − 4 and dω(k) = dω(l) = c/2. Choose β, γ ∈ w such that
α = tr (βσ(γ)). We have

z(g, αx2N−4) = z(g, [βxk, γxl]) = Z(βxk + tr (aσ(β))xk+1 + a2σ(β)xk+2,

γxl + tr (aσ(γ))xl+1 + a2σ(γ)xl+2)− Z(βxk, γxl) =

Z(βxk, a2σ(γ)xl+2) + Z(a2σ(β)xk+2, γxl) = tr 0((λk + λl)βγσ(a2)). (8.12)

We are now ready to prove that z vanishes on G× (wx2N−3
⊕

fx2N−4).

Case 1: N is odd. First of all, we claim that z(g, αx2N−4) = 0 for all α ∈ f and
g ∈ G. Indeed, if k and l are as in (8.12), then k ≡4 l, whence λk = λl.

Now let θ ∈ f , and let g = 1 + θπ + . . .. Arguing as in Section 6 (case 3),
we conclude that Z(xN−2, θ2xN ) = z(g, x2N−4) (see (6.4)). We just showed that
z(g, x2N−4) = 0. Therefore, tr 0(λNθ

2) = Z(xN−2, θ2xN ) = 0 for all θ ∈ f , whence
tr (λN ) = 0, i.e. λN ∈ f . Now N = (4(c/2 − 1) + 2)e + r where e < r < 2e.
Since 4 | c, we have λN = λc/2−1,r = µ1,1 or µ1,2. Since C has weight 2N − 2
and 4 | (2N − 2), µ1,2 = σ(µ1,1) by Lemma 8.4b). Therefore, µ1,2 = µ1,1 ∈ f . By
Proposition 8.6b) we have µ1,2 = 0, so according to (8.11), z(g, αx2N−3) = 0 for all
α ∈ w and g ∈ G.

Case 2: N is even. We apply the procedure described in [PR, 7.3]. Let ω ∈ D
be such that

ω2 + ωπ2 = π2. (8.13)

Then ω ∈ mD; moreover, ω = π + ξπ2 + . . ., where tr (ξ) = 1, and 1 + ω ∈ G. Note
that ω2/(1− ω) = π2, whence K := f((ω)) is an extension of F = f((π2)) of degree
2. Now

ω

1− ω
is also a root of (8.13), whence there exists A ∈ Gal (K/F ) such that

A(ω) =
ω

1− ω
.
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Fix θ ∈ f . Let b := (1 + θωN−3)−1A(1 + θωN−3). Note that NK/F (b) = 1,
whence b ∈ G. An easy computation shows that b ≡ 1 + θωN−2 mod ωN−1f [[ω]]
and b2 ≡ 1 + θ2π2N−4 mod π2N−2OD, so

LT ω(b2) = θ2x2N−4 + v, where v ∈ V = γNG/γN+1G.

Let h = 1 + ω. Note that h and b both lie in K and therefore commute,
so z(h,LT ω(b2)) = 0 by Lemma 3.6. Since v ∈ γN Ĝ/γN+1Ĝ, z(h, v) = 0 by
Lemma 3.7c). Therefore, z(h, θ2x2N−4) = 0.

Now let α = θ2 and fix ξ ∈ w such that tr (ξ) = 1. Then α = tr (βσ(γ)) where
β = 1 and γ = θ2ξ, and (8.12) yields

z(h, θ2x2N−4) = tr 0((µ1,2 + µ1,1)θ2ξ). (8.14)

Since (2N − 2) ≡4 2, Lemma 8.4a) implies that µ1,1, µ1,2 ∈ f . By Proposition 8.6b),
the latter implies that µ1,2 = 0.

It follows from (8.14) that

0 = tr 0(µ1,1θ
2ξ) = tr f/f0(µ1,1θ

2 tr (ξ)) = tr f/f0(µ1,1θ
2).

Since the above equality holds for all θ ∈ f , we conclude that µ1,1 = 0.
So, we showed that µ1,1 = µ1,2 = 0. Therefore, z(g, αx2N−4) = 0 for all α ∈ f

and g ∈ G by (8.12), and z(g, αx2N−3) = 0 for all α ∈ w and g ∈ G by (8.11). �

9 Some properties of finite fields

Here we collect several properties of extensions of finite fields, which are used for
computation of Lie algebra cohomology. We retain all notations from previous
sections. Recall that f ∼= Fq and w ∼= Fqd .

Lemma 9.1 (see [Ri, Lemma 4]). If p 6= 2 or d 6= 2, then there exists η ∈ w,
with tr (η) = 0, such that η generates w over f (as a field).

Lemma 9.2. Assume that the pair (p, d) is different from (2, 2), (2, 4) and (3, 3).
Let k = 2, if p > 2, and let k = −1 if p = 2. Then there exist elements η, η1, η2 ∈ w
such that tr (η1) = tr (η2) = 0, η − η1 ∈ f , ηk − η2 ∈ f and η generates w over f .

Proof. Case 1: p - d. In this case for any µ ∈ w there exists λ ∈ f such that
tr (λ + µ) = 0 since tr (λ + µ) = dλ + tr (µ) when λ ∈ f , and the assertion of the
Lemma follows trivially.

Case 2: p | d and p > 2. Note that in this case d ≥ 5, since we assume (p, d) 6=
(3, 3). By a result of Cohen and Mills [CM], for any a, b ∈ Fq, there exists a primitive
polynomial f(x) ∈ Fq[x] of degree d such that f(x) = xd + axd−1 + bxd−2 + . . . (f is
said to be primitive if it is irreducible and any of its roots generates the multiplicative
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group of Fqd). If we set a = b = 0 and let η be any root of f(x), then clearly
tr (η) = tr (η2) = 0 and η generates w over f .

Case 3: p | d and p = 2. In this case we use a result of Chou and Cohen [CC],
which says that if d ≥ 5 and the pair (q, d) is different from (4, 5), (2, 6) and (3, 6),
there exists a primitive polynomial f(x) ∈ Fq[x] of degree d whose coefficients of x
and xd−1 are both zero. If η is a root of f(x), then obviously tr (η) = tr (η−1) = 0.

Since q is a power of 2 and d is even, the only remaining pair is q = 2, d = 6. In
this case we let η be any root of the polynomial x6 + x3 + 1, which is easily seen to
be irreducible over F2.

�

Lemma 9.3. Let S = {σ(η)− η | tr (η) = 0} and let Λ be the subring(=subfield) of
w generated by S. Then Λ = w with the exception of the cases p = d = 3, p = d = 2
and p = 2, d = 4.

Proof. Given λ ∈ w, let λS = {λs | s ∈ S}. Note that if λ 6= 0, then λS is an
f -subspace of w which has codimension 1 if p - d and codimension 2 if p | d. Since
w is a d-dimensional space over f , we conclude that λS ∩ S 6= 0 as long as d > 2
and p - d, or d > 4. This implies that every element of w is a ratio of two elements
of S unless d = 2 or p = d = 3 or p = 2, d = 4.

It remains to prove the Lemma in the case d = 2, p > 2, which is very easy.
Indeed, Λ is a subfield of w containing f , and since [w : f ] = 2, Λ = w or Λ = f .
The latter is clearly impossible since card (Λ) ≥ card (S) = card (f) and f does not
contain nonzero elements of zero trace. �

Lemma 9.4. Let i and j be integers. Let Λi,j be the linear span of the set Si,j =
{ασi(β)− σj(α)β | α, β ∈ w}. Assume that j is prime to d. Then

Λi,j =
{

w if d - (i+ j)
{η ∈ w | tr (η) = 0} if d | (i+ j)

Proof. It is clear that Λi,j is a σ-invariant f -subspace of w. Setting β = 1, we see
that Si,j contains all elements of the form α − σj(α). Since j is prime to d, there
exists k such that jk ≡d 1. Then α − σ(α) =

∑k−1
i=0 σ

ji(α − σj(α)) ∈ Λi,j , whence
Λi,j contains all elements of zero trace.

If d | (i + j), it is clear that every element of Si,j has zero trace. On the other
hand, if d - (i+ j), at least one element of Si,j has nonzero trace. Since elements of
zero trace form an f -subspace of codimension 1, it follows that Λi,j = w. �
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