ON THE SECOND COHOMOLOGY OF THE NORM ONE
GROUP OF A p-ADIC DIVISION ALGEBRA
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ABSTRACT. Let F be a p-adic field, that is, a finite extension of Q,. Let D be a
finite dimensional division algebra over F and let SL1 (D) be the group of elements
of reduced norm 1 in D. Prasad and Raghunathan proved that H?(SL:(D),R/Z)
is a cyclic p-group whose order is bounded from below by the number of p-power
roots of unity in F, unless D is a quaternion algebra over Q2. In this paper
we give an explicit upper bound for the order of H?(SLi(D),R/Z) for p > 5,
and determine H?(SL1(D), R/Z) precisely when F is cyclotomic, p > 19 and the
degree of D is not a power of p.

1. INTRODUCTION

Let F' be a nonarchimedean local field of residue characteristic p, that is, a finite
extension of Q, or the field of Laurent series over a finite field of characteristic
p. Let G be the group of rational points of a connected simply-connected simple
algebraic group G defined over F. By results of Moore [Mo2] and Prasad and
Raghunathan [PR1],[PR2], the second continuous cohomology group ! H?(G,R/Z)
classifies topological central extensions of G (see [PR1, Chapter 10] for a detailed
discussion). If F has characteristic zero, finiteness of H?(G,R/Z) follows from a
general theorem of Raghunathan [Ra]. > However, the exact determination of the
above group (for F' of either characteristic) is a deeper problem which received a lot
of attention since mid 60’s starting with a work of Moore [Mol] and culminating
in works of Prasad and Raghunathan [PR1] and [PR2]. It is now known that if G
is isotropic over F' then H?(G,R/Z) is isomorphic to the group of roots of unity
in F. Using Moore’s paper [Mol], Matsumoto [Ma] proved this result for F-split
groups, and the case of F-quasi-split groups is due to Deodhar [De] and Deligne
(unpublished). Almost all remaining cases were handled in [PR1], and finally the
complete answer was obtained in [PRp]. 3
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Here R/Z is endowed with its usual topology, and the action of G on R/Z is trivial

2Recently, a very short proof of this fact was found by Prasad [Prl].

3The argument in [PRp] uses global fields, but recently Prasad [Pr2] found a purely local proof.
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If G is anisotropic over F', then by Tits’ classification G is isomorphic to SLj (D)
for some finite-dimensional division algebra D over F. Since SLq(D) is profinite,
H?(SLy(D),R/Z) is isomorphic to H?(SLi(D),Q/Z), where Q/Z is endowed with
discrete topology (see [PR2, 2.0]). Moreover, H?(SL1(D),Q/Z) is isomorphic to
H?*(SLy(D),(Q/Z),), where (Q/Z), is the p-primary component of Q/Z (see [PR2,
2.1]). The main result of [PR2] asserts that H?(SLi(D), (Q/Z),) is a cyclic p-group
whose order is bounded from below by the number of p-power roots of unity in F,
unless D is the quaternion division algebra over Q2. Moreover, H?(SLy (D), (Q/Z),)
is trivial if ' has no p-power roots of unity (in particular, if F' has characteristic p)
and D is not a quaternion division algebra over Q3.

The goal of this paper is to obtain an explicit upper bound for the order of
H?(SLy(D),R/Z) when F has characteristic zero and p > 5. Part (a) of the follow-
ing theorem provides such bound in the general case, parts (b) and (c) give stronger
bounds in some special cases, and part (d) gives a precise order for H?(SL,(D),R/Z)
in the case of cyclotomic fields:

Theorem 1.1. Let F' be a finite extension of Qp, let e be the ramification index of
F, and let p* be the highest power of p dividing e. Let D be a finite-dimensional
central division algebra over F, and let p" be the order of H?(SLi(D),R/Z) =
H(SLy(D), (Q/2),).
(a) Assume that p > 5. Then N < w + 6.
(b) Assume that p > 4w+ 15. Then N < w + 1.
(c) Assume that p > 19, the degree of D is not a power of p, the extension F//Q,
is Galois, and F contains p*th primitive root of unity. Then N < w + 1.
(d) Assume that p > 19, the degree of D is not a power of p, and F is a
cyclotomic field. Then N = w + 1.

Note that Theorem 1.1(d) immediately follows from Theorem 1.1(b)(c) and Prasad
Raghunathan’s theorem. Indeed, if F' = Q,( {/1) and p* is the highest power of p
dividing n, then e = p*~1(p — 1) and w = k — 1. Thus |H?(SL1(D),R/Z)| < p* by
Theorem 1.1(c) if £ > 2 and by Theorem 1.1(b) if £ = 1, while [PR2, Theorem 8.1]
yields |[H?(SL1(D),R/Z)| > p*.

We now give a brief sketch of the proof of Theorem 1.1. Let G = SLi(D). In
[PR2] it is shown that H?(G, (Q/Z),) is isomorphic to H?(G,Z/p*Z) for sufficiently
large k. Both G and Z/p*Z are p-adic analytic, so it is natural to ask if the order of
H?(G,Z/p*Z) can be computed using Lie algebras. In the theory of p-adic analytic
groups there is a well-known exp-log correspondence between (finitely generated)
powerful torsion-free pro-p groups and powerful torsion-free Z,-Lie algebras. This
is not enough for our purposes; however, what we can use is a work of Weigel [We],
who extended the above correspondence to the classes of powerful p-central pro-p
groups and Lie algebras (see Section 2 for definitions).

Now consider the congruence subgroup H = S L‘fe“(D) where d is the dergee of
D. Tt is easy to see that H is powerful and torsion-free. Let resgy be the restriction
map from H?(G,Z/p*7Z) to H?*(H,Z/p*7Z). First we prove that resg g has small
kernel (see Proposition 4.8). Next we show that any cohomology class lying in the
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image of resg is represented by a (central) extension 1 — Z/ pF7 — H—H—1

where H is powerful and p-central (see Lemma 5.3). Applying Weigel’s log functor
we obtain the corresponding extension of powerful p-central Lie algebras. This
extension, in turn, represents some cohomology class in H?(h,Z/p*Z), where b is
the Z,-Lie algebra of H. Moreover, the obtained cohomology class is invariant under
the natural action of G on H?(h,Z/p"Z). These results lead to an upper bound for
the order of H?(G,Z/p*Z) in terms of the exponent of the G-invariant part of
H?(h,Z/p*Z). Finally, in Section 6 we obtain an explicit description of G-invariant
classes in H?(h,Z/p*Z), which yields the bound given in Theorem 1.1(a).

The proof of Theorem 1.1(b) is based on similar ideas, but is considerably more
technical. Instead of Weigel’s correspondence we use Lazard’s exp-log correspon-
dence between finite groups and finite Lie rings of p-power order and nilpotency
class less than p. The reduction of Theorem 1.1(b) to computation of cohomology
of finite p-groups is based on the analysis of the inflation map H?(G/Gy,, Z/p*Z) —
H?(G,7Z/p"Z) for m € N, where G,,, = SLT*(D).

Finally, to prove Theorem 1.1(c) we use the following simple fact pointed out
to the author by Gopal Prasad: If F'/Fj is an extension of p-adic fields and D
is a central division algebra over F' whose degree is relatively prime to [F' : F],
then D = Dy ®p, F' for some division algebra Dy over Fj. Furthermore, certain
information about the restriction map H?(SLi(D),R/Z) — H?*(SL1(Do),R/Z) is
provided by [PR2]. Using this idea, we reduce the proof of Theorem 1.1(c) to the
case of division algebras over p-adic fields of small degree, where Theorem 1.1(b)
becomes applicable.

Organization. In Section 2 we describe exp-log correspondence between certain
classes of p-adic analytic pro-p groups and Z,-Lie algebras. We then use this cor-
respondence to establish relationship between (second) cohomology of pro-p groups
and Lie algebras belonging to those classes. In Section 3 we review basic facts about
division algebras over p-adic fields. In Section 4 we study group-theoretic properties
of central extensions of SLj(D) where D is a division algebra over a p-adic field. In
Section 5 we deduce parts (a) and (b) of Theorem 1.1 from certain results on Lie
algebra cohomology which, in turn, are proved in Section 6. Finally, in Section 7 we
prove Theorem 1.1(c).

Basic notations. Throughout the paper Z will stand for integers, N for positive
integers, Z, for p-adic integers and I, for a finite field of order p. If G is a topological
group, v, G will denote the (closure of) the n*® term of the lower central series of G,
and G the (closed) subgroup of G’ generated by n'" powers. If A and B are subsets
of G, let [A, B] be the (closed) subgroup generated by {[a,b]: a € A,b € B}, where
[a,b] = a~'b~lab.

Acknowledgements. 1 am very grateful to Gopal Prasad for posing the problem,
very interesting conversations, and suggesting an idea that resulted in significant
improvement of the results of this paper. I am also very thankful to Thomas Weigel
for sending me his unpublished manuscript [We| and helpful e-mail communications.
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2. PRELIMINARIES

2.1. Exp-log correspondence. In this subsection we will discuss natural corre-
spondence between certain classes of Z,-Lie algebras, as defined below, and corre-
sponding classes of p-adic analytic pro-p groups. All pro-p groups considered in this
section are assumed to be finitely generated (without further mention).

Definition. We say that L is a Zj,-Lie algebra if L is a topological Lie algebra over
Z,, which is finitely generated as a Z,-module. We do not assume that L is a free
Zp-module, that is, L is allowed to have torsion elements.

Let £z, (resp. ®gz,) be the category whose objects are Z,-Lie algebras (resp.
compact p-adic analytic groups) and whose morphisms are continuous Lie ring (resp.
group) homomorpshims. If £ is a subcategory of £z, and & is a subcategory of
&z,, by an exp-log correspondence between £ and & we mean a pair of functors
exp : £ — & and log : & — £ such that the compositions exp olog and log o exp
are naturally equivalent to the identity functors on & and £, respectively. We will
describe such correspondence in the following cases (all relevant definitions are given
later in this section):

1. (£,6) = (£<p,B-p) where £, (resp. By) is the category of finite Lie rings
(resp. finite groups) of p-power order and nilpotency class < p.

2. (£,8) = (Lpif, Bpyr) where £p (vesp. &piy) is the category of powerful
torsion-free Z,-Lie algebras (resp. powerful torsion-free pro-p groups).

3. (£,6) = (Lppe; Gppe) where £, (resp. &) is the category of powerful
p-central Z,-Lie algebras (resp. powerful p-central pro-p groups) and p > 5.

Cases 1 and 2 of exp-log correspondence are due to Lazard. The correspondence
Lop = G, is a special case of [Lal, Theorem 4.6]. Equivalence between £, and
&,ir is essentially established in Lazard’s famous 1965 paper on p-adic analytic
groups [La2], although the notion of a powerful group was introduced more than
20 years later by Lubotzky and Mann [LM]. For a detailed account of the theory
of poweful groups the reader is referred to an excellent book on analytic pro-p
groups [DDMS]; we shall just state the main definitions and results.

Definition. A pro-p group G (resp. a Zpy-Lie algebra L) is called powerful, if
(G,G) C G (resp. [L,L] C qL) where g =pifp>2and g=4if p=2.

The following well-known criterion of analyticity of pro-p groups was first stated
in [LM] and is easily deduced from results in [La2].

Theorem 2.1. A finitely generated pro-p group is p-adic analytic if and only if it
contains a finite index powerful subgroup. Furthermore, every powerful pro-p group
contains a finite index subgroup which is powerful and torsion-free.

The book [DDMS] contains a full proof of Theorem 2.1 “from scratch” as well
as an explicit proof of equivalence &,;; = £,;¢ between the categories of powerful
torsion-free pro-p groups and Z,-Lie algebras. Lazard’s counterpart of this result
[La2, Chapter IV, Theorem 3.2.6] is a correspondence between the categories of
“p-saturable” pro-p groups and Lie algebras. Any torsion-free powerful pro-p group
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is p-saturable; conversely, a p-saturable pro-p group is p-adic analytic and torsion-
free, but not necessarily powerful. Thus, Lazard’s exp-log correspondence is more
general than the one between &,;; and £,;r; however, powerful torsion-free pro-p
groups are usually easier to work with than p-saturable ones (for more on this see
K)).

The last case of exp-log correspondence used in this paper is Weigel’s generaliza-
tion of the correspondence £,y = & to certain classes of pro-p groups and Z,-Lie
algebras that are powerful but not necessarily torsion-free.

Definition. Assume that p > 2. A pro-p group G (resp. a Z,-Lie algebra L) is
called p-central, if any g € G such that g = 1 (resp. u € L such that pu = 0) lies
in the center of G (resp. L).

In [We], 4 Weigel constructed exp-log correspondence Lppe = Gppe between the

categories of powerful p-central pro-p groups and Z,-Lie algebras for p > 5. Note
that a torsion-free pro-p group is always p-central, and more generally, a central
extension of a torsion-free pro-p group is always p-central. Thus, Weigel’s corre-
spondence is well suited for computing second cohomology of powerful torsion-free
pro-p groups.
Construction of the exp functor. We shall now explain how to construct the
pro-p group exp(L) corresponding to a Z,-Lie algebra L where L € £, or L € £,
While there exist distinct ways to define exp(L) formally, they are all based on the
Baker-Cambell-Hausdorff (BCH) formula.

Let A = Q((x1,z2)) be the algebra of power series over QQ in two non-commuting
variables x; and 3. The power series ® = log (e -e*2) is called the Baker-Campbell-
Hausdorff series (here e* = 1+x+22/2+...and log (1+z) = x—22?/2+23/3—...).

Theorem 2.2. The Baker-Campbell-Hausdorff (BCH) series ® lies in the Q-Lie
subalgebra of A generated by x1 and x3. In other words, ® = ) _gAcc, where S
1s the set of all left-normed commutators in x1,x9 and each A\ € Q. Moreover, if
wt(c) denotes the weight of a commutator ¢, then

plE=1/(=Dl) ¢ Ly for any ce S and A € Zp if wt(c) < p.

Remark: There is an explicit expression for ® (as a linear combination of commu-
tators), called the Baker-Campbell-Hausdorff formula. The last assertion of Theo-
rem 2.2 due to Lazard [La2| is a consequence of that formula.

Now let £ = £, or £,,¢, and let L be an object of £. We define the pro-p group
exp(L) as the set of formal symbols {exp(u) : u € L} with the group operation

exp(uy) - exp(ug) = exp(P(u1, u2)).
where ®(uy,uz) € L is defined below. Informally, one should think of ®(u;,us2) as
the result of “evaluating” the BCH series at 1 = u; and 2 = us. The formal
definition of ®(u1,uz) will be different in the cases £ = £, and £ = £,

A fact, Weigel introduced a general technique for establishing exp-log correspondence between
categories of p-adic analytic groups and Z,-Lie algebras satisfying certain conditions. This technique
is applicable to all cases of exp-log correspondence discussed in this paper.
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Case 1: £ = £.,. Given a left-normed commutator ¢ in 1,22, we define
c(u1, uz) by substituting u; for x1 and ug for xg in c¢. Thus, if ¢ = [z, ziy, . . ., T4, ],
then c(u1,u2) = (Wi, Uiy, - - . , Ui, ]. Since the nilpotency class of L is less than p, we
have ¢(u1,u2) = 0 whenever wt(c) > p where wt(c) is the weight of the commutator
c. Thus, we set

D (uy,ug) = Z Acc(ug, ug)

ceS,wt(c)<p

(using the notations of Theorem 2.2). In other words, ®(uj,uz) is obtained by
plugging in u; and wuy into the BCH series truncated after degree p — 1. Since
¢ € Zy, whenever wt(c) < p, the obtained expression is well-defined.

Case 2: £ = £,,.. Once again, let ¢ = [z;,,24,,...,2;] be a left-normed
commutator, and define c¢(uj,us) as in case 1. Since L is powerful, there exists
vy € L such that [u;,,u;,] = pvi. Now assume that £ > 3 and set %C(Ul,UQ) =
[v1, Uig, - - ., u;, ). The last expression is independent of the choice of v; because L
is p-central. Indeed, if [u;,u;,] = pv} for some v} # vy, then p(v] —v1) = 0,
whence v] — v; lies in the center of L. Similarly, there is a well defined element
I%C(’Uq,’ttg) for all I < k — 2. Since p*=1/(=DI)\, € 7Z, by Theorem 2.2, we can
define A.c(ui,us) € L by setting Aec(ur,u) = (pF72\.) - Iﬁc(ul,ug). Moreover,
the series ) g Acc(u1,uz) converges in L, and we let ®(uy,u2) be its sum.

It is now clear how to define the functor exp : £ — & where (£,8) = (£, 6p)
or (Lppe, Bppe):

e if L is an object of £, the corresponding object of & is the group exp(L) as
defined above

e if .1, Ly are objects of £ and f: L1 — Lo is a Lie algebra homomorphism,
the corresponding group homomorphism f : exp(L1) — exp(Ls) is given by
f«(exp(u)) = exp(f(u)) for u € L.

Constructing the functor log : & — £ is a more demanding task. A “naive”
approach is to imitate the above construction of the exp functor, replacing the BCH
series by its functional inverse; however, formalizing such construction requires a lot
of technical machinery. We refer the reader to [We] for the formal definition of the
log functor. All properties of log that will be used in this paper are collected in the
following proposition.

Proposition 2.3. Let (&,£) = (&p, L) or (Gppe, Lppe). There exists a functor
log : & — £ which induces categorical equivalence ® =2 £ and satisfies the following
properties:

(a) Let G € & and let log (G) € £ be the corresponding Lie algebra. The under-
lying set of log (G) is the set of formal symbols {log (g) : g € G}.

(b) Let ¢ : G — H be a morphism in &, and let ¢* : log (G) — log (H) be the

corresponding morphism in £. Then ¢*(log(g)) = log (¢(g)) for any g € G.

(¢) Let G1,G2 € &. Then G1 xGo € &, and the Lie algebralog (G1 X G2) is iso-

morphic to log (G1) xlog (G2) via the map log ((g1, 92)) + (log (g1),1og (g2)).
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(d) fK,GHc® and1 - K - G 25 H — 1 is an exact sequence, then the

sequence 0 — log (K) N log (G) £, log (H) — 0 is also exact.

(e) Let G,H be objects of &, and let « : H — G be a monomorphism. Then
L(H) lies in the center of G if and only if *(log (H)) lies in the center of
log (G).

2.2. Central extensions and cohomology. Let H be a profinite group and let A
be an abelian profinite group, considered as a trivial H-module. Then there exists a
canonical isomorphism of abelian groups H?(H, A) = Ext(H, A) where H?(H, A) is
the second continuous ® cohomology group and Ext(H, A) is the group of equivalence
classes of topological central extensions of H by A. Recall that the isomorphism is
constructed as follows:

Given C € H?(H,A), let Z : H x H — A be a 2-cocycle whose cohomology class
is equal to C. Let H be the set of pairs {(h,a) : h € H,a € A} with multiplication
given by (h1,a1) - (he,a2) = (hihe,a1 + a2 + Z(h1,ha)). The central extension
corresponding to C' is

1A H2 11 or, in abbreviated form, AL HS H,

where «(a) = (1,a) and ¢((h,a)) = h for any a € A and h € H. We will denote (the
equivalence class of) this extension by Ext(C').

Conversely, let £ = (1 = A —» H %5 H — 1) be an element of Ext(H, A). Let

¥ : H — H be a continuous section of ¢, that is, a continuous map H — H such
that ¢ ot =idy, and define Z : H x H — A by

Z(h1, ho) = o (W (haho) " (ha)(ho)).
Then Z is 2-cocycle, and Ext([Z]) = £.

The relationship between central extensions and cohomology in the case of Lie
rings is more delicate. Let h be a profinite Lie ring, and let a be an abelian profinite
Lie ring, considered as a trivial h-module. Then there exists a canonical embedding
H?2(h,a) — Ext(h, a), but not necessarily an isomorphism.

If c € H?(h,a) and z : h x h — a is a 2-cocycle representing ¢, we define Ext(c) €
Ext(b, a) to be the extension 0 — a —— E . § — 0, where E =h x a as a set with
Lie bracket [(h1,a1), (ha,a2)] = ([h1, h2], z(a1,a2)). R

Conversely, if £ € Ext(h,a) and € = (0 — a — h —= b — 0), then & = Ext(c)
for some ¢ € H?(h, a) if and only if there exists a continuous linear section ¥ : h — E
If such v exists, then €& = Ext([z]) where

2(h k) = ([ K) = [ (h), 9(K))) -
However, a linear section need not exist, e.g. if

£=(0—7Z/pZ — Z/p* 7 — 7/p°Z — 0).

SIf continuous cohomology is replaced by measurable cohomology, the assertion holds for any
topological group H
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2.3. Central extensions and exp-log correspondence. Throughout this sub-
section & (resp. £) will denote either &,,. (resp. £ypc) or G, (resp. Lop).
Given H € & and A € &, with A abelian, we define Extg(H, A) to be the subset

of Ext(H, A) consisting of extensions A < H — H such that H € & as well. We
define Extg(h, a) for h,a € £, with a abelian, in the analogous way.

Proposition 2.4. Let £ and & be as above. Let H, A € & where A is abelian, and
let h =log(H), a=1log(A).

(a) There exists a natural bijection Log : Exte(H, A) — Exte(h, a).

(b) Suppose that & = &, or & = &, and H is torsion-free. Then

(i) Extg(H, A) is a subgroup of Ext(H, A)
(ii) Exte(h,a) is a subgroup of Ext(h,a)
(iii) The map Log : Extg(H,A) — Extg(h,a) is an isomorphism of abelian
groups.

Proof. (a) Let £ = (1 — A % 7 Ny - g 1) be an element of Extg(H, A). By
Proposition 2.3(d), the sequence
(2.1) 0—a-Slog(H) 25 h —0
is exact. Since ¢(A) is central in I/j\f, Proposition 2.3(e) implies that ¢*(a) is central
in log (H). It follows that (2.1) is a central extension of ) by a, which we denote by
Log(&). Thus we constructed a map Log : Exte(H, A) — Exte(h, a). Similarly, one
uses the exp functor to construct the inverse map Exp : Exte(h,a) — Extg(H, A),
whence Log : Extg(H, A) — Extg(h, a) is a bijection.

(b) Let & = (A & 1?[1 % H) and & = (4 & ﬁIQ L H) be two elements of
Extg(H, A). By definition of addition in Ext(H, A) we have

& +&=(ASH/N > H)

where H = {(h1, ho) € Hy x Hy : 1(h1) = 5(h2)}, N = {(11(a),12(a™ 1)) 1 a € A},
t(a) = (11(a), N = (1,12(a))N, and ((h1, h2)N) = ¢1(h1) = @2(ha).

To prove (i) we need to show that f]/]/\\f € 6. If & = &, this is obvious since
J2; 15 H 5 € 6, and B, is closed under subgroups, quotients and direct products.

Now assume that & = &,,. and H is torsion-free. We need to show that H /]Tf
is powerful and p-central. The p-centrality condition clearly holds since 0 / Nisa
central extension of H. To prove that H / N is powerful it is sufficient to prove that
His powerful. We shall use the following well-known criterion [DDMS, Lemma 3.4].

Lemma 2.5. A pro-p group G is powerful if and only if for any x,y € G there
exists z € G such that [x,y] = 2P.

Now take any z,y € H. Thus z = (z1,22) and y = (y1,y2), where z;,y; € 1'?1Z
for i = 1,2, p1(x1) = pa(x2) and ¢i1(y1) = w2(y2). Since H, and H, are powerful,
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there exist z; € f[ i =1,2 such that [z;,y;] = 2. We have
(22) [l',y] = [(11717332), (ylay2)] = ([xlayl]v [$2)y2]) = (2?725) = (21722);0

Since (27, 28) = [z,y] € H, we must have ¢1(2}) = p2(28) € H. Since H is powerful
torsion-free, the equality 1(z1)P = @2(22)P implies that p1(z1) = p2(z2) by [DDMS,
Lemma 4.10], whence (21, 22) € H. Thus H is powerful by (2.2) and Lemma 2.5.
The proof of (i) is complete.

The proof of (ii) is analogous to (and easier than) the proof of (i). Finally,
to prove (iii) we need to show that Log(&1 + &) = Log(&1) + Log(&€2). We have

RN , o~ -
Log(&;) = (a — b; — b) for i = 1,2 where b; = log (H,) and

~

Log(&1 + &) = (a <> log (H/N) % 1).

og (
Now let § = {(u1, u2) € b1 x By ¢ i) = soz( )} and & = {(1(a) 53(~a)) : a € a).
By Proposition 2.3(a), log(H/N) = {log ((h1,h2)N) : (h1,h2) € H} as a set. We
claim that the map

0 : log (H/N) — §/a given by 0(log ((h1, ha)N)) = (log by, log hy) + 7
is a Lie algebra isomorphism. This follows from Proposition 2.3(c)(d) since each of
the groups H X H2, H and H/N is powerful and p-central. Thus Log(&; + &2) is

e 0! o
equivalent to the extension (a N b / n — b), and it is easy to see that

ou* e*g1

(@=>b/f — bh) =Log(&1) + Log(&). O

Equivariant extensions and cohomology classes. Let H and A be as above,
and suppose that G is another group which acts on both H and A. An extension

A< H S H will be called G-equivariant if there exists an action of G on H
which is compatible with the G-action on H and A, that is,
t(a)d = 1(a¥) for any a € A and g € G, and ¢(29) = p(x)? for any = € H and gedq.

We will denote the subset of G-equivariant extensions by Ext(H, A)G, and we set
Exte(H, A)¢ = Extg(H, A) NExt(H, A)C.

An element ¢ € H?(H, A) will be called G-equivariant if Ext(c) € Ext(H, A)“, and
H?(H, A)® will denote the set of G-equivariant elements. Note that the standard
meaning of H?(H, A)% is different from ours: H?(H, A)“ usually denotes the set of
cohomology classes which are invariant with respect to the canonical action of G
on H%(H, A). Tt is easy to see that G-equivariant cohomology classes are invariant
under the G-action of H2(H, A), but the converse is not necessarily true.

Similarly, if h,a € £, with a abelian, and both b, a are G-modules, we define
abelian groups Ext(h, a)”, Exte(h,a) and H2(h, ) in the analogous way.

Proposition 2.6. Let H, A and G be as above, and define h =log (H), a = log (A).
Then there exists a canonical action of G on by given by

(2.3) log (h)? = log (hY) for any h € H and g € G,
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and the map Log defined in Proposition 2.4 maps Exte(H, A)¢ onto Extg(h, a)®.

Proof. The action of G on H determines a homomorphism G — Aut(H). By
Proposition 2.3(a)(b), there exists a canonical isomorphism I : Aut (H) — Aut (b)
given by (Ip)(logh) = logp(h) for h € H and ¢ € Aut(H). Thus, we obtain a
canonical action of G on h which is clearly given by (2.3).

Let £ = (A — H — H) be an element of Extg(H, A)C and let (a < § — ) =
Log(€). Repeating the above argument with h replaced by H, we obtain a canonical
action of G on H, and it is straightforward to check that the extension a — E — b is
G-equivariant. Thus, Log sends Exte(H, A)¢ to Exte(h,a)®. Similarly, one shows
that the inverse map Exp = Log ™! sends Exte(h, a)? to Exte(H, A)C. O

Proposition 2.7. Suppose that & = &,,., £ = £,,.. Let H be powerful torsion-
free, let A be an abelian pro-p group, and let h = log (H) and a = log(A). The
following hold:

(a) The canonical embedding H*(h,a) — Ext(b, a) is an isomorphism.

(b) Let H4(H, A) be the preimage of Exte(H, A) under the canonical isomorphism
H?(H,A) — Ext(H, A), and define H%(h, a) in a similar way. Then there exists a
natural isomorphsim Hg(H, A) — H3(h,a).

Proof. (a) Since H is a torsion-free group, b is a torsion-free Z,-Lie algebra, which

. . ~
means that b is a free Z,-module. Thus for any central extension £ = a < h—> b,

there exists a (continuous) linear map ¢ : h — /h\ such that ¢y = id, and therefore
£ = Ext(c) for some ¢ € H%(h, a).
(b) This follows directly from (a) and Proposition 2.4(b). O

Definition. Let ¢ € H%(G, A) (for some G and A) and A < G5a= Ext(c). The

~

map ¢ : G — G will be called the covering map corresponding to ¢, and G will be
called the covering group of G corresponding to c.

3. THE NORM ONE GROUP OF A p-ADIC DIVISION ALGEBRA.

General notation. If K is a discrete valuation ring (not necessarily commuta-

tive), we will denote the ring of integers of K by Ok and the maximal ideal of Ok
by mpg.
Division algebras over p-adic fields. Let F' be a p-adic field, i.e. a finite extension
of Qp. Let D be a finite-dimensional central division algebra over F', and let d be
the degree of D. Let W be a maximal unramified extension of F inside D (note
that [W : F] = d). Then there exist a uniformizer 7 of D and a generator o of the
Galois group Gal (W/F') such that

(3.1) mwn ' = o(w) for all w € W.

Note that 7 = 7% is a uniformizer of F, so mp = 7Op, mp N W = myy = 7Oy and
mpNF =mp=70Fp.
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The norm one group SL;(D). Let Nyeq (resp. Tieq ) denote the reduced norm
(resp. reduced trace) map from D to F. Recall that if a € D, then Neq (a) (resp.
Tyed (@)) is equal to the determinant (resp. trace) of the endomorphism of the left
W-vector space D given by = +— za. The restriction of Nyeq (resp. Tieq) to W
coincides with the norm (resp. trace) map of the extension W/F.

Let G = SL1(D) be the group of elements of reduced norm one in D. For n > 1
let G, = SL}(D) ={g € G:g9g=1 mod m},}. Note that each G,, is a finite index
pro-p subgroup of GG. The following properties are well known:

Proposition 3.1. The following hold:

(a) G is a semi-direct product of Gy and the group A consisting of roots of unity
in W which have order prime to p and norm 1 over F.
(b) [Gi,G;] C Gigj for anyi,j > 1. If p# 2 or d # 2, then

[G“Gj]:{ Gitj ifdti ordfj

Giyjt1  otherwise
(¢) Let e be the ramification index of F' and leti > de/(p—1). Then GY = G, qp.
Moreover, if g € Gi\Giy1, then g € Gitap\Gitdp+1-

;in particular, G; = v;G1 fori > 1.

Lie algebras of congruence subgroups. Using (3.1), it is easy to deduce a for-
mula for the commutator bracket on D:

[ar’, br?] = (ac" (b) — bo? (a))w"*7 for a,b € W and i, j € Z.

For each n > 1 we set g, = s[(7"Op), where sl stands for the set of elements of
reduced trace zero. It is easy to see that for a € W and i € Z,

Tyed (am’) = 0 if and only if d{i or tr wyr(a) = 0.
There is a natural “conjugation” action of G on g, given by
(3.2) uw = g tug for u € g, and g € G

Note also that (3.2) induces an action of G on each quotient g, /gm,.

If n > de, the group G, is powerful and torsion-free by Proposition 3.1(b)(c), so we
can consider the Lie algebra log (G,). It is easy to see that log (G,,) is isomorphic

i S~ (=1 ()
to g, via the map log (h) + ) *———— where the product and sum on the
i=1
right-hand side are taken in Op.
Similarly, if m,n € N are such that n < m < (p — 1)n, then G, /G, € &y, and
p—1 i— i
log (Gr,/G,) is isomorphic to g, /g via the map log (hGp,) — > %—kgm.
i=1
Now let H = G, and h = g,, for some n > de, or H = G,,/Gy, and b = g,,/gm,
with n < m < (p — 1)n. The conjugation action of G on H yields a canonical
action of G on log (H) given by (2.3). It is easy to see that this action on log (H)
corresponds to the action of G on h given by (3.2) under the above isomorphism
between log (H) and b.
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More on local fields. We finish this section with an elementary fact which will
come very handy when we compute cohomology of f in Section 6.

Claim 3.2. Given a local field K, let K be the abelian group K/Og.

a) K is an Ox-module where (a + Ok )b =ab+ Ok fora € K and b € Ok

b) Any field automorphism ¢ : K — K induces a ring automorphism ¢ : K —
K

¢) If L/K is an unramified extension and ¢ € Gal (L/K), then a € L is fired
by @ if and only if o € K. B

d) If L/K is an unramified extension, there is a well-defined map tr LK L—
K such that trg g(a+O0L) =trk(a) + Ok for any a € L.

4. GROUP-THEORETIC STRUCTURE OF CENTRAL EXTENSIONS OF SL;(D)

For the next three sections we fix a p-adic field F' and a central division algebra
D over F. We preserve all notations from Section 3. Recall that G = SLi(D), d is
the degree of D and e is the ramification index of F'. From now on we shall assume
that (p, d) £ (2,2).

Let A denote the group Q,/Z, (note that Q,/Z, is isomorphic to the p-primary
component of Q/Z). Given n € N, let A, be the group of elements of order < p™ in
As (of course, A, is simply a cyclic group of order p™, but it will be convenient to
think of it as a subgroup of Q,/Z,). The symbol A will denote A,, for some n when
the value of n is not important.

The embeddings A1 C As C Aj... induce a sequence of homomorphisms

H*(G, A)) 25 HY(G, Ay) = ...

Since G/[G,G] is a finite group of order prime to p, it is easy to see that each ¢y, is
injective and moreover H2(G, Ay) can be identified with the subgroup of elements
of order < pF in H?(G, Ay) (see [PR2, 2.2]). The main result of [PR2] asserts that
H?(G, Ay) is a finite cyclic group. Therefore, if H?(G, As) has order p", then
H?(G, Ay) = H?*(G, Ay,) for any k > N.

In this section we study group-theoretic properties of central extensions of G by
Ay, for k € N. Throughout this section we write G,, = SL}(D) for n > 1 and set
S = (G1. The use of the letter S is “justified” by the fact that S is the Sylow pro-p
subgroup of G. Recall that G,, = ~v,S for n > 1.

The following proposition describes basic power-commutator structure in covering
groups of G:

Proposition 4.1. Let c € H*(G, A) with Ext(c) = A< G > G. Let S = ¢7(S)
and G, = ‘Pil(Gk) for k € N. The following hold:
(a) 7/~c+de§ = (Wk:‘i\')p for any k > % +1;

(b) For any k > 1 we have ’}/2k+1+§§ C 72(A?k C ’y%g where § =0 if d 1 k and
d=11ifd]|k.
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(c) Let = € GE\Gpy1 for some k > pdl, and choose any & € %g such that

0(2) = 2. Then 7" € YVerndeS\Vet11ndeS for any n > 0.

Proof. The following property will be used several times in the computation below:
if U and V are subgroups of G such that ©(U) = ¢(V), and W is another subgroup
of G, then [U, W] = [V, W].

(a) Using the Hall-Petrescu formula we have

(S)? = (118, S € [(-15)P, 8] (v2k—15)PYpk_1)419, whence

(4.1) (WS)?  [(-15)7, 8] Yp(k_1)115-

By Proposition 3.1, (k- 1S) =GY | = Gk+de 1= Vhtde— 1S. Hence o((yx— 18) )=
go(fykere 15) o [(vk— 1S)p S] [Vt de— 15’ S] = 'yk+deS It follows from (4.1) that
('ykS)p C ’Ymm(k+de,p(k 1)+1)S Since k > del + 1, we have k +de < p(k — 1) + 1,

whence (’ykS)p C ’yk+deS
The reverse 1nclu51on 7k+d65’ - (fykS )P is proved in a similar fashion: as we already
showed, ’yk+d65 = (k- 15’ )P S] and by Hall-Petrescu formula we have

[(-19)7, 5] € (S)P (v2k—19)PYp(k—1)+15 = (WS Vp(k—1)41.5-
Since p(k — 1) + 1 > k + de, we conclude that [(yk_lg’)p, g] C (ng)p.
/(\b) SinceA ap(ak) = gp(vkg), we have 'ygak, = [ék,ykfﬂ = [ykg,%g]/,\ WIAlence
712G, € Y21S. By Proposition 3.1(b) we have [Gy, G| = Gags, whence o([G),, G}]) =
1S, S] = Vo465 = P(y21455). Therefore,

V2ak - [VQakyg] = [V2k+5§, 3] = ’sz+1+5§-

(c) First note that an element & with required properties always exists since
Gy = kS go(’ykS) By part (a) we have 27" € 7k+ndeS Now suppose that 22" €

7k+1+nd65 Then 27" = @(2P") € ©(Vig14ndeS) = Gri1inde Which contradicts
Proposition 3.1(c) since z ¢ G411 by assumption. O

Depth and commutator breaks. Given ¢ € H?(G, A), there are two natural
ways to measure the “complexity” of the associated extension which lead to the
notions of inflation depth and commutator depth of c¢. However, we will show (see
Proposition 4.2 below) that the two notions of depth always coincide.

Definition. Let A = Ay for some k > 1. Let ¢ be an element of H?(G, A) with
Ext(c) = A <5 G 5 G. Let S = o~ 1(S).
e The inflation depth of ¢, denoted by infdep(c), is the smallest integer m such
that c lies in the image of the inflation map inf : H?(G/Gp, A) — H?*(G, A).
e An integer m > 1 will be called a commutator break of c if

Kerpn ’ymg # KerpnN 'ym+1§.
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e The commutator depth of ¢, denoted by comdep(c), is the largest integer m

such that Ker¢ N 'ymg # {1}. Thus, comdep(c) is the largest commutator
break of ¢ if there is at least one break, and comdep(c) = 1 if ¢ has no breaks.

Proposition 4.2. For any ¢ € H*(G, A) we have infdep(c) = comdep(c).
Before proving Proposition 4.2, we need to establish several auxiliary results.

Lemma 4.3. Let c € H*(G, A,) for somer, and let s > r. If ¢ € H*(G, As) is the
image of ¢ under the natural mapping H*(G, A,) — H?(G, Ay), then ¢ and ¢ have
the same set of commutator breaks. In particular, comdep(c’) = comdep(c).

~ —~1/ /
Proof. Let G % Gand G % G be the covering maps determined by ¢ and ¢
~ ~/ ~ ~/
respectively, let S = ¢~ 1(S) and § = @’*1(5) Since S = A, x S and S =A;x S
as sets, we can think of S as a subgroup of §'. Tt is easy to see that 'ymS = *ymS for

m > 2, and Ker ¢’ ﬂ’ygS Kernpﬂ’ygS It follows that Ker ¢’ ﬂ’ymS Kergpﬂ’ymS
for any m > 2, so ¢ and ¢ have the same commutator breaks. O

The key information about inflation depth is provided by the following lemma
from [PR2].

Lemma 4.4. If F has no primitive p** root of unity, the group H*(G, Ay) is trivial.
Otherwise, H*(G, A1) is cyclic of order p, and for any nonzero ¢ € H*(G, A1) one
has infdep(c) = pde/(p — 1). O

Remark: The existence of a primitive p'* root of unity in F implies that p — 1
divides e.

If H%(G, A1) = 0, then H*(G,Q,/Z,) is trivial by the discussion at the beginning
of this section, and there is nothing to study. Thus, from now on we assume that
H?(G, A7) is cyclic of order p.

Corollary 4.5. Let ¢ be a non-trivial element of H*(G, A,) for some s. Then
infdep(c) > pde/(p — 1).

Proof. By Lemma 4.3, after making s smaller if necessary, we can assume that c
does not lie in the image of the natural map H%(G, As_1) — H?(G, Ag). The short

—1
exact sequence 1 — A; 1 — Ag A 1 yields the long exact sequence of
cohomology groups

- — H*(G, As_) — H*(G, A,) — H*(G, Ay) —

Let ¢ be the image of ¢ in H%(G,A;). Then ¢ # 0 since ¢ does not come from
H?(G, As_1). By Lemma 4.4 we have infdep(¢) = pde/(p — 1). It remains to show
that infdep(c) > infdep(c).

Let m = infdep(c), and let ¢; € H*(G /G, As) be an element which maps to c. If
¢1 is the image of ¢; in H2(G /G, A1), then clearly ¢ maps to ¢ under the inflation
H?*(G/Gp, A1) — H?*(G, Ay). Therefore, infdep(c) < m. O
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The next lemma provides a characterization for the image of the inflation map
between second cohomology groups in terms of the associated central extensions.
Although this is a standard result, we are not aware of a reference in the literature.

Lemma 4.6. Let I' be a group, N a normal subgroup of I, and let M be a trivial
T-module. Fiz ¢ € H*T,M) with Ext(c) = (1 - M - T 25T — 1). Let
inf : H2(L'/N, M) — H?(T', M) be the inflation map.

(a) Suppose that ¢ = inf(¢) for some ¢ € H?(I'/N,M). Then there exists a
section ¢ of ¢ (i.e. a map Y : T — T with ©p = idr) such that (N) is a
normal subgroup of T.

(b) Conversely, _suppose that ¢ has a section 1 such that (N) is a normal

subgroup of T'. Let ¢ € H*(I'/N, M) be the cohomology class corresponding
to the extension

& =01—-M-ST/pN) LHT/N = 1)

where ' and ¢ are induced by 1 and ¢, respectively. Then ¢ = inf(c). The
element ¢’ will be called the deflation of c.

Proof. (a) Let I = T'/N, w : I' — I the natural surjection, and let (M S

I') = Ext(c'). Then clearly Ext(c) 2 (M <> A % ') where A is the pullback of the
diagram
R O S

that is, A = {(z,y) € [ x I | ¢/(z) = 7(y)}, and ¢ and ¢ are defined by 1(m) =
(t/(m),1) for any m € M and ¢(z,y) =y for any y € T.

Now choose a section v’ : IV — I of ¢ such that Y'(1) =1, and define ¢ : T' — A
by ¥(y) = (¢'(7(y)),y). Clearly, ¥ is a section of ¢, and ¥(N) = {(1,y) : y € N} is
easily seen to be a normal subgroup of A.

(b) First we will contruct a section 6 : I' — T of @ such that § = ¢ on N and
O(xn) = 0(x)0(n) for any z € I' and n € N. Let S be a transversal for N in I" such
that 1 € S. Define 6 : S — T’ to be any map such that p(6(s)) = s for s € S, and
0(1) = 1. Finally, extend 6 to I" by setting 0(sn) = 0(s)0(n) for s € S and n € N.
Clearly 6 has required properties since 1(niny) = 1(n1)¥(ng) for any ni,ns € N.

Now let N = ¢(N) = 6(N), and define ¢’ : I/N — I'/N by ¢'(zN) = 6(z)N.
Then ¢’ is well-defined since §(zn) = 6(z)0(n) for € I and n € N, and clearly ¢’
is a section of ¢’. The elements ¢ € H*(I', M) and ¢ € H*(I'/N, M) are represented
by the cocycles Z :T'xI' = M and Z' : T'/N x I'/N — M, respectively, where

Z(x,y) = 1 (0(xy) " 10(2)0(y)) and Z'(z',y") = /(0" (2"y")) 10" ()0 ()
It is clear that Z(z,y) = Z'(zN,yN) for any z,y € T', and therefore, ¢ is the
inflation image of . O

Proof of Proposition 4.2. Let m = comdep(c). First we will show that that m >
infdep(c) — 1. By definition of commutator depth, we have Ker ¢ N yp,415 = {1},
whence ¢ maps ;,+1S5 isomorphically onto 415 = Gp41. Therefore, ¢ has a
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section ¢ such that ¥(Gn41) = 7m+1§. Since S is normal in @, so is 7m+1§
and therefore infdep(c¢) < m + 1 by Lemma 4.6(b). Thus, we showed that m >
infdep(c) — 1.

If ¢ = 0, Proposition 4.2 is trivially true, so from now on we assume that ¢ # 0. By

pde

Corollary 4.5 we have m > — 1, whence (’ymg)p C 'ymHg’ by Proposition 4.1(a).

We can consider va / ’ymHS as a vector space over [F), with the action of A, iden-
tlfymg A with G/S = G/S Let K be the subspace (’ymS N Ker cp)’ym+15/’ym+15
of fymS /fym+1S Clearly, K is A-invariant, and since A is a ﬁmte group of order
prlme to p, we can find a A-invariant vector subspace L of ’ymS / ’ym+1S such that
'ymS/'ymHS =L@ K. Let L be an arbltrary lift of L in 'ymS and let H be the
subgroup of S generated by L and 'ym“S Then H lies between va and ymHS
so H is automatically normal in S. Moreover, H is A-invariant, so H is in normal
in G. By construction, H NKer ¢ = {1} and ¢(H) = 7,»S. Applying Lemma 4.6(b)
and arguing as before, we conclude that infdep(c) < m = comdep(c).

Now we prove the reverse inequality comdep(c) < infdep(c). Let n = infdep(c).
Then c is represented by a cocycle Z : G x G — A such that

Z(G,Gn) = Z(Gn, G) = {0}

Recall that G is the set of pairs {(g,a) : g € G,a € A} with multiplication
(g,a)(h,b) = (gh,a+b+ Z(g,h)). For each g € G we set § = (g,0) € G.
Let g € S and h € G,,. Since Z vanishes on G x G,, and G,, x GG, we have

9. 7] = §'hgh = (hg)"'gh = (hg) "'gh =
— o~ o —— — 1 — —
(ghlh, g])'gh = (ghlh,g))"'gh = [h,g] = [h,g9]"" =[g,h].

Similarly, if we are given elements {g;, h;}1<i<s such that g; € G and h; € G,, for
each ¢, then

—

[ 113, i) = T Tlgs. .

Since Ker ¢ does not contain non-trivial elements of the form §, with g € G, it
follows that Ker ¢ N 7,415 = {1}, whence comdep(c) < n. O

Now we are ready to prove a formula for commutator breaks.

Proposition 4.7. Let ¢ € H?*(G, Ay) for some s € N. Let by < ... < by, be the
commutator breaks of c. Then b; = de(z—l— 1) for1 <i<n. Moreover ord(c) = p".

Remark: An essentially equivalent statement was proved earlier by Prasad (private
communication) using a different method.

Proof. By Lemma 4.3, we can assume that ¢ does not come from H?(G, As_1), so
the image ¢ of ¢ in H2(G, A1) is nontrivial. Let A, <> G5a= Ext(c). Then
Ext(e) = Ay < G/u(As1) 5 G, and 7(A1) = o(As)/e(As_1). Tt follows easily that

by = comdep(¢). Therefore, by = ﬁgel

by Lemma 4.4.
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From now on we set A = A,. We know that ((A) C %lg. For any i > 1
we have L(Ap 1) C (1 S) - C Vo, +(171)d357 where the last inclusion holds by

Proposmon 4.1(a). Since A is a cyclic group, it follows that b; > by + (i — 1)de =
(z+ —=3)de for 1 <i <n.

+ mde for some m > 2, and let m be minimal with

1
this property. Let x be a generator of 1(AP™” ), then z € ’ybmS . Since b, > 2de, we
have ’meg = (%m—deg)p by Proposition 4.1(a). Moreover, ’me—deg is powerful, so
x = yP for some y € fybm_deS

We claim that y € «(A). Indeed, p(y)’ = ¢(y?) = ¢(x) = 1 since z € 1(A).
On the other hand, ¢(y) € Gy, —de, and Gp,, _qe is torsion-free by Proposition 3.1.
Therefore, ¢(y) = 1, whence y € 1(A).

Since z is a generator of (A" "), we have y & (AP '), whence y ¢ ’me,1+1§‘
Thus, b,,—1 4+ 1 > by, — de, whence b,,,_1 > b, — de > pd_el + (m — 1)de, contrary to
the choice of m.

Finally, we prove that ord(c) = p". Since c is an element of H?(G, As) which
does not come from H?(G, As_1), the discussion at the beginning of this section
implies that ord(c) = p®. Since ¢(A) N 'ybig # 1(A)N 'Ybﬁ-lg for any 1 < i < n,
it is clear Ehat n < s. Qn the other hand, if n < s, then for some iAvve havg
|L(A) N %, S/t(A) N Y, 11S| > p*. This would imply that the group p,S /b, +15
contains an element of order > p? contrary to Proposition 4.1(a). O

The final result of this section is concerned with the kernel of the restriction map
H?(G, A) — H*(Gp, A).

Proposition 4.8. Letn € N. Let K be the kernel of the restriction map H*(G, A) —
H?(Gp, A), and let m = log ,|K|. Then m < max{0, 2”“ il}

Proof. Suppose that m > 0, and let ¢ be an element of K of order p™ (recall that K
is cyclic). Let G -2 G be the Covermg map determined by ¢ and G’ o Y Gy).

Since ¢ € K, the extension A < Gn % G splits, whence ’ngnﬂL( )= {1} On the
other hand, 72G,, D v2,42S5 by Proposition 4.1(c), whence y2,425 N ¢t(A) = {1}, and
therefore by, < 2n+1 where by, is the mth commutator break of ¢ (note that ¢ has m
commutator breaks by the last assertion of Proposition 4.7). Also by Proposition 4.7

we get 2n+1 > (m+ 5 —L-)de, whence m < 2t — p%l, 0

5. REDUCTION TO LIE ALGEBRAS

Notations. Recall that A, denotes the cylcic group of order p°® for s € N. We
set a; = log (Ay); thus, as = Z/p°7Z considered as an abelian Lie algebra. In analogy
with the previous section, we will use the symbol A (resp. a) to denote As (resp.
as) for some s € N when the value of s is not important.

The following two results on Lie algebra cohomology will be established in the
next section.
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Theorem 5.1. Let n = de + 1. Then the group H?(gn,a)” has exponent < p®t4,
where as before p* is the largest power of p dividing the ramification index of F'.

Theorem 5.2. Suppose that n = | = 1 modd, n > pdel and I > 2n. Let

c € H%*(gn,a)® and let c; be the image of ¢ in H?(g;,a). Then ord(c;) < pvtt.
Furthermore, if m > 1 + (w + 1)de, there exists ca € H?*(g;/gm,a) such that
ord(co) < p**! and co maps to ¢y under the inflation map H?(g;/gm,a) — H?(g;, a).

In this section we will deduce parts (a) and (b) of Theorem 1.1 from Theorem 5.1
and Theorem 5.2, respectively. We start with the less technical proof of part (a).

Lemma 5.3. Suppose that n > de + 1, and let H*(G,, A)¥ be the image of the
restriction map H*(G,A) — H*(Gpn,A). Then H*(Gp, A)# C H%(G,, A)¢ where
& = &Gppe.

Proof. Let H = Gy,. Take any ¢ € H%(G, A), let ¢; € H*(H, A) be the restriction of
¢, and let (A — j2 g H) = Ext(c1). We need to prove that Ext(c1) € Exte(H, A)¢
which amounts to showing that He®and Ext(cy) is G-equivariant.

Let S = ¢~ 1(S). By Proposition 4. l(b)( ) we have ﬁ = %ereS and 72H C
ygnS Since n > de, we conclude that 72H - H , SO His powerful. Since H is
torsion-free, H is automatically p-central, so H e é. Finally, G-equivariance of
EX‘E\(C) is clear: the desired action of G on H is induced by the conjugation action
of G. O

Now we prove Theorem 1.1(a) whose statement is recalled below.

Theorem 1.1(a). Suppose that |H?(G,Q,/Z,)| = p~, and let p* be the highest
power dividing e. Then N < w + 6.

Proof. Let A = Ay, a = log(A), and let C € H?(G, A) be an element of order
pY. Let n = de + 1, and let C; be the image of C' under the restriction map
H?(G,A) — H?*(G,, A). By Proposition 4.8 we have ord(C;) > p™ 2.

By Lemma 5.3, C; € H%(Gn,A)G where & = &,,.. Since G, is torsion-free,
Exte(Gn, A)¢ is a subgroup of Exte(Gr, A) by Proposition 2.4(b)(i) and thus
HZ%(Gp, A)Y = Exte(Gn, A)C as abelian groups. Furthermore, Exte (G, A)Y =
Exte(gn, a)¢ by Proposition 2.6, and Exte(gy,, a)¢ & H2(g,, a)¢ by Propositions 2.7.

Thus, H%(Gh, A)€ is isomorphic to a subgroup of H%(g,,a)?. By Theorem 5.1,
H?(gp, )% has exponent < p**4. Hence, ord(Cy) < p**4, whence N—2 < w+4. O

Now we turn to Theorem 1.1(b). The idea of the proof is similar to that of part
(a) except that instead of Weigel’s log functor we shall work with Lazard’s log
functor which will be applied to appropriate congruence quotients of G.

Lemma 5.4. Let m,n € N be such that n <m < (p—1)n. Let A= As; and a = a,
for some s. Then there is a natural isomorphism

Log,, ,, : Ext(Grn/Gm, A) — Ext(gn/gm, )
Moreover, Log,, ,, maps Ext(Gy/Gm, A)¢ onto Ext(gn/gm, )",
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Proof. Since m < (p — 1)n, the nilpotency class of the group G, /G, is at most
p—2. Thus, if 1l - A — H— Gn/Gp — 1 is any central extension, then H has
nilpotency class < p — 1. It follows that Ext(G),/Gm, A) = Exte(Gr/Gm, A) where
& = &y, and similarly Ext(g,/gm,a) = Exte(gn/gm,a) where £ = £.,,. It is now
clear that Lemma 5.4 follows from Propositions 2.4 and 2.6. (|

Unlike the case of torsion-free Lie algebras, the map H?(g,,/gm, a) — Ext(gn/gm, @)
is never surjective, so there is no direct analogue of Proposition 2.7(a). Lemma 5.5
below provides a technical substitute for the latter.

Definition. Let m,n € N, with n < m. An element C' € H*(G,,/Gy,, A) will be
called good if there exists C € H?(Gy,, A) such that

(i) C" is equal to the deflation of C' in the terminology of Lemma 4.6;

(ii) C lies in the image of the restriction map H?(G, A) — H?*(Gp, A).
The subgroup of H?(G,/Gm,A) generated by good elements will be denoted by
H2(Gn/Gm7 A)good~
de
=
natural monomorphism log : H*(Gyp/Gm, A) good — H?(9n/8m., @).

Proof. Let C € H*(Gpn/Gm,A)goods let € = Ext(C) € Ext(Gp/Gm, A), and let
Log = Log,, ,, : Ext(Gn/Gm,A) — Ext(g,/gm,a) be the isomorphism defined in
Lemma 5.4. To prove Lemma 5.5, we need to show that Log(€) = Ext(c) for some

cc Hz(gn/gm, a).
By linearity, it suffices to consider the case when C' itself is good (not just a sum

Lemma 5.5. Suppose that n < m < (p — 1)n and n > 4. Then there exists a

of good elements). Then there exists a central extension A < G 5 G such that

E=A £, (A;n/%ﬁ % G /Gy, where S = 0 1(S) and én = o HGy).

Choose elements x1,...,2; € gn/gm such that g,/gm = (x1) & ... P (zx) as an
abelian group. Then every element of g, /g, can be uniquely written in the form
niry + ...+ ngxg where 0 < n; < ord(x;) for each i.

Let exp : gn/gm — Gn/Gp be Lazard’s exponential map (where g,/gn is
identified with log (Gy/Gr,) as described in Section 3). For 1 < ¢ < k we set
X; = exp(x;). By Proposition 4.1(c), there exist lifts )A(l, e ,)A(k € fyng/’ymg such
that ord()A(i) = ord(X;) for each i. Finally, let ; = log ()A(z) € log ((A;n/fyqu)

By Proposition 2.3(a) we have ord(x;) = ord(X;) and ord()A(i) = ord(%;), and thus
ord(z;) = ord(#;). Thus, we can define a linear map 1 : g,/gm — log ((A?n/'ymg') by
setting

k k
=1 =1

Clearly, v is a linear section for the extension log (£) = (a — log (én/ymﬁ) —»
gn/8m), and therefore log (£) = Ext(c) for some ¢ € H?(g,/gm, a). O

We are now ready to prove Theorem 1.1(b). As with Theorem 1.1(a), we recall
the statement.
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Theorem 1.1(b). Let p¥ be the largest power of p dividing e. Suppose that 4w +
15 < p. Then |H*(G, A)| < pvtt.

Proof. Throughout the proof we set H?(H) = H?(H, A) for any profinite group H.
Step 1: We claim that there exist n,l, m € N such that

(i) » and [ satisfy the hypotheses of Theorem 5.2, that is, n =1 =1 mod d,

n>pd_el,l>2nandm2l+(w+1)de, and

(i) 20 < 24 m <n(p—1) and m > (w+ 2+ ;17)de.

_ de de _
Indeed, first take [ = 1 mod d such that 2(’;71) —-d<lI< 2(’;71), then take n = 1

mod d such that é —d<n< %, and set m = n(p — 1). We have

mZde(Z—W)Zde(w—i—lf—w).

2 2e
Since e divides p — 1 and p > 5, Wehave%—% > %—% = % > 2+zﬁ.
Thus all inequalities in part (ii) hold. The remaining inequalities n > Z% and

m > 1+ (w+ 1)de in part (i) are easily seen to hold as well.

Now consider the following commutative diagram. All vertical arrows are restric-
tion maps, horizontal arrows without labels are inflation maps, and the two labeled
arrows denote log maps defined in Lemma 5.5.

Hz(G/Gm)good - Hz(G)

(5.1)  Hga) —— H(gn/8m) —2— H*(Gn/Gm)goos — H*(Gy)

l l |

lo
H2(gl) A HQ(gl/gm) SR HQ(GZ/Gm)good - HQ(GZ)

Step 2: Assume that |H?(G)| > p¥*2, and let C € H?(G) be an element of
order p®*2. Then by our choice of m and Proposition 4.8, C' is the inflation image
of some Cy € H*(G/Gm, A)good, s0 we have ord(Cy) > ord(C) > p**2. Now let
Cy € HQ(Gn/Gm)gOOd, Cs € H2(G1/Gm)good, Cs € HQ(Gn) and Cy € HQ(GI) be

the images of C; in the commutative diagram (5.1). Since 2] < gfi, the map

H?(G) — H?(G,) is injective by Proposition 4.8. Therefore, ord(Cs) > ord(Cs) >
ord(Cy) = p*+2.
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¢, — C

Lo

log

c3 o Co Cs
[
c4 cs log Cs Cy

Step 3: Let co = log (C2) and c¢; = log (C5) where log is the map defined in
Lemma 5.5. Since log is a monomorphism, we have ord(c) > ord(cs) > p“*2. Let
c3 € H?(g,,) and ¢4 € H?(g;) be the images of ¢o in (5.1).

Clearly, Cs is G-equivariant. Therefore, ¢ is G-equivariant by Proposition 2.6,
whence c3, ¢5 and ¢4 are also G-equivariant being inflation or restriction images of
Co.

Step 4: By Theorem 5.2, the image of H?(g,)“ in H?(g;) has exponent < p®*!,
and every element of H?(g;)“ is inflated from some element of H?(g;/g.) of order
< p¥tL. Tt follows that ord(cs) < p¥T! and there exist ¢ € H?(g;/gm) such that
ord(ch) < p“T! and ¢ and c5 inflate to the same element cy.

Step 5: Let K be the kernel of the inflation map H?(g;/gm,a) — H?(g;, a) where
a = log(A). According to the Lyndon-Hochschild-Serre spectral sequence, K is
equal to the transgression image of H(g,,,a)® = Hom (g,/[gm, 8], a). The latter
group has exponent p since [gm, @] 2 Pgm. On the other hand, K contains the
element c5 — ¢ which has order p“*2 by Steps 3 and 4. The obtained contradiction
finishes the proof. O

6. COHOMOLOGY OF LIE ALGEBRAS

In this section we identify a,, with the abelian Lie algebra #Zp /Z,, for n € N. As
before, a will denote a, for some n when the value of n is not important. We also
set aoo = Uy ay,.

The goal of this section is to prove Theorems 5.1 and 5.2. The main part of the
proof consists of describing as-valued G-invariant cocycles of Lie algebras g, for
n =1 mod d. Once this is achieved, both Theorems 5.1 and 5.2 follow very easily.

For the rest of this section we fix f € N, and let h = ggr41. Let £ = (a Sh h)

be an element of Ext(h,a). Given a (linear) section ¢ : h — b, let Z, be the a-
valued cocycle of h corresponding to 1. If a is identified with ¢(a), the formula for
Zy, becomes

Z(u,0) = [(w), ¥ (v)] — ([u, v]).

Suppose that £ is a G-equivariant extension. Can we always choose 1 such that
Zy is G-invariant? We do not know the answer to this question; however, it is
certainly possible to make Z, invariant under the action of the smaller group A
(defined in Section 3) which, as we recall here, consists of roots of unity in W* NG
of order prime to p.
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Proposition 6.1. Let h and £ be as above. The section ¥ can be chosen in such
a way that the cocycle Z = Zy is A-invariant, that is, Z(u9,v9) = Z(u,v) for any
u,v €h and g € A.

Proof. Let 1 be some section, and define 3 : A — Hom (h, a) by setting 3(g)(u) =
P(u)? —1p(u9). Define the left action of A on Hom (h, a) by setting g * [(u) = I(u9)
(where [ € Hom (h,a) and u € ). Then it is easy to check that 3 is a Hom (b, a)-
valued 1-cocycle of A. Since the order of A is prime to p and Hom (b, a) has p-power
order, the cohomology group H!(A, Hom (b, a)) is trivial, whence 3 is a coboundary.
Hence, 3(¢g)(u) = l(u) — I(u9) for some | € Hom (b, a)).

Now define ¢/ : h — b by Y'(u) = ¥(u) — l(u). Clearly, ¢’ is also a section of
E. Note that I(u)? = l(u) for any v € h and g € A, since the action of A on a is
trivial. Therefore, ¢'(u9) = ' (u)? for any u € h and g € A, and it follows that Z
is A-invariant. O

Our next goal is to determine all bilinear A-invariant maps from ggr41 X ggr+1 to
oo (since ggr41 is a finitely generated Zjp-module, the image of such map lies in a,
for some n). But first we introduce new notations.

Let 0 and 7 be as in Section 3. For a subset U of W, we set
sl(U) ={a € U: try p(a) = 0}.

Let Wy, (resp. Fy,) be the maximal unramified extension of Q, in W (resp. F).
Note that F,, = Wy, N F, and the restriction map Gal (W/F) — Gal (Wy,/Fy,) is
an isomorphism.

Let O be the ring of integers of W,,,.. Given n > df 4+ 1, define the A-module O,
as follows:

@) ifdin
(6.1) O, = { s((0) ifd)][n as a set,
and the A-action is given by
g
a™(9)

It is easy to see that the map from O, to ggqr41 given by a — an™ is a monomorphism
of A-modules.

od =a for any av € Oy, and g € A.

Definition. Let C : ggr+1 X ggr+1 — 0o be a bilinear map. Given 4,5 > df + 1,
define C; j : O; x Oj — as by Cj (o, B) = C(an’, fn?).

Note that a bilinear map C' : ggr41 X ggf+1 — Goo is A-invariant if and only if each
C;,; is A-invariant. A complete description of A-invariant maps from O; x O; to
0o is given by the following proposition. In order to state this and all subsequent
results, we use the maps introduced in Claim 3.2 as well as the following shortcut
notations: w = Wy,/Ow,,, f = Fu/OF,,, Tr = tryp and tr = tr where

dp = Qp/Zy

Proposition 6.2. Fiz i,j > df + 1 and let E : O; x O; — a be a bilinear A-
muvartant map.

w/dp>
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a) If dt (i +j), then E = 0.
b) Ifd| (i+j) and d1i (hence dtj as well), there exists A € w such that

E(a, B) = tr (\ac'(83)) for all a € O; and 3 € O;.

Proof. Let k be the smallest integer such that the image of E lies in a;. We will prove
a) and b) simultaneously by induction on k (with the case k = 0 being obvious).

Let 0, = O, /pO,, with the induced A-module structure (as a set o, can be
identified with the residue field of W). Define the map F : 0; x 0; — I%Zp/Zp
by setting E(a + pO;, 3 + pO;) = p*1E(a, B). Clearly, E is A-invariant as well.
According to [PR2, 1.5(iii) and 3.8], there exists u € ?1?0/0 such that F(a,3) =
tr (uac’(B3)) for any a € O; and 3 € O;. Moreover, u =0 if d 1 (i + j).

Now choose A € w such that pkflz\ =u (if o =0, set A = 0). Define F; :
0; x0; — a; by Ei(a, f) = tr (Aac®()). We claim that E; is A-invariant. Indeed,
if df(i+ j), then F; = 0 and there is nothing to prove. If d | (i + j), then for any
g€ A, a€0;and € Oj we have a90'(3)? = a—1~0'(B)o’ <J%@) = ac'(p).

a'(g)
Now E — Ej is a bilinear A-invariant map, and it follows from our construction
that the image of E — Ej lies in a;_;. By induction, (E — E1)(a, 8) = tr (AMac*(5))
for some A\; € w, hence E has the desired form. ]

Definition. Let C': ggr41 X gg4f+1 — 0oo be a bilinear map. A pair of integers (4, j),
with 7,7 > df + 1, will be called regular for C' if there exists A € w such that

(6.2) C;.i(a, B) = tr (\ac'(3)) for all a € O; and 3 € O;.

The set of regular pairs will be denoted by I,.¢4(C).

One may ask if equation (6.2) determines A uniquely. The answer is yes, unless
d=2,d|iandd | j. In the latter case the set of all \ satisfying (6.2) is either
empty or has the form \g + sl(w) for some \g; since p # 2 when d = 2 by our
assumptions, the set \g + s[(w) contains exactly one element of f. This observation
motivates our next definition.

Definition. Let C be as above and (4, j) € I,¢4(C). Define \; ;(C) € w as follows:
Ifd>2ordfiordtj,let A;;(C) be the unique A € w such that (6.2) holds.
Ifd=2,d|iand d]|j,let \; ;(C) be the unique A € f such that (6.2) holds.
Proposition 6.2 can now be restated as follows: if C' is A-invariant, then I,..,(C)

contains all pairs (4,7) such that d t ¢ or d { j; moreover \; ;(C) = 0 whenever
dt(i+ 7). If C is also a cocycle, we can say much more:

Proposition 6.3. Let C be a A-invariant cocycle of gap1. For (i,7) € Ireg(C) set
(a) The following relations hold provided all symbols occurring in them are defined:
(R1) © Xij=—0'(N\a)

6For simplicity, the automorphism of w induced by o will also be denoted by ¢ and not &
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(R2) Nigjk = Nijak + 0" (Nitk) = 07 (Nijik) + Njivk unless i,j and k are all
divisible by d.
(b) Leti>2df +d, j > df +d, withd |i and d | j. Then (i,j) € L¢g(C) provided

there exist k,l > df, with k+1 =1 and d{ k, such that A\, 14; + Uk()\l,kﬂ) ef. (¥*¥)
Moreover, condition (***) automatically holds if p t d.

Proof. (a) Relation (R1) follows easily from skew-symmetry of C, so we will only
prove (R2).

First note that if d 1 (i + j + k), then all expressions in (R2) vanish by Propo-
sition 6.2a). So, from now we assume that d | (i + j + k). Applying the equation
C([u,v],w) + C([v,w],u) + C([w,u],v) = 0 with u = ar’, v = B/ and w = yr*
and simplifying we have

(63) tr Ak + 0 Nyaa) + 0 i) ) ac'(B)o ()~

(Mt + 0 Qi) + 0/ Qi) ) Bod ()™ (7)) =0
whenever ar’, 3/ ,’)/7Tk € gdf+1-

Let 1= Aigje+0" (Njihi) +0 " Negig) and v = Niyj e+ (Njni) +07 Mepig)- Tt
follows from (R1) that o = Xijjk — Nijk — 0 (Njitr) and v = Nk — 07 (N j4i) —
Ajitk, s0 all we have to show is that u=v = 0.

If neither ¢ nor j nor k are divisible by d, we can choose arbitrary «, 8 and ~ in
(6.3), and it follows easily that © = v = 0. Since we assume that d divides (i+j+k),
but not each of 7, j and k, the only remaining case is when exactly one of 7, j and
k is divisible by d. By symmetry, it is enough to consider the case d | i.

So, we have d | i, d t j and d t k. The only restriction on «, § and ~ in (6.3) is that
a € sl(0). Since 7 can be chosen arbitrarily, it follows that pac(3) — vB07(a) = 0
for any a € s[(O) and § € O.

Now suppose that (u,v) # (0,0). Then the above equation implies that both p
Bol(a) _ ol(a) (@)
ac*(f3) @
the same for all nonzero o with Tr /() = 0. A simple counting argument shows
that the latter is possible only if d = 2, in which case Tr /(o) = 0 if and only if

o’ (a)

-= = —1 (since j is odd).

We proceed with the case d = 2. So far, we only showed that u = —v. But recall
that in this case definition of \’s is different. Since d | i and d | (j + k), we have
Nj+ki € f by definition. Therefore, 1 — v = 0 *(N\ptij) — 07 (Agyiy) = 0 (since
—k =7 mod d). Thus, we finally showed that u = v = 0.

(b) Let k,I > df be such that k+1 =i and k =1 mod d (since i > 2df + d,
at least one such pair (k, 1) exists). Apply the equation C([u,v], w) + C([v,w],u) +
C([w,u),v) = 0 with u = ar®, v = 7! and w = y7/, where a € O and v € sl(O).
Since (k,l+j),(l,k+ j) € I,¢q(C) by Proposition 6.2, after simplifications we get

(6.4) C((a— o Ha)r', ) = tr (v(o™ ! (va) — va)),

where v = A4 + 08 (A )

is

and v are nonzero and % = since d | i. Thus, the quotient
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If we know that v € f, then 07! (va) — va = v(c7(a) — a). So, (6.4) implies
that O (B, yn?) = tr (vB3y) for all 3,v € sl(O) since any 3 € sl(O) is of the form
o — o7 1(a) for some a € O. Therefore, by definition (4,5) € I¢4(C).

It remains to prove that v € f if p t d. Replace @ by o+ 1 in (6.4). The left-
hand side does not change, and the right-hand side changes by tr (y(c~!(v) — v)).
Thus tr (y(c~'(v) — v)) = 0 for any v € sl(0), whence 0~ *(v) — v € f. Now
Tr (0= (v) — v) = 0; on the other hand, Tr (u) = du for any p € f. Since p 1 d, we
conclude that o~1(v) — v = 0, whence v € f. O
New notations.

1. For m,n € N, with m < n, we set [m,n] ={k € N: m < k <n}.

2. For feNandn >2f+1, let I, y = [df + 1,dn — (df + 1)].

3. (taken from [PR2]). Given A € w and i > 0, let A(i) = A+o(A)+.. AN,
Note that A\(i) + o"(A(j)) = A(i + 7).

Proposition 6.4. Let C' be a A-invariant cocycle and set \; j = X; j(C) for (i,7) €
Ieg(C). Let n > 4f 4 2. The following hold:

(@) Ireg(C) contains (i,dn — i) for everyi € I, ¢.

(b) There exits kp, € W such that Nj gn—i = kn(i) for alli € I, 5.

Proof. First we make some preparations. Given ¢ such that (i,dn — i) € I,¢4(C),
set 11; = Aidn—i(C). By Proposition 6.2, y; is defined whenever i € I,  and d { i.
Relation (R2) of Proposition 6.3 implies that

(6.5) fivj = pi +0 () = pj + 07 (i) unless d | i and d | j.

Claim 6.5. Assume that d # 2. Then py — pgr+1(k) € £ for any k € I, 5 with
k==£1 modd.

Proof. Let p = pgp41 and S = {k € I, 5 : pup — pu(k) € £}. We proceed in several
steps.

Step 1: ke Sifdf +1<k<n-—(2df +2) and k=1 mod d.
Subproof: The restrictions on k imply that & + df + 1 € I, . By (6.5) we have
[dp+(k+1) = pag+1 + 0 () = pur + 0" (pgp41). Therefore, o(ur) — pr = o™ (pgpe1) —
pap+1 = 0 (pap+1(k)) — pap+1(k), whence pg — par41(k) € £ by Claim 3.2(c).

Step 2: ke Sif2df+2<k<n-—(df +1) and k= —1 mod d.
Subproof: By step 1, dn—k € S, 80 pign—r — j1(dn—k) € £. By Proposition 6.3(a) we
have puy, = —0*(puan-1). Thus, uy, +o*(u(dn — k) = —0*(pap-1, — p(dn — k)) € £.
Since o (u(dn — k)) = pu(dn) — u(k) = nTr (u) — p(k), it follows that k € S.

Step 3: it i,j € I,, y are such that i = j = &1 moddand i+ j € I, s, theni € S
if and only if j € S. ' '
Subproof: Since i = j = +1 mod d, we have o' = ¢/ = O':tl,' and (6.5) yields
i — p = o=y — py) whence p; — p; € £. Since p(i) — p(j) = SLTr (u) € £, the
assertion of Step 3 is clear.

Step 4: k € S for any k € I,, y with k = &1 mod d.
Subproof: Let i = df + (d — 1) and j = 2df + (d — 1). By step 2 we have j € S.
Since i + j = d(3f +2) — 2 < dn — df — 2 by assumptions on n, step 3 implies
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that « = df + (d — 1) € S. Once again by step 3, we get that k € S for any
keldf +d—1,2df + (d—1)] with k = —1 mod d. Combining this result with step
2, we conclude that k € S for any k € I, y with k = —1 mod d.

Step 6: k € S for any k = I, y with k € £1 mod d.
Subproof: This follows from Step 4 and equality g = —0*(ttgn_x) by the same
argument as in Step 2. g

Proof of Proposition 6.4(a). We already know that (i,dn — i) € I¢q(C) if d {i. If
d = 2, then by our assumptions p > 2, and the assertion in the case d | i follows
from Proposition 6.3(b). Thus we can assume that d > 2. Since C' is a cocycle,
(1,dn —1) € I¢4(C) if and only if (dn —1i,%) € I4(C). Thus it suffices to prove that
(i,dn — i) € I¢4(C) when i > dn/2 and d | i.

Fix such i. Note that ¢ > 2df + d since n > 4f + 2, so we can choose k,l > df
such that k +1 = 4, ] = 1 mod d (hence k = —1 mod d). We will show that
g + o® () € £, which would imply that (i,dn — i) € I,4(C) by Proposition 6.3b).

By Claim 6.5, we have py, — (k) € f and iy — pu(l) € £ where = pgr41 as before.
Therefore, puy + ok () — (u(k) + a*(u(1))) € f. Since (k) + ¥ (u(l)) = p(k +1) =

7

u(i) = 3Tr (p) € £, the proof is complete.

Once we established part a), we know that p; is defined for all ¢ € I,, . Thus, we
can state a stronger version of Claim 6.5 (the proof remains nearly identical):

Claim 6.6. For each k € I, y we have pj — pgr41(k) € f. O

Proof of Proposition 6.4(b). For k € I, ¢ let v, = py, — pgr1(k). Equation (6.5)
implies that

(6.6) Vitj = v; + vj whenever d {i or d{j.

Case 1: d # 2. For any i € [df +1,dn—2df —3] we have v (j10) = Vi1 +Vgrp1 =
Vi + Vgryo, whence vip1 — vy = vgrio — Vgr (if d = 2 and i is even, both ¢ and
df + 2 are divisible by d, so the above equalities may not hold). Therefore, for each
i € [df +1,dn — 2df — 2] we have v; = vgr1 + (i — df — 1)v where v = vgpi 9 — vgr41-

Since vogr42 = 2vgr4+1 by (6.6), we get vgri1 + (df + 1)v = 2vgp41 and therefore
vgg+1 = (df + 1)v. So, for i € [df + 1,dn — 2df — 2] we have v; = iv, whence
wi = p(i) +iv = {u+ v}(i). The formula p; = {p + v} (i) is easily seen to hold for
dn —2df —2 <i<dn—df —1 as well, e.g. by (6.5).

Case 2: d=2. Leti € [2f+1,2n—4f—=3]. Ifiis odd, v;11—v; = vofio—Vapiq as
in case 1. Similarly, v;411 —v; = vy 3 —vopio if i is even. Now let o = vop 9 — 1541
and 3 = vop43 — Vap42. Arguing as above, we conclude that

Vofi(2i+1) = Va1 +i(a+B) and vopio; = vogy1 —B+i(a+f) for i € [0,n—3f—2].

The equation vor 1 +vapio = vapys yields vopiq = f(a+ 3) + 3, while the equation
2wop 1 = Vapqo yields vopi1 = f(a+ ) + a. It follows that o = 3 and vop1 =
(2f + 1)a. The rest of the proof is the same as in case 1. O

The assertions of Propositions 6.2 and 6.4 motivate the following definition.
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Definition. A bilinear map C' : ggr41 X gdf+1 — 0o Will be called regular if there
exists a sequence {Kn};” 5, such that for any i,j > df +1 we have (i, j) € Ir¢q(C)

and
- )_{0 | ATdf(iy)
" Kitgya(i) i d| (i)
We will say that {ky} is the defining sequence of C' (obviously each k,, is uniquely
determined).

Our next result asserts that A-invariant cocycles are not far from being regular.

Claim 6.7. Let C be a A-invariant cocycle of gqr+1. The following hold:

(a) Letn=dm+ 1 with m > 2f + 1. Then the restriction of C' to g, X gn s a
regular cocycle.
(b) Assume that f < e. Then p3C is a regular cocycle of gaf+1-

Proof. (a) is a direct consequence of Proposition 6.4(b).

(b) Let D = p*>C. Clearly, D is A-invariant as well, so \; ;(D) = 0 if d { (i + j)
by Proposition 6.2. It remains to show that for any n > 2f + 1 and 7 € I,, s there
exists k], € w such that \; g,—i(C) = K, (1).

By Proposition 6.4, for any m > 4f + 2 there exists £, € w such that for any
i € I, we have C(an?, B~ = tr (knac'(B)).

Recall that 7 = 7 is a uniformizer of F. Since e = [F : F,,], there exist
{dy} € Op,, such that p3 = Zie:_:,é dp7®. For any n > 2f +1,i € I, f, o € O;, and
08 € Ogp—; we have

4e—1
D(Ozﬂ'i,ﬂﬂ'dnii) — C(Ozﬂ'i,pg,@ﬂ'dnii) — Z C(aﬂ_ijﬂdkﬂ_dnfi+dk) —
4e—1 e A )
Z tr (kpok(i)ac’ (B8)dy) = tr (), (i)ao’(B)),
k=3e

where k], = Zii}i diKnir (the right-hand side of the last expression is defined since
for k > 3e we have n+k > (2f+1)+3e > 5f+1>4f+2). Thus, D is regular. O

We are now ready to give a full characterization of regular A-invariant cocycles.
This characterization involves coefficients of the minimal polynomial of 7 over F,.

e—1
Definition. Let {¢; € Op,, }¢_j be defined by the relation 7¢ = pkzo et A
sequence {k, € w}%o:2f+1 will be called compatible if for any n > 2f + 1 we have
e—1
(C1) Ente =D Y. Ckkntk and
k=0

(C2) n'Tr (k) = 0.

Theorem 6.8. A sequence {/ﬂn}%o:2f+1 is the defining sequence of some reqular
A-invariant cocycle of gar1 if and only if {k,} is compatible.
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Proof. Let C be a regular A-invariant cocycle and let {x,,} be the defining sequence
of C. By relation (R1) of Proposition 6.3 we have r,, (i) + 0% (k,(dn—1)) = 0, whence
nTr (ky) = 0, so (C2) holds.

Condition (C1) is a consequence of the identity C(u,pv) = pC(u,v). Indeed, let
n>2f+1,i€ 1,y Forany a € O; and 3 € Ogy,—; we have C(an®, Brdnte)=i) =

C(an®, Bri=ire) = Clax, fr"p 3 cpF) =p 3 Clar?, ¢ S TF) 1) Hence,
k=0 k=0
. e—1 .
tr (Kpte(d)ad(B)) =p > tr (kptx(i)cgac’()), and (C1) follows immediately.
k=0

Conversely, let {r,} be compatible. Given i,j > df + 1, let \;j = K(i1j)/4(7)
ifd| (i+j)and \;; = 0if d 1 (i + j). Condition (C1) ensures that there exists
a bilinear map C' : ggr11 X @df+1 — Goo such that Cjj(a, ) = tr (i jact(B)) for
all i,j > df +1, a € O; and 3 € O;. Obviously, C is A-invariant. Finally, (C2)
implies that {)\; ;} satisfy relations (R1) and (R2) of Proposition 6.3, whence C' is
a cocycle. ]

Next we show that for any compatible sequence {x, }, there is a better bound on
the orders of Tr (k,) than the one given by (C2) alone.

Lemma 6.9. Let p* be the highest power of p dividing e. If {k,} is a compatible
sequence, then p**1Tr (k,) = 0 for all n.

Proof. Let p, = Tr (ky) for n > 2f + 1. Note that the sequence {y,} is compatible
as well.

Let I be the smallest integer such that p'j,, = 0 for all n, and let m be the largest
integer such that p'~'u,,, # 0. Such m indeed exists and moreover m < 2f + e since

e—1
ln =P D Cklin—etr for n>2f + e+ 1. We know that mpy,, = 0, so pl divides m.
k=0
e—1 e—1
Now consider the equality fimire = D Y. Ckftmir The element > ¢y has
k=0 k=0
order p! because copi,, has order p! (as cg is a unit in Op, ) and cgfiym4r has order
at most p'~! for k£ > 0 (by the choice of m). So, fimie has order p!=t.
On the other hand, (m + €)pmye = 0. Since p'~! divides m, p'~! must divide e

as well. Therefore, | < w + 1. O

Proposition 6.10. Let h = ggr41 for some f, let C be a regqular A-invariant cocycle
of b and let {kp}n>2f+1 be the defining sequence of C. Let v be any integer such
that C(h,b) C a, or, equivalently, any integer such that p'r, = 0 for alln > 2f +1.
Then there exists a reqular cocycle Cy of b such that

(a) C and Cy are cohomologous in H*(b, a,)
(b) If {an} is the defining sequence of Cy, then p“Tla, =0 for alln > 2f + 1.

Proof. If v < w + 1, we can simply set C; = C, so we will assume that v > w + 1.

We already know that p*+!Tr (k,) = 0 for all n > 2f + 1. It is easy to see
that ’I‘r(ﬁO/O) = #OFM/OFM for any kK > 0. For any n > 2f + 1 we have
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Tr (ky) € ﬁOFM/OFW, whence there exists ay,, € w such that Tr (ay,) = Tr (kp)

and p**tla, = 0.

We claim that the sequence {a,,} can be chosen compatible. First we choose ay,
satisfying the above conditions for n € [2f 4+ 1,2f 4 e]. Then there exists a unique
way to choose the remaining «,, so that (C1) holds. Since {x,} satisfies (C1) as well,
it follows that Tr (o) = Tr (k) for all n, whence {a, } satisfies (C2). It remains to
show that p**la, = 0 for all n > 2f + 1. The latter is true for n € [2f + 1,2f + €]
by construction, and follows from (C1) for n > 2f + e+ 1.

Since {ay, } is compatible, there exists a regular cocycle C1 whose defining sequence
is {ap }. It is also clear that C1(h,h) C ay4+1 C a,. It remains to prove the following
claim:

Claim 6.11. The cocycles C and Cy represent the same class in H*(h, a,).

Proof. Let B = C —C and let {x/,} be the defining sequence of B. Then k|, = Ky, —
o, whence Tr (7,) = 0. Hence, there exists {1y }; o, such that s}, = pin, — o (pn).
Since pUk], = 0, we can assume that p’u, = 0. Similarly, since ], satisfies (C1), we
can assume that {u,} satisfies (C1).

Now define a linear function h : h — a, by setting

ny __ tr(a,un/d) lfd|’l?,
h(om')—{o it dfn forn>df +1 and o € O,

In general such a definition would be ambiguous since the elements {7 : n € N}
are not linearly independent over O. This problem does not arise here since {u,}
satisfies (C1).

We claim that B(u,v) = h([u,v]) for any u,v € h. This would imply that B is a
coboundary and thus finish the proof of the claim and Proposition 6.10.

Let u =Y a;n’ and v = Y B’ (where ay, 5; € O; for all i). Then

B(U,U)ZZB(amivﬂﬂj)z Y. Y tr(s(Dai’(6)) =

n=2f+11i+j=dn

Yo D (o' (m))aid' (B) = Y D tr (i’ (B)) — o (@)B))) =

n=2f+1i+j=dn n=2f+1i+j=dn

S hlar gye)) = 3 hllair', 8i) = h(lu ).

n=2f+1i+j=dn
O

Proof of Theorem 5.2. Let | and n be as in the statement of Theorem 5.2. Since
¢ € H*(g,,a)%, it is represented by some A-invariant cocycle C of g,,. Let Cy be the
restriction of C' to g; x g;. By Claim 6.7(a), C is a regular cocycle of g;. Therefore,
by Proposition 6.10, there exists a cocylce C} of g;, cohomologous to C in H?(g;, a)

and such that p*T'C] = 0. This implies that ¢; = [C}] = [C}] has order at most
pw—i-l.
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Now let m > [+ (w + 1)de. Define the a-valued 2-cocycle Cy of g;/gm by setting
Co(tu+ gm, v+ gm) = O (u,v). Then Cy is well-defined since p**+'C} = 0 and g,, C
Gi+(wit)de = PTG Let ¢ = [Co] € H?(g1/gm,a). By construction, ord(cs) <
ord(C}) = p**1, and the inflation image of cp in H?(g, a) is equal to [C]] = ¢;. O

Proof of Theorem 5.1. Let ¢ € H*(gy,,a)®, and let C be a A-invariant cocycle of g,
representing c. By Claim 6.7(a), p3C is a regular cocycle, so by the same argument
as above, [p>C] € H?(gp,a) has order at most p**!. Therefore, [C] has order at
most p®t4. O

7. REDUCTION TO THE SMALL FIELD CASE

The purpose of this section is to prove part (c¢) of Theorem 1.1 whose statement is
recalled below. The author is grateful to Gopal Prasad for suggesting several ideas
used in the proof.

Theorem 7.1. Assume that p > 19. Let F be a p-adic field containing primitive
pth root of unity and such that the extension F/Qy is Galois. Let D be a central
division algebra over F whose degree is not a power of p, and let G = SL1(D). Then
|H?(G,R/7Z)| < p¥*! where p* is the largest power of p dividing the ramification
index of F'.

Notation: Throughout this section we set H?(G) = H?(G,R/Z) for any group G.

We start with a simple fact about division algebras over local fields.

Proposition 7.2. Let K'/K be an extension of p-adic fields, let n = [K' : K], and
let d € N be coprime to n. The following hold:

(a) Let D be a central division algebra over K of degree d. Then D @ K' is a
central division algebra over K' (also of degree d).

(b) Conversely, if D' is a central division algebra over K' of degree d, then
D'~ D @y K' for some division algebra D over K.

Proof. If F is a local field, the Brauer group Br(F') is canonically isomorphic to
Q/7Z. Under this isomorphism, division algebras of degree d over F' correspond to
generators of the subgroup 3Z/Z of Q/Z. The map Ef k' : Br(K) — Br(K') given
by D +— D ®k K’ corresponds to multiplication by n = [K’ : K| under the above
identification. Since n is coprime to d, Ex g/ maps %iZ/Z onto itself. This yields
both assertions of the proposition. ]

Cohomology of SL; over p-adic fields.

Let F be a p-adic field, and let up be the group of roots of unity in F'. Moore [Mol]
showed that H?(SL4(F)) is isomorphic to up. Elements of H?(SLy(F)) can be
explicitly described as follows [Rp, Theorem B]. Let T" be the diagonal subgroup of
SL4(F). Then there is a canonical cocycle cp : SLy(F) x SLy(F) — pp such that

(i) the cohomology class [cr| generates H2(SLy(F))
(ii) the restriction of cp to T' x T is given by

(71) CF(dia'g ()\17 vee 7)\d)7 dlag (:u’lv vee ,ﬂd)) = H(Ala M])F7
i>]
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where (+,-)p is the norm-residue symbol on F* of order |up|.
Now let fifwiq be the p-primary component of pup and H2(SLy(F))wiia the cor-
responding subgroup of H%(SL4(F)). If n = |up| and q¢ = |upwial, then clearly
H?(SLy(F))witq is generated by [cp]™4 = [c?/q].

By properties of the norm-residue symbols, for any «, 5 € F* we have («a, 3)
(v, B)g,r where (-,-)q F is the norm-residue symbol on F* of order gq. Thus, the

n/q _
W=

restriction of c;/ ?to T x T is given by

(7.2) A (diag (A1, ..., Aa), diag (u1, .-, pa) = [Ny 15)a,r-

i>j
Remark: By [Rp, Lemma 3], the restriction map H?(SLy(F)) — H?(T) is injective

if d > 3 and has kernel of order 2 if d = 2. Thus, (7.2) determines the cohomology

class [c;/ 9 uniquely unless p = d = 2.

The following result is established in [PR2, 8.2]:

Lemma 7.3. Let F be a p-adic field, D a central division algebra over F whose
degree is not divisible by p. Let W be a maximal unramified extension of F' in D,
and let rw.p : H*(SLa(W)) — H?(SL1(D)) be the natural restriction map. Then

Imrw,p| = |tFwid|, and therefore rw,p is injective on H2(S’Ld(W))wild. O

Using this lemma and the above description of cohomology of SL,,, we can relate
the cohomology groups H?(SLi(D)) and H?(SL(D')) when D' is obtained from D
by a field extension.

Proposition 7.4. Let K'/K be an extension of p-adic fields and | = [K' : K]. Let
D be a central division algebra over F whose degree d is coprime to both | and p,
let D' = D ®k K', and let rpp : H*(SL1(D')) — H?(SL1(D)) be the restriction
map. Let p° be the largest power of p dividing I, and assume that | witd] > pstL.
Then |Kerrp p| = p°.

Proof. Let W be a maximal unramified extension of K contained in D. Then it is
easy to see that W/ = D @ K’ is a maximal unramified extension of K’ in D’, and
we have the following commutative diagram:

rwl’D/

H*(SLa(W"))wita —— H?*(SL1(D’))

l’"w’,w J{TD’,D

TW,D

HQ(SLd(W))wild — SLl(D)
We claim that it is sufficient to show that |Kerry  w| = p°. Indeed, this would
imply that the map ry w : H*(SLa(W'))wita — H?*(SLa(W))wia is non-trivial
since |uw’ wita] > | wial > p*Tt. Since horizontal arrows in the above diagram
are injective and both groups H2(SLq(D')) and H?(SLi(D)) are cyclic of p-power
order, it would follow that

(73) |Ker rD’,D| = |KeI‘7’lewl = ps.
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Now let n' = ||, n = |pw|, ¢ = |w wiial and ¢ = |pw,wial. Let ¢ = (ew)"/7
and ¢ = (cw)"/q where ¢y and cy are as in (7.1). Then H2(SLy(W'))wita is
generated by [/] and H2(SLy(W))wia is generated by [c]. Given «,3 € W*, by
properties of the norm-residue symbol we have

(e, B)qr )74 = (v, B)gw = (o', B)gw = (@, B)gw)'

which by (7.2) and the remark after it yields ry w ([¢']9/7) = [¢]'. The element [c]!
has order ¢/p® > 1. Therefore, Kerry yy is generated by ([¢/]9/9)4/P° = [¢/]9/P"
Since ord([c']) = ¢/, we conclude that |Kerry w| = p°. O

Proof of Theorem 7.1. Let d = deg (D). Write d = dyds where d; is relatively prime
to p and ds is a power of p. By our assumption, d; # 1.

As before, let W be a maximal unramified extension of F' in D, and let K
be the unique extension of F' of degree dy inside W. Note that K and F have
the same ramification index. Let D’ be the centralizer of K in D. According to
[PR2, 4.6], D' is a central division algebra of degree d; over K, and the restriction
map H?(SLi(D)) — H?(SLi(D’)) is injective. Thus it is sufficient to show that
HA(SLy(D))| < p+1.

Since F'/Q, is Galois and K/F is unramified, the extension K/Q, is Galois as
well. Therefore, there exists an intermediate field Q, C L C K such that L/Q, is
tamely ramified and K/L is wildly ramified. This means that [L : Q] is relatively
prime to p and |K : L| = p*. Since K contains primitive pth root of unity, so does
L.

Since K/L is Galois and Gal (K/L) is a p-group, there is a tower of fields L =
Ly C Ly C...C Ly = K such that [L;y1 : L;] = p for each i. Furthermore, since
|k witd| > p? by hypotheses of the theorem, we can assume that \ry witd| = p?. By
Proposition 7.2(b), there exists a division algebra Dy over L such that Do® K = D',
and let D; = Dy ®p, L; for 1 < i < w. We shall prove that |H2(SLy(D;)| < p'*! for
1 <4 < w by induction on 1.

The base case i = 1 follows from Theorem 1.1(b) since w(L;) = 1. Now suppose
that |[H?(SL1(D;))| < p**! for some i. Since D;y1 = D;®p, Lit1, [Lit1 : Li] = p and
| i1, witd| > P, Proposition 7.4 yields [Ker {H2(5L1(Di+1)) — H*(SL1(D;))}] < p,

whence ‘H2(SL1(DZ+1>)’ S p- ’HZ(SIq(DZ))‘ S P ~pi+1 = pz+2. O
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