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Abstract. Let F be a p-adic field, that is, a finite extension of Qp. Let D be a
finite dimensional division algebra over F and let SL1(D) be the group of elements
of reduced norm 1 in D. Prasad and Raghunathan proved that H2(SL1(D), R/Z)
is a cyclic p-group whose order is bounded from below by the number of p-power
roots of unity in F , unless D is a quaternion algebra over Q2. In this paper
we give an explicit upper bound for the order of H2(SL1(D), R/Z) for p ≥ 5,
and determine H2(SL1(D), R/Z) precisely when F is cyclotomic, p ≥ 19 and the
degree of D is not a power of p.

1. Introduction

Let F be a nonarchimedean local field of residue characteristic p, that is, a finite
extension of Qp or the field of Laurent series over a finite field of characteristic
p. Let G be the group of rational points of a connected simply-connected simple
algebraic group G defined over F . By results of Moore [Mo2] and Prasad and
Raghunathan [PR1],[PR2], the second continuous cohomology group 1 H2(G,R/Z)
classifies topological central extensions of G (see [PR1, Chapter 10] for a detailed
discussion). If F has characteristic zero, finiteness of H2(G,R/Z) follows from a
general theorem of Raghunathan [Ra]. 2 However, the exact determination of the
above group (for F of either characteristic) is a deeper problem which received a lot
of attention since mid 60’s starting with a work of Moore [Mo1] and culminating
in works of Prasad and Raghunathan [PR1] and [PR2]. It is now known that if G
is isotropic over F then H2(G,R/Z) is isomorphic to the group of roots of unity
in F . Using Moore’s paper [Mo1], Matsumoto [Ma] proved this result for F -split
groups, and the case of F -quasi-split groups is due to Deodhar [De] and Deligne
(unpublished). Almost all remaining cases were handled in [PR1], and finally the
complete answer was obtained in [PRp]. 3
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If G is anisotropic over F , then by Tits’ classification G is isomorphic to SL1(D)
for some finite-dimensional division algebra D over F . Since SL1(D) is profinite,
H2(SL1(D),R/Z) is isomorphic to H2(SL1(D),Q/Z), where Q/Z is endowed with
discrete topology (see [PR2, 2.0]). Moreover, H2(SL1(D),Q/Z) is isomorphic to
H2(SL1(D), (Q/Z)p), where (Q/Z)p is the p-primary component of Q/Z (see [PR2,
2.1]). The main result of [PR2] asserts that H2(SL1(D), (Q/Z)p) is a cyclic p-group
whose order is bounded from below by the number of p-power roots of unity in F ,
unless D is the quaternion division algebra over Q2. Moreover, H2(SL1(D), (Q/Z)p)
is trivial if F has no p-power roots of unity (in particular, if F has characteristic p)
and D is not a quaternion division algebra over Q3.

The goal of this paper is to obtain an explicit upper bound for the order of
H2(SL1(D),R/Z) when F has characteristic zero and p ≥ 5. Part (a) of the follow-
ing theorem provides such bound in the general case, parts (b) and (c) give stronger
bounds in some special cases, and part (d) gives a precise order forH2(SL1(D),R/Z)
in the case of cyclotomic fields:

Theorem 1.1. Let F be a finite extension of Qp, let e be the ramification index of
F , and let pw be the highest power of p dividing e. Let D be a finite-dimensional
central division algebra over F , and let pN be the order of H2(SL1(D),R/Z) ∼=
H2(SL1(D), (Q/Z)p).

(a) Assume that p ≥ 5. Then N ≤ w + 6.
(b) Assume that p ≥ 4w + 15. Then N ≤ w + 1.
(c) Assume that p ≥ 19, the degree of D is not a power of p, the extension F/Qp

is Galois, and F contains p2th primitive root of unity. Then N ≤ w + 1.
(d) Assume that p ≥ 19, the degree of D is not a power of p, and F is a

cyclotomic field. Then N = w + 1.

Note that Theorem 1.1(d) immediately follows from Theorem 1.1(b)(c) and Prasad-
Raghunathan’s theorem. Indeed, if F = Qp(

n
√

1) and pk is the highest power of p
dividing n, then e = pk−1(p− 1) and w = k − 1. Thus |H2(SL1(D),R/Z)| ≤ pk by
Theorem 1.1(c) if k ≥ 2 and by Theorem 1.1(b) if k = 1, while [PR2, Theorem 8.1]
yields |H2(SL1(D),R/Z)| ≥ pk.

We now give a brief sketch of the proof of Theorem 1.1. Let G = SL1(D). In
[PR2] it is shown that H2(G, (Q/Z)p) is isomorphic to H2(G,Z/pkZ) for sufficiently
large k. Both G and Z/pkZ are p-adic analytic, so it is natural to ask if the order of
H2(G,Z/pkZ) can be computed using Lie algebras. In the theory of p-adic analytic
groups there is a well-known exp-log correspondence between (finitely generated)
powerful torsion-free pro-p groups and powerful torsion-free Zp-Lie algebras. This
is not enough for our purposes; however, what we can use is a work of Weigel [We],
who extended the above correspondence to the classes of powerful p-central pro-p
groups and Lie algebras (see Section 2 for definitions).

Now consider the congruence subgroup H = SLde+1
1 (D) where d is the dergee of

D. It is easy to see that H is powerful and torsion-free. Let resG|H be the restriction
map from H2(G,Z/pkZ) to H2(H,Z/pkZ). First we prove that resG|H has small
kernel (see Proposition 4.8). Next we show that any cohomology class lying in the
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image of resG|H is represented by a (central) extension 1→ Z/pkZ→ Ĥ → H → 1
where Ĥ is powerful and p-central (see Lemma 5.3). Applying Weigel’s log functor
we obtain the corresponding extension of powerful p-central Lie algebras. This
extension, in turn, represents some cohomology class in H2(h,Z/pkZ), where h is
the Zp-Lie algebra of H. Moreover, the obtained cohomology class is invariant under
the natural action of G on H2(h,Z/pkZ). These results lead to an upper bound for
the order of H2(G,Z/pkZ) in terms of the exponent of the G-invariant part of
H2(h,Z/pkZ). Finally, in Section 6 we obtain an explicit description of G-invariant
classes in H2(h,Z/pkZ), which yields the bound given in Theorem 1.1(a).

The proof of Theorem 1.1(b) is based on similar ideas, but is considerably more
technical. Instead of Weigel’s correspondence we use Lazard’s exp-log correspon-
dence between finite groups and finite Lie rings of p-power order and nilpotency
class less than p. The reduction of Theorem 1.1(b) to computation of cohomology
of finite p-groups is based on the analysis of the inflation map H2(G/Gm,Z/pkZ)→
H2(G,Z/pkZ) for m ∈ N, where Gm = SLm1 (D).

Finally, to prove Theorem 1.1(c) we use the following simple fact pointed out
to the author by Gopal Prasad: If F/F0 is an extension of p-adic fields and D
is a central division algebra over F whose degree is relatively prime to [F : F0],
then D ∼= D0 ⊗F0 F for some division algebra D0 over F0. Furthermore, certain
information about the restriction map H2(SL1(D),R/Z) → H2(SL1(D0),R/Z) is
provided by [PR2]. Using this idea, we reduce the proof of Theorem 1.1(c) to the
case of division algebras over p-adic fields of small degree, where Theorem 1.1(b)
becomes applicable.
Organization. In Section 2 we describe exp-log correspondence between certain
classes of p-adic analytic pro-p groups and Zp-Lie algebras. We then use this cor-
respondence to establish relationship between (second) cohomology of pro-p groups
and Lie algebras belonging to those classes. In Section 3 we review basic facts about
division algebras over p-adic fields. In Section 4 we study group-theoretic properties
of central extensions of SL1(D) where D is a division algebra over a p-adic field. In
Section 5 we deduce parts (a) and (b) of Theorem 1.1 from certain results on Lie
algebra cohomology which, in turn, are proved in Section 6. Finally, in Section 7 we
prove Theorem 1.1(c).
Basic notations. Throughout the paper Z will stand for integers, N for positive
integers, Zp for p-adic integers and Fp for a finite field of order p. If G is a topological
group, γnG will denote the (closure of) the nth term of the lower central series of G,
and Gn the (closed) subgroup of G generated by nth powers. If A and B are subsets
of G, let [A,B] be the (closed) subgroup generated by {[a, b] : a ∈ A, b ∈ B}, where
[a, b] = a−1b−1ab.
Acknowledgements. I am very grateful to Gopal Prasad for posing the problem,
very interesting conversations, and suggesting an idea that resulted in significant
improvement of the results of this paper. I am also very thankful to Thomas Weigel
for sending me his unpublished manuscript [We] and helpful e-mail communications.
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2. Preliminaries

2.1. Exp-log correspondence. In this subsection we will discuss natural corre-
spondence between certain classes of Zp-Lie algebras, as defined below, and corre-
sponding classes of p-adic analytic pro-p groups. All pro-p groups considered in this
section are assumed to be finitely generated (without further mention).

Definition. We say that L is a Zp-Lie algebra if L is a topological Lie algebra over
Zp which is finitely generated as a Zp-module. We do not assume that L is a free
Zp-module, that is, L is allowed to have torsion elements.

Let LZp (resp. GZp) be the category whose objects are Zp-Lie algebras (resp.
compact p-adic analytic groups) and whose morphisms are continuous Lie ring (resp.
group) homomorpshims. If L is a subcategory of LZp and G is a subcategory of
GZp , by an exp-log correspondence between L and G we mean a pair of functors
exp : L → G and log : G → L such that the compositions exp ◦log and log ◦ exp
are naturally equivalent to the identity functors on G and L, respectively. We will
describe such correspondence in the following cases (all relevant definitions are given
later in this section):

1. (L,G) = (L<p,G<p) where L<p (resp. G<p) is the category of finite Lie rings
(resp. finite groups) of p-power order and nilpotency class < p.

2. (L,G) = (Lptf ,Gptf ) where Lptf (resp. Gptf ) is the category of powerful
torsion-free Zp-Lie algebras (resp. powerful torsion-free pro-p groups).

3. (L,G) = (Lppc,Gppc) where Lppc (resp. Gppc) is the category of powerful
p-central Zp-Lie algebras (resp. powerful p-central pro-p groups) and p ≥ 5.

Cases 1 and 2 of exp-log correspondence are due to Lazard. The correspondence
L<p ∼= G<p is a special case of [La1, Theorem 4.6]. Equivalence between Lptf and
Gptf is essentially established in Lazard’s famous 1965 paper on p-adic analytic
groups [La2], although the notion of a powerful group was introduced more than
20 years later by Lubotzky and Mann [LM]. For a detailed account of the theory
of poweful groups the reader is referred to an excellent book on analytic pro-p
groups [DDMS]; we shall just state the main definitions and results.

Definition. A pro-p group G (resp. a Zp-Lie algebra L) is called powerful, if
(G,G) ⊆ Gq (resp. [L,L] ⊆ qL) where q = p if p > 2 and q = 4 if p = 2.

The following well-known criterion of analyticity of pro-p groups was first stated
in [LM] and is easily deduced from results in [La2].

Theorem 2.1. A finitely generated pro-p group is p-adic analytic if and only if it
contains a finite index powerful subgroup. Furthermore, every powerful pro-p group
contains a finite index subgroup which is powerful and torsion-free.

The book [DDMS] contains a full proof of Theorem 2.1 “from scratch” as well
as an explicit proof of equivalence Gptf

∼= Lptf between the categories of powerful
torsion-free pro-p groups and Zp-Lie algebras. Lazard’s counterpart of this result
[La2, Chapter IV, Theorem 3.2.6] is a correspondence between the categories of
“p-saturable” pro-p groups and Lie algebras. Any torsion-free powerful pro-p group
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is p-saturable; conversely, a p-saturable pro-p group is p-adic analytic and torsion-
free, but not necessarily powerful. Thus, Lazard’s exp-log correspondence is more
general than the one between Gptf and Lptf ; however, powerful torsion-free pro-p
groups are usually easier to work with than p-saturable ones (for more on this see
[K]).

The last case of exp-log correspondence used in this paper is Weigel’s generaliza-
tion of the correspondence Lptf ∼= Gptf to certain classes of pro-p groups and Zp-Lie
algebras that are powerful but not necessarily torsion-free.

Definition. Assume that p > 2. A pro-p group G (resp. a Zp-Lie algebra L) is
called p-central, if any g ∈ G such that gp = 1 (resp. u ∈ L such that pu = 0) lies
in the center of G (resp. L).

In [We], 4 Weigel constructed exp-log correspondence Lppc ∼= Gppc between the
categories of powerful p-central pro-p groups and Zp-Lie algebras for p ≥ 5. Note
that a torsion-free pro-p group is always p-central, and more generally, a central
extension of a torsion-free pro-p group is always p-central. Thus, Weigel’s corre-
spondence is well suited for computing second cohomology of powerful torsion-free
pro-p groups.
Construction of the exp functor. We shall now explain how to construct the
pro-p group exp(L) corresponding to a Zp-Lie algebra L where L ∈ L<p or L ∈ Lppc.
While there exist distinct ways to define exp(L) formally, they are all based on the
Baker-Cambell-Hausdorff (BCH) formula.

Let A = Q〈〈x1, x2〉〉 be the algebra of power series over Q in two non-commuting
variables x1 and x2. The power series Φ = log (ex1 ·ex2) is called the Baker-Campbell-
Hausdorff series (here ex = 1+x+x2/2+ . . . and log (1+x) = x−x2/2+x3/3− . . .).

Theorem 2.2. The Baker-Campbell-Hausdorff (BCH) series Φ lies in the Q-Lie
subalgebra of A generated by x1 and x2. In other words, Φ =

∑
c∈S λcc, where S

is the set of all left-normed commutators in x1, x2 and each λc ∈ Q. Moreover, if
wt(c) denotes the weight of a commutator c, then

p [(k−1)/(p−1)]λc ∈ Zp for any c ∈ S and λc ∈ Zp if wt(c) < p.

Remark: There is an explicit expression for Φ (as a linear combination of commu-
tators), called the Baker-Campbell-Hausdorff formula. The last assertion of Theo-
rem 2.2 due to Lazard [La2] is a consequence of that formula.

Now let L = L<p or Lppc, and let L be an object of L. We define the pro-p group
exp(L) as the set of formal symbols {exp(u) : u ∈ L} with the group operation

exp(u1) · exp(u2) = exp(Φ(u1, u2)).
where Φ(u1, u2) ∈ L is defined below. Informally, one should think of Φ(u1, u2) as
the result of “evaluating” the BCH series at x1 = u1 and x2 = u2. The formal
definition of Φ(u1, u2) will be different in the cases L = L<p and L = Lppc.

4In fact, Weigel introduced a general technique for establishing exp-log correspondence between
categories of p-adic analytic groups and Zp-Lie algebras satisfying certain conditions. This technique
is applicable to all cases of exp-log correspondence discussed in this paper.



6 MIKHAIL ERSHOV

Case 1: L = L<p. Given a left-normed commutator c in x1, x2, we define
c(u1, u2) by substituting u1 for x1 and u2 for x2 in c. Thus, if c = [xi1 , xi2 , . . . , xik ],
then c(u1, u2) = [ui1 , ui2 , . . . , uik ]. Since the nilpotency class of L is less than p, we
have c(u1, u2) = 0 whenever wt(c) ≥ p where wt(c) is the weight of the commutator
c. Thus, we set

Φ(u1, u2) =
∑

c∈S,wt(c)<p

λcc(u1, u2)

(using the notations of Theorem 2.2). In other words, Φ(u1, u2) is obtained by
plugging in u1 and u2 into the BCH series truncated after degree p − 1. Since
λc ∈ Zp whenever wt(c) < p, the obtained expression is well-defined.

Case 2: L = Lppc. Once again, let c = [xi1 , xi2 , . . . , xik ] be a left-normed
commutator, and define c(u1, u2) as in case 1. Since L is powerful, there exists
v1 ∈ L such that [ui1 , ui2 ] = pv1. Now assume that k ≥ 3 and set 1

pc(u1, u2) =
[v1, ui3 , . . . , uik ]. The last expression is independent of the choice of v1 because L
is p-central. Indeed, if [ui1 , ui2 ] = pv′1 for some v′1 6= v1, then p(v′1 − v1) = 0,
whence v′1 − v1 lies in the center of L. Similarly, there is a well defined element
1
pl c(u1, u2) for all l ≤ k − 2. Since p [(k−1)/(p−1)]λc ∈ Zp by Theorem 2.2, we can
define λcc(u1, u2) ∈ L by setting λcc(u1, u2) = (pk−2λc) · 1

pk−2 c(u1, u2). Moreover,
the series

∑
c∈S λcc(u1, u2) converges in L, and we let Φ(u1, u2) be its sum.

It is now clear how to define the functor exp : L→ G where (L,G) = (L<p,G<p)
or (Lppc,Gppc):

• if L is an object of L, the corresponding object of G is the group exp(L) as
defined above
• if L1, L2 are objects of L and f : L1 → L2 is a Lie algebra homomorphism,

the corresponding group homomorphism f∗ : exp(L1)→ exp(L2) is given by
f∗(exp(u)) = exp(f(u)) for u ∈ L1.

Constructing the functor log : G → L is a more demanding task. A “naive”
approach is to imitate the above construction of the exp functor, replacing the BCH
series by its functional inverse; however, formalizing such construction requires a lot
of technical machinery. We refer the reader to [We] for the formal definition of the
log functor. All properties of log that will be used in this paper are collected in the
following proposition.

Proposition 2.3. Let (G,L) = (G<p,L<p) or (Gppc,Lppc). There exists a functor
log : G→ L which induces categorical equivalence G ∼= L and satisfies the following
properties:

(a) Let G ∈ G and let log (G) ∈ L be the corresponding Lie algebra. The under-
lying set of log (G) is the set of formal symbols {log (g) : g ∈ G}.

(b) Let ϕ : G → H be a morphism in G, and let ϕ∗ : log (G) → log (H) be the
corresponding morphism in L. Then ϕ∗(log (g)) = log (ϕ(g)) for any g ∈ G.

(c) Let G1, G2 ∈ G. Then G1×G2 ∈ G, and the Lie algebra log (G1×G2) is iso-
morphic to log (G1)×log (G2) via the map log ((g1, g2)) 7→ (log (g1), log (g2)).
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(d) If K,G,H ∈ G and 1→ K
ι−→ G

ϕ−→ H → 1 is an exact sequence, then the

sequence 0→ log (K) ι∗−→ log (G)
ϕ∗−→ log (H)→ 0 is also exact.

(e) Let G,H be objects of G, and let ι : H → G be a monomorphism. Then
ι(H) lies in the center of G if and only if ι∗(log (H)) lies in the center of
log (G).

2.2. Central extensions and cohomology. Let H be a profinite group and let A
be an abelian profinite group, considered as a trivial H-module. Then there exists a
canonical isomorphism of abelian groups H2(H,A) ∼= Ext(H,A) where H2(H,A) is
the second continuous 5 cohomology group and Ext(H,A) is the group of equivalence
classes of topological central extensions of H by A. Recall that the isomorphism is
constructed as follows:

Given C ∈ H2(H,A), let Z : H ×H → A be a 2-cocycle whose cohomology class
is equal to C. Let Ĥ be the set of pairs {(h, a) : h ∈ H, a ∈ A} with multiplication
given by (h1, a1) · (h2, a2) = (h1h2, a1 + a2 + Z(h1, h2)). The central extension
corresponding to C is

1→ A
ι−→ Ĥ

ϕ−→ H → 1 or, in abbreviated form, A
ι
↪→ Ĥ

ϕ
� H,

where ι(a) = (1, a) and ϕ((h, a)) = h for any a ∈ A and h ∈ H. We will denote (the
equivalence class of) this extension by Ext(C).

Conversely, let E = (1→ A
ι−→ Ĥ

ϕ−→ H → 1) be an element of Ext(H,A). Let
ψ : H → Ĥ be a continuous section of ϕ, that is, a continuous map H → Ĥ such
that ϕ ◦ ψ = idH , and define Z : H ×H → A by

Z(h1, h2) = ι−1(ψ(h1h2)−1ψ(h1)ψ(h2)).

Then Z is 2-cocycle, and Ext([Z]) = E .
The relationship between central extensions and cohomology in the case of Lie

rings is more delicate. Let h be a profinite Lie ring, and let a be an abelian profinite
Lie ring, considered as a trivial h-module. Then there exists a canonical embedding
H2(h, a)→ Ext(h, a), but not necessarily an isomorphism.

If c ∈ H2(h, a) and z : h× h→ a is a 2-cocycle representing c, we define Ext(c) ∈
Ext(h, a) to be the extension 0→ a

ι−→ ĥ
ϕ−→ h→ 0, where ĥ = h× a as a set with

Lie bracket [(h1, a1), (h2, a2)] = ([h1, h2], z(a1, a2)).
Conversely, if E ∈ Ext(h, a) and E = (0 → a

ι−→ ĥ
ϕ−→ h → 0), then E = Ext(c)

for some c ∈ H2(h, a) if and only if there exists a continuous linear section ψ : h→ ĥ.
If such ψ exists, then E = Ext([z]) where

z(h, k) = ι−1 (ψ([h, k])− [ψ(h), ψ(k)]) .

However, a linear section need not exist, e.g. if

E = (0→ Z/pZ→ Z/ps+1Z→ Z/psZ→ 0).

5If continuous cohomology is replaced by measurable cohomology, the assertion holds for any
topological group H
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2.3. Central extensions and exp-log correspondence. Throughout this sub-
section G (resp. L) will denote either Gppc (resp. Lppc) or G<p (resp. L<p).

Given H ∈ G and A ∈ G, with A abelian, we define ExtG(H,A) to be the subset
of Ext(H,A) consisting of extensions A ↪→ Ĥ � H such that Ĥ ∈ G as well. We
define ExtL(h, a) for h, a ∈ L, with a abelian, in the analogous way.

Proposition 2.4. Let L and G be as above. Let H,A ∈ G where A is abelian, and
let h = log (H), a = log (A).

(a) There exists a natural bijection Log : ExtG(H,A)→ ExtL(h, a).
(b) Suppose that G = G<p, or G = Gppc and H is torsion-free. Then

(i) ExtG(H,A) is a subgroup of Ext(H,A)
(ii) ExtL(h, a) is a subgroup of Ext(h, a)
(iii) The map Log : ExtG(H,A) → ExtL(h, a) is an isomorphism of abelian

groups.

Proof. (a) Let E = (1 → A
ι−→ Ĥ

ϕ−→ H → 1) be an element of ExtG(H,A). By
Proposition 2.3(d), the sequence

(2.1) 0→ a
ι∗−→ log (Ĥ)

ϕ∗−→ h→ 0

is exact. Since ι(A) is central in Ĥ, Proposition 2.3(e) implies that ι∗(a) is central
in log (Ĥ). It follows that (2.1) is a central extension of h by a, which we denote by
Log(E). Thus we constructed a map Log : ExtG(H,A)→ ExtL(h, a). Similarly, one
uses the exp functor to construct the inverse map Exp : ExtL(h, a) → ExtG(H,A),
whence Log : ExtG(H,A)→ ExtL(h, a) is a bijection.

(b) Let E1 = (A
ι1
↪→ Ĥ1

ϕ1
� H) and E2 = (A

ι2
↪→ Ĥ2

ϕ2
� H) be two elements of

ExtG(H,A). By definition of addition in Ext(H,A) we have

E1 + E2 = (A
ι
↪→ Ĥ/N̂

ϕ
� H)

where Ĥ = {(ĥ1, ĥ2) ∈ Ĥ1 × Ĥ2 : ϕ1(ĥ1) = ϕ2(ĥ2)}, N̂ = {(ι1(a), ι2(a−1)) : a ∈ A},
ι(a) = (ι1(a), 1)N̂ = (1, ι2(a))N̂ , and ϕ((ĥ1, ĥ2)N̂) = ϕ1(ĥ1) = ϕ2(ĥ2).

To prove (i) we need to show that Ĥ/N̂ ∈ G. If G = G<p, this is obvious since
Ĥ1, Ĥ2 ∈ G<p and G<p is closed under subgroups, quotients and direct products.

Now assume that G = Gppc and H is torsion-free. We need to show that Ĥ/N̂
is powerful and p-central. The p-centrality condition clearly holds since Ĥ/N̂ is a
central extension of H. To prove that Ĥ/N̂ is powerful it is sufficient to prove that
Ĥ is powerful. We shall use the following well-known criterion [DDMS, Lemma 3.4].

Lemma 2.5. A pro-p group G is powerful if and only if for any x, y ∈ G there
exists z ∈ G such that [x, y] = zp.

Now take any x, y ∈ Ĥ. Thus x = (x1, x2) and y = (y1, y2), where xi, yi ∈ Ĥ i

for i = 1, 2, ϕ1(x1) = ϕ2(x2) and ϕ1(y1) = ϕ2(y2). Since Ĥ1 and Ĥ2 are powerful,
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there exist zi ∈ Ĥ i, i = 1, 2 such that [xi, yi] = zpi . We have

(2.2) [x, y] = [(x1, x2), (y1, y2)] = ([x1, y1], [x2, y2]) = (zp1 , z
p
2) = (z1, z2)p

Since (zp1 , z
p
2) = [x, y] ∈ Ĥ, we must have ϕ1(z

p
1) = ϕ2(z

p
2) ∈ H. Since H is powerful

torsion-free, the equality ϕ1(z1)p = ϕ2(z2)p implies that ϕ1(z1) = ϕ2(z2) by [DDMS,
Lemma 4.10], whence (z1, z2) ∈ Ĥ. Thus Ĥ is powerful by (2.2) and Lemma 2.5.
The proof of (i) is complete.

The proof of (ii) is analogous to (and easier than) the proof of (i). Finally,
to prove (iii) we need to show that Log(E1 + E2) = Log(E1) + Log(E2). We have

Log(Ei) = (a
ι∗i
↪→ ĥi

ϕ∗i
� h) for i = 1, 2 where ĥi = log (Ĥ i) and

Log(E1 + E2) = (a
ι∗
↪→ log (Ĥ/N̂)

ϕ∗

� h).

Now let ĥ = {(u1, u2) ∈ ĥ1× ĥ2 : ϕ∗1(u1) = ϕ∗2(u2)} and n̂ = {(ι∗1(a), ι∗2(−a)) : a ∈ a}.
By Proposition 2.3(a), log (Ĥ/N̂) = {log ((ĥ1, ĥ2)N̂) : (ĥ1, ĥ2) ∈ Ĥ} as a set. We
claim that the map

θ : log (Ĥ/N̂)→ ĥ/n̂ given by θ(log ((ĥ1, ĥ2)N̂)) = (log ĥ1, log ĥ2) + n̂

is a Lie algebra isomorphism. This follows from Proposition 2.3(c)(d) since each of
the groups Ĥ1 × Ĥ2, Ĥ and Ĥ/N̂ is powerful and p-central. Thus Log(E1 + E2) is

equivalent to the extension (a
θι∗
↪→ ĥ/n̂

ϕ∗θ−1

� h), and it is easy to see that

(a
θι∗
↪→ ĥ/n̂

ϕ∗θ−1

� h) = Log(E1) + Log(E2). �

Equivariant extensions and cohomology classes. Let H and A be as above,
and suppose that G is another group which acts on both H and A. An extension
A

ι
↪→ Ĥ

ϕ
� H will be called G-equivariant if there exists an action of G on Ĥ

which is compatible with the G-action on H and A, that is,

ι(a)g = ι(ag) for any a ∈ A and g ∈ G, and ϕ(xg) = ϕ(x)g for any x ∈ Ĥ and g ∈ G.
We will denote the subset of G-equivariant extensions by Ext(H,A)G, and we set

ExtG(H,A)G = ExtG(H,A) ∩ Ext(H,A)G.
An element c ∈ H2(H,A) will be calledG-equivariant if Ext(c) ∈ Ext(H,A)G, and

H2(H,A)G will denote the set of G-equivariant elements. Note that the standard
meaning of H2(H,A)G is different from ours: H2(H,A)G usually denotes the set of
cohomology classes which are invariant with respect to the canonical action of G
on H2(H,A). It is easy to see that G-equivariant cohomology classes are invariant
under the G-action of H2(H,A), but the converse is not necessarily true.

Similarly, if h, a ∈ L, with a abelian, and both h, a are G-modules, we define
abelian groups Ext(h, a)G, ExtL(h, a)G and H2(h, a)G in the analogous way.

Proposition 2.6. Let H,A and G be as above, and define h = log (H), a = log (A).
Then there exists a canonical action of G on h given by

(2.3) log (h)g = log (hg) for any h ∈ H and g ∈ G,
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and the map Log defined in Proposition 2.4 maps ExtG(H,A)G onto ExtL(h, a)G.

Proof. The action of G on H determines a homomorphism G → Aut (H). By
Proposition 2.3(a)(b), there exists a canonical isomorphism I : Aut (H) → Aut (h)
given by (Iϕ)(log h) = logϕ(h) for h ∈ H and ϕ ∈ Aut (H). Thus, we obtain a
canonical action of G on h which is clearly given by (2.3).

Let E = (A ↪→ Ĥ � H) be an element of ExtG(H,A)G and let (a ↪→ ĥ � h) =
Log(E). Repeating the above argument with h replaced by ĥ, we obtain a canonical
action of G on ĥ, and it is straightforward to check that the extension a ↪→ ĥ � h is
G-equivariant. Thus, Log sends ExtG(H,A)G to ExtL(h, a)G. Similarly, one shows
that the inverse map Exp = Log−1 sends ExtL(h, a)G to ExtG(H,A)G. �

Proposition 2.7. Suppose that G = Gppc, L = Lppc. Let H be powerful torsion-
free, let A be an abelian pro-p group, and let h = log (H) and a = log (A). The
following hold:

(a) The canonical embedding H2(h, a)→ Ext(h, a) is an isomorphism.
(b) Let H2

G(H,A) be the preimage of ExtG(H,A) under the canonical isomorphism
H2(H,A) → Ext(H,A), and define H2

L(h, a) in a similar way. Then there exists a
natural isomorphsim H2

G(H,A)→ H2
L(h, a).

Proof. (a) Since H is a torsion-free group, h is a torsion-free Zp-Lie algebra, which

means that h is a free Zp-module. Thus for any central extension E = a
ι
↪→ ĥ

ϕ
� h,

there exists a (continuous) linear map ψ : h → ĥ such that ϕψ = id, and therefore
E = Ext(c) for some c ∈ H2(h, a).

(b) This follows directly from (a) and Proposition 2.4(b). �

Definition. Let c ∈ H2(G,A) (for some G and A) and A
ι
↪→ Ĝ

ϕ
� G = Ext(c). The

map ϕ : Ĝ → G will be called the covering map corresponding to c, and Ĝ will be
called the covering group of G corresponding to c.

3. The norm one group of a p-adic division algebra.

General notation. If K is a discrete valuation ring (not necessarily commuta-
tive), we will denote the ring of integers of K by OK and the maximal ideal of OK
by mK .
Division algebras over p-adic fields. Let F be a p-adic field, i.e. a finite extension
of Qp. Let D be a finite-dimensional central division algebra over F , and let d be
the degree of D. Let W be a maximal unramified extension of F inside D (note
that [W : F ] = d). Then there exist a uniformizer π of D and a generator σ of the
Galois group Gal (W/F ) such that

(3.1) πwπ−1 = σ(w) for all w ∈W.

Note that τ = πd is a uniformizer of F , so mD = πOD, mD ∩W = mW = τOW and
mD ∩ F = mF = τOF .
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The norm one group SL1(D). Let Nred (resp. Tred ) denote the reduced norm
(resp. reduced trace) map from D to F . Recall that if a ∈ D, then Nred (a) (resp.
Tred (a)) is equal to the determinant (resp. trace) of the endomorphism of the left
W -vector space D given by x 7→ xa. The restriction of Nred (resp. Tred ) to W
coincides with the norm (resp. trace) map of the extension W/F .

Let G = SL1(D) be the group of elements of reduced norm one in D. For n ≥ 1
let Gn = SLn1 (D) = {g ∈ G : g ≡ 1 mod mn

D}. Note that each Gn is a finite index
pro-p subgroup of G. The following properties are well known:

Proposition 3.1. The following hold:

(a) G is a semi-direct product of G1 and the group ∆ consisting of roots of unity
in W which have order prime to p and norm 1 over F .

(b) [Gi, Gj ] ⊆ Gi+j for any i, j ≥ 1. If p 6= 2 or d 6= 2, then

[Gi, Gj ] =
{
Gi+j if d - i or d - j
Gi+j+1 otherwise ; in particular, Gi = γiG1 for i ≥ 1.

(c) Let e be the ramification index of F and let i > de/(p−1). Then Gpi = Gi+dp.
Moreover, if g ∈ Gi\Gi+1, then gp ∈ Gi+dp\Gi+dp+1.

Lie algebras of congruence subgroups. Using (3.1), it is easy to deduce a for-
mula for the commutator bracket on D:

[aπi, bπj ] = (aσi(b)− bσj(a))πi+j for a, b ∈W and i, j ∈ Z.

For each n ≥ 1 we set gn = sl(πnOD), where sl stands for the set of elements of
reduced trace zero. It is easy to see that for a ∈W and i ∈ Z,

Tred (aπi) = 0 if and only if d - i or trW/F (a) = 0.

There is a natural “conjugation” action of G on gn given by

(3.2) ug = g−1ug for u ∈ gn and g ∈ G

Note also that (3.2) induces an action of G on each quotient gn/gm.
If n > de, the groupGn is powerful and torsion-free by Proposition 3.1(b)(c), so we

can consider the Lie algebra log (Gn). It is easy to see that log (Gn) is isomorphic

to gn via the map log (h) 7→
∞∑
i=1

(−1)i−1(h−1)i

i! where the product and sum on the

right-hand side are taken in OD.
Similarly, if m,n ∈ N are such that n ≤ m ≤ (p− 1)n, then Gn/Gm ∈ G<p, and

log (Gn/Gm) is isomorphic to gn/gm via the map log (hGm) 7→
p−1∑
i=1

(−1)i−1(h−1)i

i! +gm.

Now let H = Gn and h = gn for some n > de, or H = Gn/Gm and h = gn/gm,
with n ≤ m ≤ (p − 1)n. The conjugation action of G on H yields a canonical
action of G on log (H) given by (2.3). It is easy to see that this action on log (H)
corresponds to the action of G on h given by (3.2) under the above isomorphism
between log (H) and h.



12 MIKHAIL ERSHOV

More on local fields. We finish this section with an elementary fact which will
come very handy when we compute cohomology of h in Section 6.

Claim 3.2. Given a local field K, let K be the abelian group K/OK .

a) K is an OK-module where (a+OK)b = ab+OK for a ∈ K and b ∈ OK .
b) Any field automorphism ϕ : K → K induces a ring automorphism ϕ̄ : K →

K
c) If L/K is an unramified extension and ϕ ∈ Gal (L/K), then α ∈ L is fixed

by ϕ̄ if and only if α ∈ K.
d) If L/K is an unramified extension, there is a well-defined map tr L/K : L→

K such that tr L/K(a+OL) = tr L/K(a) +OK for any a ∈ L.

4. Group-theoretic structure of central extensions of SL1(D)

For the next three sections we fix a p-adic field F and a central division algebra
D over F . We preserve all notations from Section 3. Recall that G = SL1(D), d is
the degree of D and e is the ramification index of F . From now on we shall assume
that (p, d) 6= (2, 2).

Let A∞ denote the group Qp/Zp (note that Qp/Zp is isomorphic to the p-primary
component of Q/Z). Given n ∈ N, let An be the group of elements of order ≤ pn in
A∞ (of course, An is simply a cyclic group of order pn, but it will be convenient to
think of it as a subgroup of Qp/Zp). The symbol A will denote An for some n when
the value of n is not important.

The embeddings A1 ⊂ A2 ⊂ A3 . . . induce a sequence of homomorphisms

H2(G,A1)
ι1−→ H2(G,A2)

ι2−→ . . .

Since G/[G,G] is a finite group of order prime to p, it is easy to see that each ιk is
injective and moreover H2(G,Ak) can be identified with the subgroup of elements
of order ≤ pk in H2(G,A∞) (see [PR2, 2.2]). The main result of [PR2] asserts that
H2(G,A∞) is a finite cyclic group. Therefore, if H2(G,A∞) has order pN , then
H2(G,A∞) ∼= H2(G,Ak) for any k ≥ N .

In this section we study group-theoretic properties of central extensions of G by
Ak for k ∈ N. Throughout this section we write Gn = SLn1 (D) for n ≥ 1 and set
S = G1. The use of the letter S is “justified” by the fact that S is the Sylow pro-p
subgroup of G. Recall that Gn = γnS for n ≥ 1.

The following proposition describes basic power-commutator structure in covering
groups of G:

Proposition 4.1. Let c ∈ H2(G,A) with Ext(c) = A
ι
↪→ Ĝ

ϕ
� G. Let Ŝ = ϕ−1(S)

and Ĝk = ϕ−1(Gk) for k ∈ N. The following hold:

(a) γk+deŜ = (γkŜ)p for any k > de
p−1 + 1;

(b) For any k ≥ 1 we have γ2k+1+δŜ ⊆ γ2Ĝk ⊆ γ2kŜ where δ = 0 if d - k and
δ = 1 if d | k.
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(c) Let x ∈ Gk\Gk+1 for some k > pde
p−1 , and choose any x̂ ∈ γkŜ such that

ϕ(x̂) = x. Then x̂p
n ∈ γk+ndeŜ\γk+1+ndeŜ for any n ≥ 0.

Proof. The following property will be used several times in the computation below:
if U and V are subgroups of Ĝ such that ϕ(U) = ϕ(V ), and W is another subgroup
of Ĝ, then [U,W ] = [V,W ].

(a) Using the Hall-Petrescu formula we have

(γkŜ)p = [γk−1Ŝ, Ŝ]p ⊆ [(γk−1Ŝ)p, Ŝ](γ2k−1Ŝ)pγp(k−1)+1Ŝ, whence

(4.1) (γkŜ)p ⊆ [(γk−1Ŝ)p, Ŝ] γp(k−1)+1Ŝ.

By Proposition 3.1, (γk−1S)p = Gpk−1 = Gk+de−1 = γk+de−1S. Hence ϕ((γk−1Ŝ)p) =

ϕ(γk+de−1Ŝ), so [(γk−1Ŝ)p, Ŝ] = [γk+de−1Ŝ, Ŝ] = γk+deŜ. It follows from (4.1) that
(γkŜ)p ⊆ γmin(k+de,p(k−1)+1)Ŝ. Since k > de

p−1 + 1, we have k + de < p(k − 1) + 1,

whence (γkŜ)p ⊆ γk+deŜ.
The reverse inclusion γk+deŜ ⊆ (γkŜ)p is proved in a similar fashion: as we already

showed, γk+deŜ = [(γk−1Ŝ)p, Ŝ], and by Hall-Petrescu formula we have

[(γk−1Ŝ)p, Ŝ] ⊆ (γkŜ)p(γ2k−1Ŝ)pγp(k−1)+1Ŝ = (γkŜ)pγp(k−1)+1Ŝ.

Since p(k − 1) + 1 > k + de, we conclude that [(γk−1Ŝ)p, Ŝ] ⊆ (γkŜ)p.

(b) Since ϕ(Ĝk) = ϕ(γkŜ), we have γ2Ĝk = [Ĝk, γkŜ] = [γkŜ, γkŜ], whence
γ2Ĝk ⊆ γ2kŜ. By Proposition 3.1(b) we have [Gk, Gk] = G2k+δ, whence ϕ([Ĝk, Ĝk]) =
[γkS, γkS] = γ2k+δS = ϕ(γ2k+δŜ). Therefore,

γ2Ĝk ⊆ [γ2Ĝk, Ŝ] = [γ2k+δŜ, Ŝ] = γ2k+1+δŜ.

(c) First note that an element x̂ with required properties always exists since
Gk = γkS = ϕ(γkŜ). By part (a) we have x̂p

n ∈ γk+ndeŜ. Now suppose that x̂p
n ∈

γk+1+ndeŜ. Then xp
n

= ϕ(x̂p
n
) ∈ ϕ(γk+1+ndeŜ) = Gk+1+nde which contradicts

Proposition 3.1(c) since x 6∈ Gk+1 by assumption. �

Depth and commutator breaks. Given c ∈ H2(G,A), there are two natural
ways to measure the “complexity” of the associated extension which lead to the
notions of inflation depth and commutator depth of c. However, we will show (see
Proposition 4.2 below) that the two notions of depth always coincide.

Definition. Let A = Ak for some k ≥ 1. Let c be an element of H2(G,A) with

Ext(c) = A
ι
↪→ Ĝ

ϕ
� G. Let Ŝ = ϕ−1(S).

• The inflation depth of c, denoted by infdep(c), is the smallest integer m such
that c lies in the image of the inflation map inf : H2(G/Gm, A)→ H2(G,A).
• An integer m > 1 will be called a commutator break of c if

Kerϕ ∩ γmŜ 6= Kerϕ ∩ γm+1Ŝ.
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• The commutator depth of c, denoted by comdep(c), is the largest integer m
such that Kerϕ ∩ γmŜ 6= {1}. Thus, comdep(c) is the largest commutator
break of c if there is at least one break, and comdep(c) = 1 if c has no breaks.

Proposition 4.2. For any c ∈ H2(G,A) we have infdep(c) = comdep(c).

Before proving Proposition 4.2, we need to establish several auxiliary results.

Lemma 4.3. Let c ∈ H2(G,Ar) for some r, and let s > r. If c′ ∈ H2(G,As) is the
image of c under the natural mapping H2(G,Ar) → H2(G,As), then c and c′ have
the same set of commutator breaks. In particular, comdep(c′) = comdep(c).

Proof. Let Ĝ
ϕ→ G and Ĝ

′ ϕ′→ G be the covering maps determined by c and c′

respectively, let Ŝ = ϕ−1(S) and Ŝ
′
= ϕ′−1(S). Since Ŝ = Ar × S and Ŝ

′
= As × S

as sets, we can think of Ŝ as a subgroup of Ŝ
′
. It is easy to see that γmŜ

′
= γmŜ for

m ≥ 2, and Kerϕ′∩γ2Ŝ
′
= Kerϕ∩γ2Ŝ. It follows that Kerϕ′∩γmŜ

′
= Kerϕ∩γmŜ

for any m ≥ 2, so c and c′ have the same commutator breaks. �

The key information about inflation depth is provided by the following lemma
from [PR2].

Lemma 4.4. If F has no primitive pth root of unity, the group H2(G,A1) is trivial.
Otherwise, H2(G,A1) is cyclic of order p, and for any nonzero c ∈ H2(G,A1) one
has infdep(c) = pde/(p− 1). �

Remark: The existence of a primitive pth root of unity in F implies that p − 1
divides e.

If H2(G,A1) = 0, then H2(G,Qp/Zp) is trivial by the discussion at the beginning
of this section, and there is nothing to study. Thus, from now on we assume that
H2(G,A1) is cyclic of order p.

Corollary 4.5. Let c be a non-trivial element of H2(G,As) for some s. Then

infdep(c) ≥ pde/(p− 1).

Proof. By Lemma 4.3, after making s smaller if necessary, we can assume that c
does not lie in the image of the natural map H2(G,As−1)→ H2(G,As). The short

exact sequence 1 → As−1 → As
×ps−1

−→ A1 → 1 yields the long exact sequence of
cohomology groups

· · · → H2(G,As−1)→ H2(G,As)→ H2(G,A1)→ · · ·

Let c̄ be the image of c in H2(G,A1). Then c̄ 6= 0 since c does not come from
H2(G,As−1). By Lemma 4.4 we have infdep(c̄) = pde/(p − 1). It remains to show
that infdep(c) ≥ infdep(c̄).

Let m = infdep(c), and let c1 ∈ H2(G/Gm, As) be an element which maps to c. If
c̄1 is the image of c1 in H2(G/Gm, A1), then clearly c̄1 maps to c̄ under the inflation
H2(G/Gm, A1)→ H2(G,A1). Therefore, infdep(c̄) ≤ m. �
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The next lemma provides a characterization for the image of the inflation map
between second cohomology groups in terms of the associated central extensions.
Although this is a standard result, we are not aware of a reference in the literature.

Lemma 4.6. Let Γ be a group, N a normal subgroup of Γ, and let M be a trivial
Γ-module. Fix c ∈ H2(Γ,M) with Ext(c) = (1 → M

ι−→ Γ̂
ϕ−→ Γ → 1). Let

inf : H2(Γ/N,M)→ H2(Γ,M) be the inflation map.
(a) Suppose that c = inf(c′) for some c′ ∈ H2(Γ/N,M). Then there exists a

section ψ of ϕ (i.e. a map ψ : Γ → Γ̂ with ϕψ = idΓ) such that ψ(N) is a
normal subgroup of Γ̂.

(b) Conversely, suppose that ϕ has a section ψ such that ψ(N) is a normal
subgroup of Γ̂. Let c′ ∈ H2(Γ/N,M) be the cohomology class corresponding
to the extension

E ′ = (1→M
ι′−→ Γ̂/ψ(N)

ϕ′−→ Γ/N → 1)

where ι′ and ϕ′ are induced by ι and ϕ, respectively. Then c = inf(c′). The
element c′ will be called the deflation of c.

Proof. (a) Let Γ′ = Γ/N , π : Γ → Γ′ the natural surjection, and let (M
ι′
↪→ Γ̂′

ϕ′

�

Γ′) = Ext(c′). Then clearly Ext(c) ∼= (M
ι
↪→ ∆

ϕ
� Γ) where ∆ is the pullback of the

diagram

Γ̂′
ϕ′−−−−→ Γ′ π←−−−− Γ

that is, ∆ = {(x, y) ∈ Γ̂′ × Γ | ϕ′(x) = π(y)}, and ι and ϕ are defined by ι(m) =
(ι′(m), 1) for any m ∈M and ϕ(x, y) = y for any y ∈ Γ.

Now choose a section ψ′ : Γ′ → Γ̂′ of ϕ′ such that ψ′(1) = 1, and define ψ : Γ→ ∆
by ψ(y) = (ψ′(π(y)), y). Clearly, ψ is a section of ϕ, and ψ(N) = {(1, y) : y ∈ N} is
easily seen to be a normal subgroup of ∆.

(b) First we will contruct a section θ : Γ → Γ̂ of ϕ such that θ = ψ on N and
θ(xn) = θ(x)θ(n) for any x ∈ Γ and n ∈ N . Let S be a transversal for N in Γ such
that 1 ∈ S. Define θ : S → Γ̂ to be any map such that ϕ(θ(s)) = s for s ∈ S, and
θ(1) = 1. Finally, extend θ to Γ by setting θ(sn) = θ(s)θ(n) for s ∈ S and n ∈ N .
Clearly θ has required properties since ψ(n1n2) = ψ(n1)ψ(n2) for any n1, n2 ∈ N .

Now let N̂ = ψ(N) = θ(N), and define θ′ : Γ/N → Γ̂/N̂ by θ′(xN) = θ(x)N̂ .
Then θ′ is well-defined since θ(xn) = θ(x)θ(n) for x ∈ Γ and n ∈ N , and clearly θ′

is a section of ϕ′. The elements c ∈ H2(Γ,M) and c′ ∈ H2(Γ/N,M) are represented
by the cocycles Z : Γ× Γ→M and Z ′ : Γ/N × Γ/N →M , respectively, where

Z(x, y) = ι−1(θ(xy)−1θ(x)θ(y)) and Z ′(x′, y′) = ι′−1((θ′(x′y′))−1θ′(x′)θ′(y′)).
It is clear that Z(x, y) = Z ′(xN, yN) for any x, y ∈ Γ, and therefore, c is the

inflation image of c′. �

Proof of Proposition 4.2. Let m = comdep(c). First we will show that that m ≥
infdep(c) − 1. By definition of commutator depth, we have Kerϕ ∩ γm+1Ŝ = {1},
whence ϕ maps γm+1Ŝ isomorphically onto γm+1S = Gm+1. Therefore, ϕ has a
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section ψ such that ψ(Gm+1) = γm+1Ŝ. Since Ŝ is normal in Ĝ, so is γm+1Ŝ
and therefore infdep(c) ≤ m + 1 by Lemma 4.6(b). Thus, we showed that m ≥
infdep(c)− 1.

If c = 0, Proposition 4.2 is trivially true, so from now on we assume that c 6= 0. By
Corollary 4.5 we have m ≥ pde

p−1 −1, whence (γmŜ)p ⊆ γm+1Ŝ by Proposition 4.1(a).

We can consider γmŜ/γm+1Ŝ as a vector space over Fp, with the action of ∆, iden-
tifying ∆ with G/S ∼= Ĝ/Ŝ. Let K be the subspace (γmŜ ∩ Kerϕ)γm+1Ŝ/γm+1Ŝ

of γmŜ/γm+1Ŝ. Clearly, K is ∆-invariant, and since ∆ is a finite group of order
prime to p, we can find a ∆-invariant vector subspace L of γmŜ/γm+1Ŝ such that
γmŜ/γm+1Ŝ = L ⊕ K. Let L be an arbitrary lift of L in γmŜ, and let H be the
subgroup of Ŝ generated by L and γm+1Ŝ. Then H lies between γmŜ and γm+1Ŝ,
so H is automatically normal in Ŝ. Moreover, H is ∆-invariant, so H is in normal
in Ĝ. By construction, H ∩Kerϕ = {1} and ϕ(H) = γmS. Applying Lemma 4.6(b)
and arguing as before, we conclude that infdep(c) ≤ m = comdep(c).

Now we prove the reverse inequality comdep(c) ≤ infdep(c). Let n = infdep(c).
Then c is represented by a cocycle Z : G×G→ A such that

Z(G,Gn) = Z(Gn, G) = {0}.

Recall that Ĝ is the set of pairs {(g, a) : g ∈ G, a ∈ A} with multiplication
(g, a)(h, b) = (gh, a+ b+ Z(g, h)). For each g ∈ G we set ĝ = (g, 0) ∈ Ĝ.

Let g ∈ S and h ∈ Gn. Since Z vanishes on G×Gn and Gn ×G, we have

[ĝ, ĥ] = ĝ−1ĥ−1ĝĥ = (ĥĝ)−1ĝĥ = (ĥg)−1ĝh =

( ̂gh[h, g])−1ĝh = (ĝh[̂h, g])−1ĝh = [̂h, g]
−1

= [̂h, g]−1 = [̂g, h].

Similarly, if we are given elements {gi, hi}1≤i≤s such that gi ∈ G and hi ∈ Gn for
each i, then ∏

[ĝi, ĥi] =
∏̂

[gi, hi].

Since Kerϕ does not contain non-trivial elements of the form ĝ, with g ∈ G, it
follows that Kerϕ ∩ γn+1Ŝ = {1}, whence comdep(c) ≤ n. �

Now we are ready to prove a formula for commutator breaks.

Proposition 4.7. Let c ∈ H2(G,As) for some s ∈ N. Let b1 < . . . < bn be the
commutator breaks of c. Then bi = de(i+ 1

p−1) for 1 ≤ i ≤ n. Moreover, ord(c) = pn.

Remark: An essentially equivalent statement was proved earlier by Prasad (private
communication) using a different method.

Proof. By Lemma 4.3, we can assume that c does not come from H2(G,As−1), so

the image c̄ of c in H2(G,A1) is nontrivial. Let As
ι
↪→ Ĝ

ϕ
� G = Ext(c). Then

Ext(c̄) = A1
ῑ
↪→ Ĝ/ι(As−1)

ϕ̄
� G, and ῑ(A1) = ι(As)/ι(As−1). It follows easily that

b1 = comdep(c̄). Therefore, b1 = pde
p−1 by Lemma 4.4.
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From now on we set A = As. We know that ι(A) ⊂ γb1Ŝ. For any i ≥ 1
we have ι(Ap

i−1
) ⊆ (γb1Ŝ)p

i−1 ⊆ γb1+(i−1)deŜ, where the last inclusion holds by
Proposition 4.1(a). Since A is a cyclic group, it follows that bi ≥ b1 + (i − 1)de =
(i+ 1

p−1)de for 1 ≤ i ≤ n.
Now suppose that bm > de

p−1 +mde for some m ≥ 2, and let m be minimal with

this property. Let x be a generator of ι(Ap
m−1

); then x ∈ γbmŜ. Since bm > 2de, we
have γbmŜ = (γbm−deŜ)p by Proposition 4.1(a). Moreover, γbm−deŜ is powerful, so
x = yp for some y ∈ γbm−deŜ.

We claim that y ∈ ι(A). Indeed, ϕ(y)p = ϕ(yp) = ϕ(x) = 1 since x ∈ ι(A).
On the other hand, ϕ(y) ∈ Gbm−de, and Gbm−de is torsion-free by Proposition 3.1.
Therefore, ϕ(y) = 1, whence y ∈ ι(A).

Since x is a generator of ι(Ap
m−1

), we have y 6∈ ι(Apm−1
), whence y 6∈ γbm−1+1Ŝ.

Thus, bm−1 + 1 > bm − de, whence bm−1 ≥ bm − de > de
p−1 + (m− 1)de, contrary to

the choice of m.
Finally, we prove that ord(c) = pn. Since c is an element of H2(G,As) which

does not come from H2(G,As−1), the discussion at the beginning of this section
implies that ord(c) = ps. Since ι(A) ∩ γbiŜ 6= ι(A) ∩ γbi+1Ŝ for any 1 ≤ i ≤ n,
it is clear that n ≤ s. On the other hand, if n < s, then for some i we have
|ι(A) ∩ γbiŜ/ι(A) ∩ γbi+1Ŝ| ≥ p2. This would imply that the group γbiŜ/γbi+1Ŝ
contains an element of order ≥ p2 contrary to Proposition 4.1(a). �

The final result of this section is concerned with the kernel of the restriction map
H2(G,A)→ H2(Gn, A).

Proposition 4.8. Let n ∈ N. Let K be the kernel of the restriction map H2(G,A)→
H2(Gn, A), and let m = log p|K|. Then m ≤ max{0, 2n+1

de −
1
p−1}.

Proof. Suppose that m > 0, and let c be an element of K of order pm (recall that K
is cyclic). Let Ĝ

ϕ−→ G be the covering map determined by c and Ĝn = ϕ−1(Gn).

Since c ∈ K, the extension A
ι
↪→ Ĝn

ϕ
� Gn splits, whence γ2Ĝn∩ι(A) = {1}. On the

other hand, γ2Ĝn ⊇ γ2n+2Ŝ by Proposition 4.1(c), whence γ2n+2Ŝ ∩ ι(A) = {1}, and
therefore bm ≤ 2n+1 where bm is the mth commutator break of c (note that c has m
commutator breaks by the last assertion of Proposition 4.7). Also by Proposition 4.7
we get 2n+ 1 ≥ (m+ 1

p−1)de , whence m ≤ 2n+1
de −

1
p−1 . �

5. Reduction to Lie algebras

Notations. Recall that As denotes the cylcic group of order ps for s ∈ N. We
set as = log (As); thus, as ∼= Z/psZ considered as an abelian Lie algebra. In analogy
with the previous section, we will use the symbol A (resp. a) to denote As (resp.
as) for some s ∈ N when the value of s is not important.

The following two results on Lie algebra cohomology will be established in the
next section.
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Theorem 5.1. Let n = de + 1. Then the group H2(gn, a)G has exponent ≤ pw+4,
where as before pw is the largest power of p dividing the ramification index of F .

Theorem 5.2. Suppose that n ≡ l ≡ 1 mod d, n > de
p−1 and l > 2n. Let

c ∈ H2(gn, a)G and let c1 be the image of c in H2(gl, a). Then ord(c1) ≤ pw+1.
Furthermore, if m ≥ l + (w + 1)de, there exists c2 ∈ H2(gl/gm, a) such that
ord(c2) ≤ pw+1 and c2 maps to c1 under the inflation map H2(gl/gm, a)→ H2(gl, a).

In this section we will deduce parts (a) and (b) of Theorem 1.1 from Theorem 5.1
and Theorem 5.2, respectively. We start with the less technical proof of part (a).

Lemma 5.3. Suppose that n ≥ de + 1, and let H2(Gn, A)# be the image of the
restriction map H2(G,A) → H2(Gn, A). Then H2(Gn, A)# ⊆ H2

G(Gn, A)G where
G = Gppc.

Proof. Let H = Gn. Take any c ∈ H2(G,A), let c1 ∈ H2(H,A) be the restriction of

c, and let (A ↪→ Ĥ
ϕ
� H) = Ext(c1). We need to prove that Ext(c1) ∈ ExtG(H,A)G

which amounts to showing that Ĥ ∈ G and Ext(c1) is G-equivariant.
Let Ŝ = ϕ−1(S). By Proposition 4.1(b)(c) we have Ĥ

p
= γn+deŜ and γ2Ĥ ⊆

γ2nŜ. Since n ≥ de, we conclude that γ2Ĥ ⊆ Ĥ
p
, so Ĥ is powerful. Since H is

torsion-free, Ĥ is automatically p-central, so Ĥ ∈ G. Finally, G-equivariance of
Ext(c) is clear: the desired action of G on Ĥ is induced by the conjugation action
of Ĝ. �

Now we prove Theorem 1.1(a) whose statement is recalled below.

Theorem 1.1(a). Suppose that |H2(G,Qp/Zp)| = pN , and let pw be the highest
power dividing e. Then N ≤ w + 6.

Proof. Let A = AN , a = log (A), and let C ∈ H2(G,A) be an element of order
pN . Let n = de + 1, and let C1 be the image of C under the restriction map
H2(G,A)→ H2(Gn, A). By Proposition 4.8 we have ord(C1) ≥ pN−2.

By Lemma 5.3, C1 ∈ H2
G(Gn, A)G where G = Gppc. Since Gn is torsion-free,

ExtG(Gn, A)G is a subgroup of ExtG(Gn, A) by Proposition 2.4(b)(i) and thus
H2

G(Gn, A)G ∼= ExtG(Gn, A)G as abelian groups. Furthermore, ExtG(Gn, A)G ∼=
ExtL(gn, a)G by Proposition 2.6, and ExtL(gn, a)G ∼= H2

L(gn, a)G by Propositions 2.7.
Thus, H2

G(Gn, A)G is isomorphic to a subgroup of H2(gn, a)G. By Theorem 5.1,
H2(gn, a)G has exponent≤ pw+4. Hence, ord(C1) ≤ pw+4, whenceN−2 ≤ w+4. �

Now we turn to Theorem 1.1(b). The idea of the proof is similar to that of part
(a) except that instead of Weigel’s log functor we shall work with Lazard’s log
functor which will be applied to appropriate congruence quotients of G.

Lemma 5.4. Let m,n ∈ N be such that n ≤ m ≤ (p− 1)n. Let A = As and a = as
for some s. Then there is a natural isomorphism

Logn,m : Ext(Gn/Gm, A)→ Ext(gn/gm, a)

Moreover, Logn,m maps Ext(Gn/Gm, A)G onto Ext(gn/gm, a)G.
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Proof. Since m ≤ (p − 1)n, the nilpotency class of the group Gn/Gm is at most
p − 2. Thus, if 1 → A → Ĥ → Gn/Gm → 1 is any central extension, then Ĥ has
nilpotency class ≤ p− 1. It follows that Ext(Gn/Gm, A) = ExtG(Gn/Gm, A) where
G = G<p, and similarly Ext(gn/gm, a) = ExtL(gn/gm, a) where L = L<p. It is now
clear that Lemma 5.4 follows from Propositions 2.4 and 2.6. �

Unlike the case of torsion-free Lie algebras, the mapH2(gn/gm, a)→ Ext(gn/gm, a)
is never surjective, so there is no direct analogue of Proposition 2.7(a). Lemma 5.5
below provides a technical substitute for the latter.

Definition. Let m,n ∈ N, with n < m. An element C ′ ∈ H2(Gn/Gm, A) will be
called good if there exists C ∈ H2(Gn, A) such that

(i) C ′ is equal to the deflation of C in the terminology of Lemma 4.6;
(ii) C lies in the image of the restriction map H2(G,A)→ H2(Gn, A).

The subgroup of H2(Gn/Gm, A) generated by good elements will be denoted by
H2(Gn/Gm, A)good.

Lemma 5.5. Suppose that n < m ≤ (p − 1)n and n > de
p−1 . Then there exists a

natural monomorphism log : H2(Gn/Gm, A)good → H2(gn/gm, a).

Proof. Let C ∈ H2(Gn/Gm, A)good, let E = Ext(C) ∈ Ext(Gn/Gm, A), and let
Log = Logm,n : Ext(Gn/Gm, A) → Ext(gn/gm, a) be the isomorphism defined in
Lemma 5.4. To prove Lemma 5.5, we need to show that Log(E) = Ext(c) for some
c ∈ H2(gn/gm, a).

By linearity, it suffices to consider the case when C itself is good (not just a sum

of good elements). Then there exists a central extension A
ι
↪→ Ĝ

ϕ
� G such that

E = A
ι′
↪→ Ĝn/γmŜ

ϕ′

� Gn/Gm where Ŝ = ϕ−1(S) and Ĝn = ϕ−1(Gn).
Choose elements x1, . . . , xk ∈ gn/gm such that gn/gm = 〈x1〉 ⊕ . . . ⊕ 〈xk〉 as an

abelian group. Then every element of gn/gm can be uniquely written in the form
n1x1 + . . .+ nkxk where 0 ≤ ni < ord(xi) for each i.

Let exp : gn/gm → Gn/Gm be Lazard’s exponential map (where gn/gm is
identified with log (Gn/Gm) as described in Section 3). For 1 ≤ i ≤ k we set
Xi = exp(xi). By Proposition 4.1(c), there exist lifts X̂1, . . . , X̂k ∈ γnŜ/γmŜ such
that ord(X̂i) = ord(Xi) for each i. Finally, let x̂i = log (X̂i) ∈ log (Ĝn/γmŜ).

By Proposition 2.3(a) we have ord(xi) = ord(Xi) and ord(X̂i) = ord(x̂i), and thus
ord(xi) = ord(x̂i). Thus, we can define a linear map ψ : gn/gm → log (Ĝn/γmŜ) by
setting

ψ

(
k∑
i=1

nixi

)
=

k∑
i=1

nix̂i.

Clearly, ψ is a linear section for the extension log (E) = (a ↪→ log (Ĝn/γmŜ) �
gn/gm), and therefore log (E) = Ext(c) for some c ∈ H2(gn/gm, a). �

We are now ready to prove Theorem 1.1(b). As with Theorem 1.1(a), we recall
the statement.
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Theorem 1.1(b). Let pw be the largest power of p dividing e. Suppose that 4w +
15 ≤ p. Then |H2(G,A)| ≤ pw+1.

Proof. Throughout the proof we set H2(H) = H2(H,A) for any profinite group H.
Step 1: We claim that there exist n, l,m ∈ N such that

(i) n and l satisfy the hypotheses of Theorem 5.2, that is, n ≡ l ≡ 1 mod d,
n > de

p−1 , l > 2n and m ≥ l + (w + 1)de, and

(ii) 2l < pde
p−1 , m ≤ n(p− 1) and m ≥ (w + 2 + 1

p−1)de.

Indeed, first take l ≡ 1 mod d such that pde
2(p−1) − d ≤ l < pde

2(p−1) , then take n ≡ 1

mod d such that l
2 − d ≤ n <

l
2 , and set m = n(p− 1). We have

m ≥ de
(
p

4
− 3(p− 1)

2e

)
≥ de

(
w +

15
4
− 3(p− 1)

2e

)
.

Since e divides p − 1 and p > 5, we have 15
4 −

3(p−1)
2e ≥ 15

4 −
3
2 = 9

4 ≥ 2 + 1
p−1 .

Thus all inequalities in part (ii) hold. The remaining inequalities n > de
p−1 and

m ≥ l + (w + 1)de in part (i) are easily seen to hold as well.
Now consider the following commutative diagram. All vertical arrows are restric-

tion maps, horizontal arrows without labels are inflation maps, and the two labeled
arrows denote log maps defined in Lemma 5.5.

(5.1)

H2(G/Gm)good −−−−→ H2(G)y y
H2(gn) ←−−−− H2(gn/gm)

log←−−−− H2(Gn/Gm)good −−−−→ H2(Gn)y y y y
H2(gl) ←−−−− H2(gl/gm)

log←−−−− H2(Gl/Gm)good −−−−→ H2(Gl)

Step 2: Assume that |H2(G)| ≥ pw+2, and let C ∈ H2(G) be an element of
order pw+2. Then by our choice of m and Proposition 4.8, C is the inflation image
of some C1 ∈ H2(G/Gm, A)good, so we have ord(C1) ≥ ord(C) ≥ pw+2. Now let
C2 ∈ H2(Gn/Gm)good, C5 ∈ H2(Gl/Gm)good, C3 ∈ H2(Gn) and C4 ∈ H2(Gl) be
the images of C1 in the commutative diagram (5.1). Since 2l < pde

p−1 , the map
H2(G) → H2(Gl) is injective by Proposition 4.8. Therefore, ord(C2) ≥ ord(C5) ≥
ord(C4) = pw+2.
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C1 −−−−→ Cy y
c3 ←−−−− c2

log←−−−− C2 −−−−→ C3y y y y
c4 ←−−−− c5

log←−−−− C5 −−−−→ C4

Step 3: Let c2 = log (C2) and c5 = log (C5) where log is the map defined in
Lemma 5.5. Since log is a monomorphism, we have ord(c2) ≥ ord(c5) ≥ pw+2. Let
c3 ∈ H2(gn) and c4 ∈ H2(gl) be the images of c2 in (5.1).

Clearly, C2 is G-equivariant. Therefore, c2 is G-equivariant by Proposition 2.6,
whence c3, c5 and c4 are also G-equivariant being inflation or restriction images of
c2.

Step 4: By Theorem 5.2, the image of H2(gn)G in H2(gl) has exponent ≤ pw+1,
and every element of H2(gl)G is inflated from some element of H2(gl/gm) of order
≤ pw+1. It follows that ord(c4) ≤ pw+1 and there exist c′5 ∈ H2(gl/gm) such that
ord(c′5) ≤ pw+1, and c′5 and c5 inflate to the same element c4.

Step 5: Let K be the kernel of the inflation map H2(gl/gm, a)→ H2(gl, a) where
a = log (A). According to the Lyndon-Hochschild-Serre spectral sequence, K is
equal to the transgression image of H1(gm, a)gl = Hom (gm/[gm, gl], a). The latter
group has exponent p since [gm, gl] ⊇ p gm. On the other hand, K contains the
element c5− c′5 which has order pw+2 by Steps 3 and 4. The obtained contradiction
finishes the proof. �

6. Cohomology of Lie algebras

In this section we identify an with the abelian Lie algebra 1
pn Zp/Zp for n ∈ N. As

before, a will denote an for some n when the value of n is not important. We also
set a∞ = ∪∞n=1an.

The goal of this section is to prove Theorems 5.1 and 5.2. The main part of the
proof consists of describing a∞-valued G-invariant cocycles of Lie algebras gn for
n ≡ 1 mod d. Once this is achieved, both Theorems 5.1 and 5.2 follow very easily.

For the rest of this section we fix f ∈ N, and let h = gdf+1. Let E = (a
ι
↪→ ĥ � h)

be an element of Ext(h, a). Given a (linear) section ψ : h → ĥ, let Zψ be the a-
valued cocycle of h corresponding to ψ. If a is identified with ι(a), the formula for
Zψ becomes

Zψ(u, v) = [ψ(u), ψ(v)]− ψ([u, v]).
Suppose that E is a G-equivariant extension. Can we always choose ψ such that

Zψ is G-invariant? We do not know the answer to this question; however, it is
certainly possible to make Zψ invariant under the action of the smaller group ∆
(defined in Section 3) which, as we recall here, consists of roots of unity in W ∗ ∩G
of order prime to p.
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Proposition 6.1. Let h and E be as above. The section ψ can be chosen in such
a way that the cocycle Z = Zψ is ∆-invariant, that is, Z(ug, vg) = Z(u, v) for any
u, v ∈ h and g ∈ ∆.

Proof. Let ψ be some section, and define z : ∆ → Hom (h, a) by setting z(g)(u) =
ψ(u)g − ψ(ug). Define the left action of ∆ on Hom (h, a) by setting g ∗ l(u) = l(ug)
(where l ∈ Hom (h, a) and u ∈ h). Then it is easy to check that z is a Hom (h, a)-
valued 1-cocycle of ∆. Since the order of ∆ is prime to p and Hom (h, a) has p-power
order, the cohomology group H1(∆,Hom (h, a)) is trivial, whence z is a coboundary.
Hence, z(g)(u) = l(u)− l(ug) for some l ∈ Hom (h, a)).

Now define ψ′ : h → ĥ by ψ′(u) = ψ(u) − l(u). Clearly, ψ′ is also a section of
E . Note that l(u)g = l(u) for any u ∈ h and g ∈ ∆, since the action of ∆ on a is
trivial. Therefore, ψ′(ug) = ψ′(u)g for any u ∈ h and g ∈ ∆, and it follows that Zψ′
is ∆-invariant. �

Our next goal is to determine all bilinear ∆-invariant maps from gdf+1× gdf+1 to
a∞ (since gdf+1 is a finitely generated Zp-module, the image of such map lies in an
for some n). But first we introduce new notations.

Let σ and π be as in Section 3. For a subset U of W , we set

sl(U) = {a ∈ U : trW/F (a) = 0}.

Let Wur (resp. Fur) be the maximal unramified extension of Qp in W (resp. F ).
Note that Fur = Wur ∩ F , and the restriction map Gal (W/F ) → Gal (Wur/Fur) is
an isomorphism.

Let O be the ring of integers of Wur. Given n ≥ df + 1, define the ∆-module On
as follows:

(6.1) On =
{
O if d - n
sl(O) if d | n as a set,

and the ∆-action is given by

αg = α
g

σn(g)
for any α ∈ On and g ∈ ∆.

It is easy to see that the map from On to gdf+1 given by α 7→ απn is a monomorphism
of ∆-modules.

Definition. Let C : gdf+1 × gdf+1 → a∞ be a bilinear map. Given i, j ≥ df + 1,
define Ci,j : Oi ×Oj → a∞ by Ci,j(α, β) = C(απi, βπj).

Note that a bilinear map C : gdf+1×gdf+1 → a∞ is ∆-invariant if and only if each
Ci,j is ∆-invariant. A complete description of ∆-invariant maps from Oi × Oj to
a∞ is given by the following proposition. In order to state this and all subsequent
results, we use the maps introduced in Claim 3.2 as well as the following shortcut
notations: w = Wur/OWur , f = Fur/OFur , Tr = trw/f and tr = trw/qp

, where
qp = Qp/Zp

Proposition 6.2. Fix i, j ≥ df + 1 and let E : Oi × Oj → a∞ be a bilinear ∆-
invariant map.
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a) If d - (i+ j), then E = 0.
b) If d | (i+ j) and d - i (hence d - j as well), there exists λ ∈ w such that

E(α, β) = tr (λασi(β)) for all α ∈ Oi and β ∈ Oj .
Proof. Let k be the smallest integer such that the image of E lies in ak. We will prove
a) and b) simultaneously by induction on k (with the case k = 0 being obvious).

Let on = On/pOn, with the induced ∆-module structure (as a set on can be
identified with the residue field of W ). Define the map E : oi × oj → 1

pZp/Zp
by setting E(α + pOi, β + pOj) = pk−1E(α, β). Clearly, E is ∆-invariant as well.
According to [PR2, 1.5(iii) and 3.8], there exists µ ∈ 1

pO/O such that E(α, β) =
tr (µασi(β)) for any α ∈ Oi and β ∈ Oj . Moreover, µ = 0 if d - (i+ j).

Now choose λ ∈ w such that pk−1λ = µ (if µ = 0, set λ = 0). Define E1 :
Oi×Oj → ak by E1(α, β) = tr (λασi(β)). We claim that E1 is ∆-invariant. Indeed,
if d - (i+ j), then E1 = 0 and there is nothing to prove. If d | (i+ j), then for any
g ∈ ∆, α ∈ Oi and β ∈ Oj we have αgσi(β)g = α g

σi(g)
σi(β)σi

(
g

σj(g)

)
= ασi(β).

Now E − E1 is a bilinear ∆-invariant map, and it follows from our construction
that the image of E−E1 lies in ak−1. By induction, (E−E1)(α, β) = tr (λ1ασ

i(β))
for some λ1 ∈ w, hence E has the desired form. �

Definition. Let C : gdf+1×gdf+1 → a∞ be a bilinear map. A pair of integers (i, j),
with i, j ≥ df + 1, will be called regular for C if there exists λ ∈ w such that

(6.2) Ci,j(α, β) = tr (λασi(β)) for all α ∈ Oi and β ∈ Oj .

The set of regular pairs will be denoted by Ireg(C).

One may ask if equation (6.2) determines λ uniquely. The answer is yes, unless
d = 2, d | i and d | j. In the latter case the set of all λ satisfying (6.2) is either
empty or has the form λ0 + sl(w) for some λ0; since p 6= 2 when d = 2 by our
assumptions, the set λ0 + sl(w) contains exactly one element of f . This observation
motivates our next definition.

Definition. Let C be as above and (i, j) ∈ Ireg(C). Define λi,j(C) ∈ w as follows:
If d > 2 or d - i or d - j, let λi,j(C) be the unique λ ∈ w such that (6.2) holds.
If d = 2, d | i and d | j, let λi,j(C) be the unique λ ∈ f such that (6.2) holds.

Proposition 6.2 can now be restated as follows: if C is ∆-invariant, then Ireg(C)
contains all pairs (i, j) such that d - i or d - j; moreover λi,j(C) = 0 whenever
d - (i+ j). If C is also a cocycle, we can say much more:

Proposition 6.3. Let C be a ∆-invariant cocycle of gdf+1. For (i, j) ∈ Ireg(C) set
λi,j = λi,j(C).

(a) The following relations hold provided all symbols occurring in them are defined:
(R1) 6 λi,j = −σi(λj,i)

6For simplicity, the automorphism of w induced by σ will also be denoted by σ and not σ̄
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(R2) λi+j,k = λi,j+k + σi(λj,i+k) = σj(λi,j+k) + λj,i+k unless i, j and k are all
divisible by d.

(b) Let i ≥ 2df +d, j ≥ df +d, with d | i and d | j. Then (i, j) ∈ Ireg(C) provided

there exist k, l > df , with k + l = i and d - k, such that λk,l+j + σk(λl,k+j) ∈ f . (***)

Moreover, condition (***) automatically holds if p - d.
Proof. (a) Relation (R1) follows easily from skew-symmetry of C, so we will only
prove (R2).

First note that if d - (i + j + k), then all expressions in (R2) vanish by Propo-
sition 6.2a). So, from now we assume that d | (i + j + k). Applying the equation
C([u, v], w) + C([v, w], u) + C([w, u], v) = 0 with u = απi, v = βπj and w = γπk

and simplifying we have

(6.3) tr
((
λi+j,k + σi(λj+k,i) + σ−k(λk+i,j)

)
ασi(β)σ−k(γ)−(

λi+j,k + σ−k(λj+k,i) + σj(λk+i,j)
)
βσj(α)σ−k(γ)

)
= 0

whenever απi, βπj , γπk ∈ gdf+1.

Let µ = λi+j,k+σi(λj+k,i)+σ−k(λk+i,j) and ν = λi+j,k+σ−k(λj+k,i)+σj(λk+i,j). It
follows from (R1) that µ = λi+j,k − λi,j+k − σi(λj,i+k) and ν = λi+j,k − σj(λi,j+k)−
λj,i+k, so all we have to show is that µ = ν = 0.

If neither i nor j nor k are divisible by d, we can choose arbitrary α, β and γ in
(6.3), and it follows easily that µ = ν = 0. Since we assume that d divides (i+j+k),
but not each of i, j and k, the only remaining case is when exactly one of i, j and
k is divisible by d. By symmetry, it is enough to consider the case d | i.

So, we have d | i, d - j and d - k. The only restriction on α, β and γ in (6.3) is that
α ∈ sl(O). Since γ can be chosen arbitrarily, it follows that µασi(β)− νβσj(α) = 0
for any α ∈ sl(O) and β ∈ O.

Now suppose that (µ, ν) 6= (0, 0). Then the above equation implies that both µ

and ν are nonzero and µ
ν = βσj(α)

ασi(β)
= σj(α)

α since d | i. Thus, the quotient σj(α)
α is

the same for all nonzero α with TrW/F (α) = 0. A simple counting argument shows
that the latter is possible only if d = 2, in which case TrW/F (α) = 0 if and only if
σj(α)
α = −1 (since j is odd).
We proceed with the case d = 2. So far, we only showed that µ = −ν. But recall

that in this case definition of λ’s is different. Since d | i and d | (j + k), we have
λj+k,i ∈ f by definition. Therefore, µ − ν = σ−k(λk+i,j) − σj(λk+i,j) = 0 (since
−k ≡ j mod d). Thus, we finally showed that µ = ν = 0.

(b) Let k, l > df be such that k + l = i and k ≡ 1 mod d (since i ≥ 2df + d,
at least one such pair (k, l) exists). Apply the equation C([u, v], w) +C([v, w], u) +
C([w, u], v) = 0 with u = απk, v = πl and w = γπj , where α ∈ O and γ ∈ sl(O).
Since (k, l + j), (l, k + j) ∈ Ireg(C) by Proposition 6.2, after simplifications we get

(6.4) C((α− σ−1(α))πi, γπj) = tr (γ(σ−1(να)− να)),

where ν = λk,l+j + σk(λl,k+j).
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If we know that ν ∈ f , then σ−1(να) − να = ν(σ−1(α) − α). So, (6.4) implies
that C(βπi, γπj) = tr (νβγ) for all β, γ ∈ sl(O) since any β ∈ sl(O) is of the form
α− σ−1(α) for some α ∈ O. Therefore, by definition (i, j) ∈ Ireg(C).

It remains to prove that ν ∈ f if p - d. Replace α by α + 1 in (6.4). The left-
hand side does not change, and the right-hand side changes by tr (γ(σ−1(ν) − ν)).
Thus tr (γ(σ−1(ν) − ν)) = 0 for any γ ∈ sl(O), whence σ−1(ν) − ν ∈ f . Now
Tr (σ−1(ν)− ν) = 0; on the other hand, Tr (µ) = dµ for any µ ∈ f . Since p - d, we
conclude that σ−1(ν)− ν = 0, whence ν ∈ f . �

New notations.
1. For m,n ∈ N, with m ≤ n, we set [m,n] = {k ∈ N : m ≤ k ≤ n}.
2. For f ∈ N and n ≥ 2f + 1, let In,f = [df + 1, dn− (df + 1)].

3. (taken from [PR2]). Given λ ∈ w and i ≥ 0, let λ(i) = λ+σ(λ)+ . . .+σi−1(λ).
Note that λ(i) + σi(λ(j)) = λ(i+ j).

Proposition 6.4. Let C be a ∆-invariant cocycle and set λi,j = λi,j(C) for (i, j) ∈
Ireg(C). Let n ≥ 4f + 2. The following hold:

(a) Ireg(C) contains (i, dn− i) for every i ∈ In,f .
(b) There exits κn ∈ w such that λi,dn−i = κn(i) for all i ∈ In,f .

Proof. First we make some preparations. Given i such that (i, dn − i) ∈ Ireg(C),
set µi = λi,dn−i(C). By Proposition 6.2, µi is defined whenever i ∈ In,f and d - i.
Relation (R2) of Proposition 6.3 implies that

(6.5) µi+j = µi + σi(µj) = µj + σj(µi) unless d | i and d | j.

Claim 6.5. Assume that d 6= 2. Then µk − µdf+1(k) ∈ f for any k ∈ In,f with
k ≡ ±1 mod d.

Proof. Let µ = µdf+1 and S = {k ∈ In,f : µk − µ(k) ∈ f}. We proceed in several
steps.

Step 1: k ∈ S if df + 1 ≤ k ≤ n− (2df + 2) and k ≡ 1 mod d.
Subproof: The restrictions on k imply that k + df + 1 ∈ In,f . By (6.5) we have
µdf+(k+1) = µdf+1 + σ(µk) = µk + σk(µdf+1). Therefore, σ(µk)− µk = σk(µdf+1)−
µdf+1 = σ(µdf+1(k))− µdf+1(k), whence µk − µdf+1(k) ∈ f by Claim 3.2(c).

Step 2: k ∈ S if 2df + 2 ≤ k ≤ n− (df + 1) and k ≡ −1 mod d.
Subproof: By step 1, dn−k ∈ S, so µdn−k−µ(dn−k) ∈ f . By Proposition 6.3(a) we
have µk = −σk(µdn−k). Thus, µk + σk(µ(dn − k)) = −σk(µdn−k − µ(dn − k)) ∈ f .
Since σk(µ(dn− k)) = µ(dn)− µ(k) = nTr (µ)− µ(k), it follows that k ∈ S.

Step 3: if i, j ∈ In,f are such that i ≡ j ≡ ±1 mod d and i+ j ∈ In,f , then i ∈ S
if and only if j ∈ S.
Subproof: Since i ≡ j ≡ ±1 mod d, we have σi = σj = σ±1, and (6.5) yields
µi − µj = σ±1(µi − µj) whence µi − µj ∈ f . Since µ(i)− µ(j) = i−j

d Tr (µ) ∈ f , the
assertion of Step 3 is clear.

Step 4: k ∈ S for any k ∈ In,f with k ≡ ±1 mod d.
Subproof: Let i = df + (d − 1) and j = 2df + (d − 1). By step 2 we have j ∈ S.
Since i + j = d(3f + 2) − 2 ≤ dn − df − 2 by assumptions on n, step 3 implies
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that i = df + (d − 1) ∈ S. Once again by step 3, we get that k ∈ S for any
k ∈ [df + d− 1, 2df + (d− 1)] with k ≡ −1 mod d. Combining this result with step
2, we conclude that k ∈ S for any k ∈ In,f with k ≡ −1 mod d.

Step 5: k ∈ S for any k ≡ In,f with k ∈ ±1 mod d.
Subproof: This follows from Step 4 and equality µk = −σk(µdn−k) by the same
argument as in Step 2. �

Proof of Proposition 6.4(a). We already know that (i, dn − i) ∈ Ireg(C) if d - i. If
d = 2, then by our assumptions p > 2, and the assertion in the case d | i follows
from Proposition 6.3(b). Thus we can assume that d > 2. Since C is a cocycle,
(i, dn− i) ∈ Ireg(C) if and only if (dn− i, i) ∈ Ireg(C). Thus it suffices to prove that
(i, dn− i) ∈ Ireg(C) when i ≥ dn/2 and d | i.

Fix such i. Note that i ≥ 2df + d since n ≥ 4f + 2, so we can choose k, l > df
such that k + l = i, l ≡ 1 mod d (hence k ≡ −1 mod d). We will show that
µk + σk(µl) ∈ f , which would imply that (i, dn− i) ∈ Ireg(C) by Proposition 6.3b).

By Claim 6.5, we have µk−µ(k) ∈ f and µl−µ(l) ∈ f where µ = µdf+1 as before.
Therefore, µk + σk(µl)− (µ(k) + σk(µ(l))) ∈ f . Since µ(k) + σk(µ(l)) = µ(k + l) =
µ(i) = i

dTr (µ) ∈ f , the proof is complete.
Once we established part a), we know that µi is defined for all i ∈ In,f . Thus, we

can state a stronger version of Claim 6.5 (the proof remains nearly identical):

Claim 6.6. For each k ∈ In,f we have µk − µdf+1(k) ∈ f . �

Proof of Proposition 6.4(b). For k ∈ In,f let νk = µk − µdf+1(k). Equation (6.5)
implies that

(6.6) νi+j = νi + νj whenever d - i or d - j.

Case 1: d 6= 2. For any i ∈ [df+1, dn−2df−3] we have νdf+(i+2) = νi+1+νdf+1 =
νi + νdf+2, whence νi+1 − νi = νdf+2 − νdf+1 (if d = 2 and i is even, both i and
df + 2 are divisible by d, so the above equalities may not hold). Therefore, for each
i ∈ [df + 1, dn− 2df − 2] we have νi = νdf+1 + (i− df − 1)ν where ν = νdf+2− νdf+1.

Since ν2df+2 = 2νdf+1 by (6.6), we get νdf+1 + (df + 1)ν = 2νdf+1 and therefore
νdf+1 = (df + 1)ν. So, for i ∈ [df + 1, dn − 2df − 2] we have νi = iν, whence
µi = µ(i) + iν = {µ+ ν}(i). The formula µi = {µ+ ν}(i) is easily seen to hold for
dn− 2df − 2 < i ≤ dn− df − 1 as well, e.g. by (6.5).

Case 2: d = 2. Let i ∈ [2f+1, 2n−4f−3]. If i is odd, νi+1−νi = ν2f+2−ν2f+1 as
in case 1. Similarly, νi+1−νi = ν2f+3−ν2f+2 if i is even. Now let α = ν2f+2−ν2f+1

and β = ν2f+3 − ν2f+2. Arguing as above, we conclude that

ν2f+(2i+1) = ν2f+1+i(α+β) and ν2f+2i = ν2f+1−β+i(α+β) for i ∈ [0, n−3f−2].

The equation ν2f+1 +ν2f+2 = ν4f+3 yields ν2f+1 = f(α+β)+β, while the equation
2ν2f+1 = ν4f+2 yields ν2f+1 = f(α + β) + α. It follows that α = β and ν2f+1 =
(2f + 1)α. The rest of the proof is the same as in case 1. �

The assertions of Propositions 6.2 and 6.4 motivate the following definition.
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Definition. A bilinear map C : gdf+1 × gdf+1 → a∞ will be called regular if there
exists a sequence {κn}∞n=2f+1 such that for any i, j ≥ df +1 we have (i, j) ∈ Ireg(C)
and

λi,j(C) =
{

0 if d - (i+ j)
κ(i+j)/d(i) if d | (i+ j)

We will say that {κn} is the defining sequence of C (obviously each κn is uniquely
determined).

Our next result asserts that ∆-invariant cocycles are not far from being regular.

Claim 6.7. Let C be a ∆-invariant cocycle of gdf+1. The following hold:
(a) Let n = dm+ 1 with m ≥ 2f + 1. Then the restriction of C to gn × gn is a

regular cocycle.
(b) Assume that f ≤ e. Then p3C is a regular cocycle of gdf+1.

Proof. (a) is a direct consequence of Proposition 6.4(b).
(b) Let D = p3C. Clearly, D is ∆-invariant as well, so λi,j(D) = 0 if d - (i + j)

by Proposition 6.2. It remains to show that for any n ≥ 2f + 1 and i ∈ In,f there
exists κ′n ∈ w such that λi,dn−i(C) = κ′n(i).

By Proposition 6.4, for any m ≥ 4f + 2 there exists κm ∈ w such that for any
i ∈ Im we have C(απi, βπdm−i) = tr (κmασi(β)).

Recall that τ = πd is a uniformizer of F . Since e = [F : Fur], there exist
{dk} ∈ OFur such that p3 =

∑4e−1
k=3e dkτ

k. For any n ≥ 2f + 1, i ∈ In,f , α ∈ Oi, and
β ∈ Odn−i we have

D(απi, βπdn−i) = C(απi, p3βπdn−i) =
4e−1∑
k=3e

C(απi, βdkπdn−i+dk) =

4e−1∑
k=3e

tr (κn+k(i)ασi(β)dk) = tr (κ′n(i)ασ
i(β)),

where κ′n =
∑4e−1

k=3e dkκn+k (the right-hand side of the last expression is defined since
for k ≥ 3e we have n+k ≥ (2f +1)+3e ≥ 5f +1 ≥ 4f +2). Thus, D is regular. �

We are now ready to give a full characterization of regular ∆-invariant cocycles.
This characterization involves coefficients of the minimal polynomial of τ over Fur.

Definition. Let {ck ∈ OFur}e−1
k=0 be defined by the relation τ e = p

e−1∑
k=0

ckτ
k. A

sequence {κn ∈ w}∞n=2f+1 will be called compatible if for any n ≥ 2f + 1 we have

(C1) κn+e = p
e−1∑
k=0

ckκn+k and

(C2) nTr (κn) = 0.

Theorem 6.8. A sequence {κn}∞n=2f+1 is the defining sequence of some regular
∆-invariant cocycle of gdf+1 if and only if {κn} is compatible.



28 MIKHAIL ERSHOV

Proof. Let C be a regular ∆-invariant cocycle and let {κn} be the defining sequence
of C. By relation (R1) of Proposition 6.3 we have κn(i)+σi(κn(dn−i)) = 0, whence
nTr (κn) = 0, so (C2) holds.

Condition (C1) is a consequence of the identity C(u, pv) = pC(u, v). Indeed, let
n ≥ 2f + 1, i ∈ In,f . For any α ∈ Oi and β ∈ Odn−i we have C(απi, βπd(n+e)−i) =

C(απi, βπdn−iτ e) = C(απi, βπdn−i·p
e−1∑
k=0

ckτ
k) = p

e−1∑
k=0

C(απi, ckβπd(n+k)−i).Hence,

tr (κn+e(i)ασi(β)) = p
e−1∑
k=0

tr (κn+k(i)ckασi(β)), and (C1) follows immediately.

Conversely, let {κn} be compatible. Given i, j ≥ df + 1, let λi,j = κ(i+j)/d(i)
if d | (i + j) and λi,j = 0 if d - (i + j). Condition (C1) ensures that there exists
a bilinear map C : gdf+1 × gdf+1 → a∞ such that Ci,j(α, β) = tr (λi,jασi(β)) for
all i, j ≥ df + 1, α ∈ Oi and β ∈ Oj . Obviously, C is ∆-invariant. Finally, (C2)
implies that {λi,j} satisfy relations (R1) and (R2) of Proposition 6.3, whence C is
a cocycle. �

Next we show that for any compatible sequence {κn}, there is a better bound on
the orders of Tr (κn) than the one given by (C2) alone.

Lemma 6.9. Let pw be the highest power of p dividing e. If {κn} is a compatible
sequence, then pw+1Tr (κn) = 0 for all n.

Proof. Let µn = Tr (κn) for n ≥ 2f + 1. Note that the sequence {µn} is compatible
as well.

Let l be the smallest integer such that plµn = 0 for all n, and let m be the largest
integer such that pl−1µm 6= 0. Such m indeed exists and moreover m ≤ 2f + e since

µn = p
e−1∑
k=0

ckµn−e+k for n ≥ 2f + e+ 1. We know that mµm = 0, so pl divides m.

Now consider the equality µm+e = p
e−1∑
k=0

ckµm+k The element
e−1∑
k=0

ckµm+k has

order pl because c0µm has order pl (as c0 is a unit in OFur) and ckµm+k has order
at most pl−1 for k > 0 (by the choice of m). So, µm+e has order pl−1.

On the other hand, (m + e)µm+e = 0. Since pl−1 divides m, pl−1 must divide e
as well. Therefore, l ≤ w + 1. �

Proposition 6.10. Let h = gdf+1 for some f , let C be a regular ∆-invariant cocycle
of h and let {κn}n≥2f+1 be the defining sequence of C. Let v be any integer such
that C(h, h) ⊆ av or, equivalently, any integer such that pvκn = 0 for all n ≥ 2f +1.
Then there exists a regular cocycle C1 of h such that

(a) C and C1 are cohomologous in H2(h, av)
(b) If {αn} is the defining sequence of C1, then pw+1αn = 0 for all n ≥ 2f + 1.

Proof. If v ≤ w + 1, we can simply set C1 = C, so we will assume that v > w + 1.
We already know that pw+1Tr (κn) = 0 for all n ≥ 2f + 1. It is easy to see

that Tr ( 1
pkO/O) = 1

pkOFur/OFur for any k ≥ 0. For any n ≥ 2f + 1 we have
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Tr (κn) ∈ 1
pw+1OFur/OFur , whence there exists αn ∈ w such that Tr (αn) = Tr (κn)

and pw+1αn = 0.
We claim that the sequence {αn} can be chosen compatible. First we choose αn

satisfying the above conditions for n ∈ [2f + 1, 2f + e]. Then there exists a unique
way to choose the remaining αn so that (C1) holds. Since {κn} satisfies (C1) as well,
it follows that Tr (αn) = Tr (κn) for all n, whence {αn} satisfies (C2). It remains to
show that pw+1αn = 0 for all n ≥ 2f + 1. The latter is true for n ∈ [2f + 1, 2f + e]
by construction, and follows from (C1) for n ≥ 2f + e+ 1.

Since {αn} is compatible, there exists a regular cocycle C1 whose defining sequence
is {αn}. It is also clear that C1(h, h) ⊆ aw+1 ⊆ av. It remains to prove the following
claim:

Claim 6.11. The cocycles C and C1 represent the same class in H2(h, av).

Proof. Let B = C−C1 and let {κ′n} be the defining sequence of B. Then κ′n = κn−
αn, whence Tr (κ′n) = 0. Hence, there exists {µn}∞n=2f+1 such that κ′n = µn−σ(µn).
Since pvκ′n = 0, we can assume that pvµn = 0. Similarly, since κ′n satisfies (C1), we
can assume that {µn} satisfies (C1).

Now define a linear function h : h→ av by setting

h(απn) =
{

tr (αµn/d) if d | n
0 if d - n for n ≥ df + 1 and α ∈ On.

In general such a definition would be ambiguous since the elements {πn : n ∈ N}
are not linearly independent over O. This problem does not arise here since {µn}
satisfies (C1).

We claim that B(u, v) = h([u, v]) for any u, v ∈ h. This would imply that B is a
coboundary and thus finish the proof of the claim and Proposition 6.10.

Let u =
∑
αiπ

i and v =
∑
βiπ

i (where αi, βi ∈ Oi for all i). Then

B(u, v) =
∑
i,j

B(αiπi, βjπj) =
∞∑

n=2f+1

∑
i+j=dn

tr (κ′n(i)αiσ
i(βj)) =

∞∑
n=2f+1

∑
i+j=dn

tr ((µn−σi(µn))αiσi(βj)) =
∞∑

n=2f+1

∑
i+j=dn

tr
(
µn(αiσi(βj)− σ−i(α)βj)

)
=

∞∑
n=2f+1

∑
i+j=dn

h([αiπi, βjπj ]) =
∑
i,j

h([αiπi, βjπj ]) = h([u, v]).

�

Proof of Theorem 5.2. Let l and n be as in the statement of Theorem 5.2. Since
c ∈ H2(gn, a)G, it is represented by some ∆-invariant cocycle C of gn. Let C1 be the
restriction of C to gl× gl. By Claim 6.7(a), C1 is a regular cocycle of gl. Therefore,
by Proposition 6.10, there exists a cocylce C ′1 of gl, cohomologous to C in H2(gl, a)
and such that pw+1C ′1 = 0. This implies that c1 = [C1] = [C ′1] has order at most
pw+1.



30 MIKHAIL ERSHOV

Now let m ≥ l+ (w + 1)de. Define the a-valued 2-cocycle C2 of gl/gm by setting
C2(u+ gm, v+ gm) = C ′1(u, v). Then C2 is well-defined since pw+1C ′1 = 0 and gm ⊆
gl+(w+1)de = pw+1gl. Let c2 = [C2] ∈ H2(gl/gm, a). By construction, ord(c2) ≤
ord(C ′1) = pw+1, and the inflation image of c2 in H2(gl, a) is equal to [C ′1] = c1. �

Proof of Theorem 5.1. Let c ∈ H2(gn, a)G, and let C be a ∆-invariant cocycle of gn
representing c. By Claim 6.7(a), p3C is a regular cocycle, so by the same argument
as above, [p3C] ∈ H2(gn, a) has order at most pw+1. Therefore, [C] has order at
most pw+4. �

7. Reduction to the small field case

The purpose of this section is to prove part (c) of Theorem 1.1 whose statement is
recalled below. The author is grateful to Gopal Prasad for suggesting several ideas
used in the proof.

Theorem 7.1. Assume that p ≥ 19. Let F be a p-adic field containing primitive
p2th root of unity and such that the extension F/Qp is Galois. Let D be a central
division algebra over F whose degree is not a power of p, and let G = SL1(D). Then
|H2(G,R/Z)| ≤ pw+1 where pw is the largest power of p dividing the ramification
index of F .

Notation: Throughout this section we set H2(G) = H2(G,R/Z) for any group G.
We start with a simple fact about division algebras over local fields.

Proposition 7.2. Let K ′/K be an extension of p-adic fields, let n = [K ′ : K], and
let d ∈ N be coprime to n. The following hold:

(a) Let D be a central division algebra over K of degree d. Then D ⊗K K ′ is a
central division algebra over K ′ (also of degree d).

(b) Conversely, if D′ is a central division algebra over K ′ of degree d, then
D′ ∼= D ⊗K K ′ for some division algebra D over K.

Proof. If F is a local field, the Brauer group Br(F ) is canonically isomorphic to
Q/Z. Under this isomorphism, division algebras of degree d over F correspond to
generators of the subgroup 1

dZ/Z of Q/Z. The map EK,K′ : Br(K)→ Br(K ′) given
by D 7→ D ⊗K K ′ corresponds to multiplication by n = [K ′ : K] under the above
identification. Since n is coprime to d, EK,K′ maps 1

dZ/Z onto itself. This yields
both assertions of the proposition. �

Cohomology of SLd over p-adic fields.
Let F be a p-adic field, and let µF be the group of roots of unity in F . Moore [Mo1]

showed that H2(SLd(F )) is isomorphic to µF . Elements of H2(SLd(F )) can be
explicitly described as follows [Rp, Theorem B]. Let T be the diagonal subgroup of
SLd(F ). Then there is a canonical cocycle cF : SLd(F )× SLd(F )→ µF such that

(i) the cohomology class [cF ] generates H2(SLd(F ))
(ii) the restriction of cF to T × T is given by

(7.1) cF (diag (λ1, . . . , λd),diag (µ1, . . . , µd)) =
∏
i≥j

(λi, µj)F ,
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where (·, ·)F is the norm-residue symbol on F ∗ of order |µF |.

Now let µF,wild be the p-primary component of µF and H2(SLd(F ))wild the cor-
responding subgroup of H2(SLd(F )). If n = |µF | and q = |µF,wild|, then clearly
H2(SLd(F ))wild is generated by [cF ]n/q = [cn/qF ].

By properties of the norm-residue symbols, for any α, β ∈ F ∗ we have (α, β)n/qF =
(α, β)q,F where (·, ·)q,F is the norm-residue symbol on F ∗ of order q. Thus, the
restriction of cn/qF to T × T is given by

(7.2) c
n/q
F (diag (λ1, . . . , λd),diag (µ1, . . . , µd)) =

∏
i≥j

(λi, µj)q,F .

Remark: By [Rp, Lemma 3], the restriction mapH2(SLd(F ))→ H2(T ) is injective
if d ≥ 3 and has kernel of order 2 if d = 2. Thus, (7.2) determines the cohomology
class [cn/qF ] uniquely unless p = d = 2.

The following result is established in [PR2, 8.2]:

Lemma 7.3. Let F be a p-adic field, D a central division algebra over F whose
degree is not divisible by p. Let W be a maximal unramified extension of F in D,
and let rW,D : H2(SLd(W )) → H2(SL1(D)) be the natural restriction map. Then
|Im rW,D| = |µF,wild|, and therefore rW,D is injective on H2(SLd(W ))wild. �

Using this lemma and the above description of cohomology of SLn, we can relate
the cohomology groups H2(SL1(D)) and H2(SL1(D′)) when D′ is obtained from D
by a field extension.

Proposition 7.4. Let K ′/K be an extension of p-adic fields and l = [K ′ : K]. Let
D be a central division algebra over F whose degree d is coprime to both l and p,
let D′ = D ⊗K K ′, and let rD′,D : H2(SL1(D′)) → H2(SL1(D)) be the restriction
map. Let ps be the largest power of p dividing l, and assume that |µK,wild| ≥ ps+1.
Then |Ker rD′,D| = ps.

Proof. Let W be a maximal unramified extension of K contained in D. Then it is
easy to see that W ′ = D⊗K K ′ is a maximal unramified extension of K ′ in D′, and
we have the following commutative diagram:

H2(SLd(W ′))wild
rW ′,D′
−−−−→ H2(SL1(D′))yrW ′,W

yrD′,D

H2(SLd(W ))wild
rW,D−−−−→ SL1(D)

We claim that it is sufficient to show that |Ker rW ′,W | = ps. Indeed, this would
imply that the map rW ′,W : H2(SLd(W ′))wild → H2(SLd(W ))wild is non-trivial
since |µW ′,wild| ≥ |µK,wild| ≥ ps+1. Since horizontal arrows in the above diagram
are injective and both groups H2(SL1(D′)) and H2(SL1(D)) are cyclic of p-power
order, it would follow that

(7.3) |Ker rD′,D| = |Ker rW ′,W | = ps.
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Now let n′ = |µW ′ |, n = |µW |, q′ = |µW ′,wild| and q = |µW,wild|. Let c′ = (cW ′)n
′/q′

and c = (cW )n/q where cW ′ and cW are as in (7.1). Then H2(SLd(W ′))wild is
generated by [c′] and H2(SLd(W ))wild is generated by [c]. Given α, β ∈ W ∗, by
properties of the norm-residue symbol we have

((α, β)q′,W ′)q
′/q = (α, β)q,W ′ = (αl, β)q,W = ((α, β)q,W )l

which by (7.2) and the remark after it yields rW ′,W ([c′]q
′/q) = [c]l. The element [c]l

has order q/ps > 1. Therefore, Ker rW ′,W is generated by ([c′]q
′/q)q/p

s
= [c′]q

′/ps
.

Since ord([c′]) = q′, we conclude that |Ker rW ′,W | = ps. �

Proof of Theorem 7.1. Let d = deg (D). Write d = d1d2 where d1 is relatively prime
to p and d2 is a power of p. By our assumption, d1 6= 1.

As before, let W be a maximal unramified extension of F in D, and let K
be the unique extension of F of degree d2 inside W . Note that K and F have
the same ramification index. Let D′ be the centralizer of K in D. According to
[PR2, 4.6], D′ is a central division algebra of degree d1 over K, and the restriction
map H2(SL1(D)) → H2(SL1(D′)) is injective. Thus it is sufficient to show that
|H2(SL1(D′))| ≤ pw+1.

Since F/Qp is Galois and K/F is unramified, the extension K/Qp is Galois as
well. Therefore, there exists an intermediate field Qp ⊂ L ⊂ K such that L/Qp is
tamely ramified and K/L is wildly ramified. This means that [L : Qp] is relatively
prime to p and |K : L| = pw. Since K contains primitive pth root of unity, so does
L.

Since K/L is Galois and Gal (K/L) is a p-group, there is a tower of fields L =
L0 ⊂ L1 ⊂ . . . ⊂ Lw = K such that [Li+1 : Li] = p for each i. Furthermore, since
|µK,wild| ≥ p2 by hypotheses of the theorem, we can assume that |µL1,wild| = p2. By
Proposition 7.2(b), there exists a division algebraD0 over L such thatD0⊗LK ∼= D′,
and let Di = D0 ⊗L Li for 1 ≤ i ≤ w. We shall prove that |H2(SL1(Di)| ≤ pi+1 for
1 ≤ i ≤ w by induction on i.

The base case i = 1 follows from Theorem 1.1(b) since w(L1) = 1. Now suppose
that |H2(SL1(Di))| ≤ pi+1 for some i. Since Di+1

∼= Di⊗LiLi+1, [Li+1 : Li] = p and
|µLi,wild| ≥ p2, Proposition 7.4 yields |Ker {H2(SL1(Di+1)) → H2(SL1(Di))}| ≤ p,
whence |H2(SL1(Di+1))| ≤ p · |H2(SL1(Di))| ≤ p · pi+1 = pi+2. �
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