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Abstract

We use the action of the Nottingham group on the completion of its
Lie algebra to construct new examples of just-infinite pro-p groups of
finite width whose graded Lie algebras with respect to the lower cen-
tral series are isomorphic to sl2(Fp) ⊗ tFp[t]. The groups constructed
are non-linear and thus answer the question posed in [Ba]. The proof
of nonlinearity uses a new description of the centralizers of elements of
order p in the Nottingham group and the concept of Hausdorff dimen-
sion.

1 Introduction

A pro-p group G is said to be of finite width if all quotients γn(G)/γn+1(G)
are finite and their orders are uniformly bounded. The motivation for the
study of these groups comes from two sources. On the one hand, pro-p
groups of finite width form a natural generalization of the important and
now well understood class of groups of finite coclass (see [LM] and [DDMS]).
On the other hand, it is interesting to compare their structure to that of
”narrow” objects in other algebraic categories (e.g. graded Lie algebras)
where some definitive results have been obtained during the past two decades
(see [ShZ]). The most ambitious project in the theory is the problem of
classification of just-infinite pro-p groups of finite width (a profinite group is
called just-infinite if it is infinite, but all of its proper homomorphic images
are finite; these groups can be thought of as simple objects in the category
of infinite profinite groups). All previously known examples of such groups
can be divided into four types (see [LM], [Sh] and [KLP] for more details):
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1. p-adic analytic groups,
2. Fp[[t]]-analytic (linear) groups,
3. the Nottingham groups N (Fq), where q = pn, and some of their index

subgroups (see [BK] and [F]),
4. branch groups.
In this paper we introduce and study a new family of just-infinite pro-p

groups of finite width, defined as certain subgroups of the Nottingham group
N (Fp). Recall that N (Fp) is the group of automorphisms of Fp[[t]] acting
trivially on (t)/(t2). Assume that p > 2, and let r and s be positive integers
such that 0 < r < ps/2 and p - r. Let Q = Q1(s, r) be the subgroup of
N (Fp) which consists of the elements of the form

t 7→ r

√
atr + b

ctr + d
for some a, b, c, d ∈ Fp[[tp

s
]] s.t. a0 = d0 = 1 and c0 = b0 = 0

(here a0, b0, c0, d0 are the constant terms of the corresponding elements).
The above definition resembles that of the first congruence subgroup of

PGL2(Fp[[t]]) which we denote by PGL1
2(Fp[[t]]). Note that since p > 2,

PGL1
2(Fp[[t]]) ∼= SL1

2(Fp[[t]]) . As we will show in the present paper (see
Sections 4 and 8), there are indeed a lot of similarities between the groups
Q1(s, r) and SL1

2(Fp[[t]]). In particular, the graded Lie algebras of these
groups with respect to the lower central series are isomorphic to each other.

Theorem 1.1. Let p, s, r be as above, and let Q = Q1(s, r). The Lie algebra
of Q with respect to the lower central series is isomorphic to sl2(Fp)⊗ tFp[t]
as a restricted Lie algebra. Therefore Q is a hereditarily just-infinite pro-p
group of finite width.

Remark. The Lie algebra of Q has a natural restricted structure because
the lower central series of Q coincides with the Zassenhaus filtration.

On the other hand, the groups {Q1(s, r)} are not linear. More precisely,
we have the following.

Theorem 1.2. Let Q = Q1(s, r).
1. Q is not linear over a pro-p ring (as a topological group).
2. If s = 1, then Q is not linear over any field (as an abstract group).

Finally, it is natural to ask whether the groups {Q1(s, r)} are pairwise
non-commensurable (or at least non-isomorphic). We do not know the an-
swer to that question, but we can show that there are infinitely many pair-
wise non-commensurable groups in this family.
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Theorem 1.3. The groups {Q1(s, 1)}∞s=1 are pairwise non-commensurable.

Remarks. 1) Barnea and Klopsch constructed another family of just-infinite
pro-p groups of finite width consisting of ”natural” subgroups of N (Fp) (see
[BK]). Their groups can be thought of as the ”upper-triangular” subgroups
of the groups {Q1(s, 1)}∞s=1 (see Section 8).

2)In the terminology of Barnea (see [Ba]), a pro-p group G is a g-group,
where g is a finite-dimensional Lie algebra over Fp, if the Lie algebra of G
with respect to some filtration is isomorphic to g ⊗ tFp[t] as a graded Lie
algebra. If g is simple, G is called Lie simple; such groups are always just-
infinite of finite width. Typical examples of Lie simple groups are SL1

n(Zp)
and SL1

n(Fp[[t]]), p - n; in both cases g = sln(Fp). Barnea asks whether
there exists a nonlinear sln(Fp)-group ([Ba, Problem 1]) and, more generally,
whether the Lie algebra of such group can be isomorphic to sln(Fp)⊗tFp[t] as
a restricted Lie algebra ([Ba, Problem 2]). Thus our results give a positive
answer to both questions for n = 2. We are grateful to the referee for
drawing our attention to the second of Barnea’s questions.

Before proceeding, we remark that the groups {Q1(s, r)} can be defined
in a more conceptual way. Let Lie(N ) be the completion of the graded Lie
algebra of the Nottingham group N with respect to the congruence filtration
{Nn} where Nn consists of automorphisms acting trivially on (t)/(tn+1).
We will show that N has a natural action on Lie(N ). On the other hand,
it is well known that Lie(N ) has a family of subalgebras isomorphic to
sl2(Fp) ⊗ tFp[[t]]. It turns out that each of the groups {Q1(s, r)} is a finite
index subgroup of the stabilizer of one of these subalgebras under the action
of N . The whole stabilizer will be denoted by Q(s, r); its explicit description
is very similar to that of Q1(s, r) (see Section 3), and the ”corresponding”
matrix group is a Sylow pro-p subgroup of SL2(Fp[[t]]).

Nonlinearity of the groups {Q(s, r)} follows from our analysis of the sub-
group structure of the Nottingham group which is discussed below. In order
to state our results we need to recall the concept of Hausdorff dimension
of a subset of a profinite group which will play a crucial role in this paper.
If G is a profinite group with fixed filtration {Gn}, one introduces certain
metric on G (which depends on the choice of the filtration) and given a
closed subset H of G, one defines Hdim G(H) to be the Hausdorff dimension
of H with respect to the metric induced from G. If H is a subgroup of G,
its dimension can be computed by the formula

Hdim GH = lim inf
n→∞

log |HGn : Gn|
log |G : Gn|

= lim inf
n→∞

log |H : H ∩Gn|
log |G : Gn|

.
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If the limit of the above expression exists, we say that H has pure Hausdorff
dimension. Finally, if H has the same Hausdorff dimension with respect to
any filtration of G, we say that H has absolute Hausdorff dimension. For
more details see [BSh] or Section 5 of this paper.

We begin by considering the centralizers of elements of order p in N (Fp).
Elements of order p and their centralizers have already been studied by
Klopsch in connection with the automorphism group of the Nottingham
group. In particular, he proves the following (see [K] and [BK]).

Theorem 1.4 (Klopsch). 1. The elements {fn(λ) = t(1− λtn)−1/n |
n ∈ N, p - n, λ ∈ Fp

∗} form a complete set of representatives for the conju-
gacy classes of elements of order p in N (Fp).
2. The centralizer of an element of order p has absolute Hausdorff dimen-
sion 1/p.

Actually, Klopsch describes these centralizers explicitly, and part 2 of
the above theorem is an easy consequence of this description (see [BK]). In
this paper we obtain a closed formula for the centralizers of the elements
{fn} above. Combined with Theorem 1.4, this formula enables us to prove
the following result:

Theorem 1.5. Let G = N (Fp) and let g ∈ G be an element of order p.
Then the group CentG(g)/〈g〉 is isomorphic to an open subgroup of G.

One of the applications of Theorem 1.5 is an alternative proof of non-
linearity of N (Fp) as an abstract group (for the other proof of this fact see
[Ca2]). Moreover, using our explicit formulas, we are able to prove a state-
ment analogous to Theorem 1.5 for the groups {Q(1, r)}. This statement is
weaker but still implies that these groups are non-linear as abstract groups.

Now we will explain why all the groups {Q(s, r)} are not linear over a
pro-p ring. The key difference between the Nottingham group and linear
pro-p groups lies in the sizes of abelian subgroups as can be seen from the
following theorems.

Theorem 1.6. Let G be a just-infinite pro-p group which is linear over a
pro-p ring. Then G has an open subgroup H which either is torsion free or
contains a subgroup K isomorphic to (Fp[[t]],+) such that K has positive
Hausdorff dimension with respect to some finite width filtration of H.

The information about abelian subgroups of the Nottingham group N
is provided by the following theorem of Wintenberger [Wi, Theorem 4.1].
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Theorem 1.7 (Wintenberger). Let H be an abelian subgroup of the Not-
tingham group N = N (Fp) and let I = {i ∈ N | H ∩Ni 6= H ∩Ni+1}, where
{Ni} is the congruence filtration of N . Let i1 < i2 < . . . be the elements of
I listed in increasing order. Then in+1 ≡ in mod pn for each n ∈ N.

Here is an interesting consequence of (the proof of) Theorem 1.5 and The-
orem 1.7 which generalizes part 2 of Theorem 1.4.

Theorem 1.8. Let H be a subgroup of G = N (Fp). Then the centralizer

of H in G has absolute Hausdorff dimension
1
|H|

(we do not assume H

is finite). In particular, an abelian subgroup of the Nottingham group has
absolute Hausdorff dimension zero.

Corollary 1.9. Let H be a hereditarily rigid just-infinite pro-p group which
is not virtually torsion free. Suppose that there exists an embedding Φ : H →
G = N (Fp) such that Hdim GΦ(H) > 0. Then H is not linear over a pro-p
ring.

Remarks.
1) The notion of a rigid group which appears in the statement of the corollary
is a slight variation of the concept of finite obliquity (precise definition is
given in Section 5). The assumption of H being hereditarily rigid is needed
to ensure that certain subgroups of H have absolute Hausdorff dimension.
It is easy to show that all the groups {Q(s, r)} satisfy this requirement.
2) The proof of Corollary 1.9 uses Theorem 1.8 only in the special case when
H is torsion which in turn doesn’t rely on Wintenberger’s theorem. We be-
lieve that a more detailed analysis of the structure of linear groups combined
with Theorem 1.7 should yield the following generalization of Corollary 1.9.

Conjecture 1.10. A just-infinite pro-p group which is linear over a pro- p
ring can’t be embedded into the Nottingham group as a subgroup of positive
Hausdorff dimension.

Finally, we remark that the Hausdorff dimension of the group Q(s, r) in
N is equal to 3/ps. The number 3/p is a previously unknown point in the
Hausdorff spectrum of the Nottingham group. Combining this observation
with the results of [BK], we conclude that the only part of the spectrum of
N which is still undetermined lies in the interval (1/p, 2/p). Moreover, the
study of the subgroup structure of the groups {Q(1, r)} may help to fill this
gap. In particular, the subgroups discussed in Section 8 of this paper yield
another new point in the spectrum of N , namely {3/2p}.
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Organization. The paper is organized as follows. Section 2 contains pre-
liminaries on the Nottingham group and its Lie algebra. In Section 3 we
construct the groups {Q(s, r)}. This is followed by the proof of Theorem 1.1
in Section 4. In Section 5 we review some facts about Hausdorff dimension
and define rigid groups. In Section 6 we compute the centralizers of elements
of order p in N (Fp) and prove Theorems 1.5 and 1.8. Linearity criteria are
established in Section 7. We use them to prove Theorem 1.2. In Section 8
we discuss the subgroup structure of the groups {Q(s, r)}. In section 9 we
obtain a partial classification of some natural subgroups of N up to com-
mensurability. In particular, we prove Theorem 1.3. Finally, in Section 10
we pose several questions which arose from the results of this paper.

Preliminaries and Notation. Throughout the paper, groups are assumed to
be topological unless indicated otherwise; by a subgroup of a topological
group we always mean a closed subgroup. As usual (g, h) = g−1h−1gh will
stand for the commutator of elements g and h. If A, B are subgroups of G,
(A,B) is defined as the subgroup generated by {(a, b) | a ∈ A, b ∈ B}. The
nth term of the lower central series of G will be denoted by γnG. We write
H CG if H is a normal subgroup of G and H o

CG if H is also open.
Two groups are called commensurable if they have isomorphic subgroups

of finite index. We say that a group G is hereditarily (P ), where (P ) is some
group-theoretic property, if every finite index subgroup of G satisfies (P ).

By a filtration of a pro-p group G we mean a descending chain of open
normal subgroups G = G1 ⊇ G2 ⊇ . . . which form a base of neighborhoods
of identity. A filtration is called central if [Gi, Gj ] ⊆ Gi+j , p-central if in
addition Gp

i ⊆ Gi+1, and restricted if Gp
i ⊆ Gpi. The lower central series

{γnG} is a central filtration whenever γnG is open in G for all n. The
Zassenhaus filtration {ΩnG}, where ΩnG =

∏
m·pi≥n

(γmG)pi
, is an example

of a restricted filtration. Finally, we say that a filtration is of finite width if
the orders of the quotients Gn/Gn+1 are uniformly bounded.

Given a central filtration {Gn} of G, we can construct the associated

graded Lie ring L(G) =
∞⊕

n=1
Ln, where Ln = Gn/Gn+1, with bracket de-

fined by [aGn+1, bGm+1] = (a, b)Gn+m+1. With each subgroup H of G we

associate a Lie subring LG(H) =
∞⊕

n=1
(H ∩ Gn)Gn+1/Gn+1 ⊆ L(G). If the

filtration {Gn} is p-central, L(G) becomes a Lie algebra over Fp, and if
{Gn} is restricted, then L(G) has the structure of a restricted Lie algebra
where [aGn+1]p = [apGpn+1]. Sometimes it’ll be more convenient for us to
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work with the completed Lie algebra L(G) =
∞∏

n=1
Ln considered as a filtered

algebra with filtration {Ln}, where Ln =
∞∏

i=n
Li.

Finally, we say that g ∈ G has degree n with respect to some central
filtration {Gn} if g ∈ Gn\Gn+1 and define the leading term of g to be
LT g = gGn+1 ∈ Ln. Thus LT is just the usual map from G to L(G).

Throughout the paper p > 2 will be a fixed prime number.
Acknowledgements. I am extremely grateful to my advisor Prof. Efim

Zelmanov for introducing me to the subject of pro-p groups and for his en-
couragement and support and to Yiftach Barnea for useful communications
during the preparation of this paper. Special thanks are due to Yiftach
Barnea and Benjamin Klopsch for sending me their unpublished paper [BK].

2 The Nottingham group and its Lie algebra

We begin this section by recalling some basic properties of the Nottingham
group. For more details the reader is referred to [Ca2].

Given a commutative ring R, the Nottingham group N (R) is defined
as the group of R - linear automorphisms of the ring R[[t]], acting trivially
on (t)/(t2). It can also be thought of as the group of formal power series
{t(1+r1t+r2t2 + . . . ) | ri ∈ R} under substitution. In this paper we restrict
ourselves to the case R = Fp and we will often write N instead of N (Fp).

To avoid potential ambiguity caused by two possible interpretations of
elements of the Nottingham group (automorphisms versus power series un-
der substitution) we fix the following notation: if ϕ and ψ are two power
series, then

ϕ · ψ denotes the product in the ring Fp[[t]],
ϕ ◦ ψ denotes the composition of power series (if it is defined),
[ϕ] will denote the element of Aut (Fp[[t]]) which sends t to ϕ.

Note that multiplication in N (Fp) corresponds to composition of power se-
ries in reverse order: [ϕ]·[ψ] = [ψ◦ϕ]. We also agree to denote the coefficient
of ti of an element r ∈ Fp[[t]] by ri, e.g. if r = 1+2t+3t2 + . . . , then r2 = 3.

N = N (Fp) is a finitely generated pro-p group with some remarkable
properties. On the one hand, N has a lot of similarities with Fp[[t]]-analytic
groups: it is hereditarily just-infinite, has finite width, finite obliquity, and
finite lower rank; it also has the same subgroup growth type as Fp[[t]]-
perfect groups (see [LSh]). On the other hand, it is not linear and moreover,
by a theorem of Camina ([Ca1]) every countably based pro-p group can be
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embedded as a closed subgroup of N . Many of the above ”narrowness”
properties of the Nottingham group can be established by considering its

graded Lie algebra L = L(N ) =
∞⊕

n=1
Nn/Nn+1 with respect to the congru-

ence filtration {Nn}, where Nn = {t (1 + ant
n + an+1t

n+1 + . . . )}. It is
well known that L(N ) is isomorphic to the positive part of the Witt algebra

W+ = Der +Fp[t] =
∞⊕
i=1

Fp ei, where ei = ti+1∂t and [ei, ej ] = (j− i)ei+j . An

isomorphism between the two algebras is given by the map LT ([t(1+tn)]) 7→
en.

Let Lie(N ) denote the completion of L(N ) with respect to the filtration

{Ln}, where Ln =
∞⊕

k=n

Fpek. This Lie algebra has a different ”interpreta-

tion”, which will give us a better correspondence between subgroups of N
and subalgebras of Lie(N ). It comes from the following easy observation: if
R is a pronilpotent ring, then the group G = Aut (R) has a natural action on
the Lie algebra Der +(R) of pronilpotent derivations of R defined as follows:
if g ∈ G, d ∈ Der (R) and r ∈ R, set

(g d)(r) = gdg−1r.

In the case R = Fp[[t]] we have a natural isomorphism Der +(R) ∼=
Lie(N ), and the corresponding action of the Nottingham group on Lie(N )
is easily seen to be faithful. One can check that the action π : N →
Aut (Lie(N )) is given by the formula

πg (p(t)∂t) =
p(g(t))
g′(t)

∂t.

where g′(t) if the formal derivative of the power series g(t). It follows from
the above formula that if u ∈ L(N ) ⊂ Lie(N ) is homogeneous and g ∈ N ,
then πg(u) = u+[LT g, u]+higher order terms. Notice that the action of N
does not preserve the grading on Lie(N ), but it does preserve the filtration
{Ln} = {

∏
i≥n

Fpei}. Actually, when p > 3, one can show that N is equal

to the group of all filtered automorphisms of Lie(N ) which act trivially on
each quotient Ln/Ln+1. This is an easier analogue of a theorem of Klopsch
[K] which asserts that all normalized automorphisms of N (Fp) are inner.

The action of N on Lie(N ) can be used to construct explicit examples
of subgroups of N . For example, given a subalgebra M of Lie(N ), we may
consider the subgroup StabN (M) = {ϕ ∈ N | ϕ(M) ⊆M}.
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3 Construction of the groups Q(s, r)

Let r and s be positive integers such that 0 < r < ps/2 and p - r. We
also set q = ps. Consider the subalgebra q = q(s, r) =

∏
n≡0,±r mod ps

Fpen of

L = Lie(N ) which is commensurable to sl2(Fp[[t]]). It turns out that the
stabilizer of this subalgebra coincides with the group Q(s, r) announced in
the introduction.

Proposition 3.1. Let q = q(s, r) and let Q = Q(s, r) be the subgroup of N
which consists of the elements of the form

t 7→ r

√
atr + b

ctr + d
for some a, b, c, d ∈ Fp[[tp

s
]] s.t. a0 = d0 = 1 and b0 = 0 .

Then Q has the following properties:
1) Q = StabN (q) = {ϕ ∈ N | ϕ(q) = q}.
2) LieN (Q) = q.

Proof. First, let’s check that Q is a subgroup:

[
r

√
a1t

r + b1
c1tr + d1

]
·

[
r

√
a2t

r + b2
c2tr + d2

]
(t) =

 ã2 ·
a1t

r + b1
c1tr + d1

+ b̃2

c̃2 ·
a1t

r + b1
c1tr + d1

+ d̃2


1/r

=

r

√
(ã2a1 + b̃2c1)tr + (ã2b1 + b̃2d1)
(c̃2a1 + d̃2c1)tr + (c̃2b1 + d̃2d1)

, where ã2 = a2 ◦ r

√
a1t

r + b1
c1tr + d1

etc.

Since a2 ∈ Fp[[tq]], we have a2 ◦ w ∈ Fp[[tq]] for any w ∈ Fp[[t]] whence Q is
semigroup. It is also easy to see that Q is a closed subset of N . Therefore,
Q is a subgroup, since in a pro-p group g−1 is a limit of positive powers of
g.
Now we will show that Q ⊆ K, where K = StabN (q). We have:

[
r

√
atr + b

ctr + d

]
(ei) =

[
r

√
atr + b

ctr + d

]
(ti+1∂t) =

(
atr + b

ctr + d

)(i+1)/r

(
r

√
atr + b

ctr + d

)′ ∂t =

(
atr + b

ctr + d

)(i+1)/r+1−1/r (ctr + d)2

tr−1(ad− bc)
∂t =

(atr + b)i/r+1

(ctr + d)i/r−1

t1−r

ad− bc
∂t

(note that a′ = b′ = c′ = d′ = 0).
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Now if i = qk − r, then

[
r

√
atr + b

ctr + d

]
(ei) = (ctr + d)2 · t1−r ·R,

where R ∈ Fp[[tq]]. Therefore the right hand side is of the form∑
n≡1,1+r,1−r mod q

λnt
n∂t =

∑
n≡0,±r mod q

λn+1en ∈ q.

Cases i = qk and i = qk + r are treated in a similar way.
Now we claim that LN (Q) ⊇ q. This is clear since

LT
[

r
√
tr + tqk

]
=

1
r
eqk−r, LT

[
t(1 + tqk)

]
= eqk, LT

[
t

r
√

1− tqk+r

]
=

1
r
eqk+r.

Finally, we show that q ⊇ LN (K). Choose any ϕ ∈ K and let u = LT ϕ.
Since for any homogeneous x ∈ L we have ϕ(x) = x + [u, x]+ elements of
higher degree, it follows that [u, q] ⊆ q, whence u ∈ q (because q is clearly
self-normalizing). Thus all leading terms of elements of K lie in q, which
implies LN (K) ⊆ q. Therefore we have shown that LN (K) ⊆ q ⊆ LN (Q)
and Q ⊆ K. These inclusions imply that K = Q and LN (K) = q = LN (Q).

�
Remarks.
1. The group Q1(s, r) is a subgroup of Q(s, r) of index p.

2. Two expressions
[

r

√
a1t

r + b1
c1tr + d1

]
and

[
r

√
a2t

r + b2
c2tr + d2

]
represent the same

element of Q(s, r) if and only if there exists λ ∈ Fp((tq)) such that a2 = λa1,
b2 = λb1 . . . . Since p 6= 2, it is easy to see that each element ofQ(s, r) has the

unique presentation in the form

[
r

√
atr + b

ctr + d

]
where a ≡ d ≡ 1 mod tFp[[t]]

and ad− bc = 1. This fact will be used in Section 4.
3. If r is any positive number not divisible by p, we can define

Q(s, r) = {t 7→ r

√
atr + b

ctr + d
for some a, b, c, d ∈ Fp((tp

s
))} ∩ N (Fp).

If r < ps/2, this definition is consistent with the original one. It is also
easy to see that Q(s, r) = Q(s, r′) when r′ ≡ ±r mod ps, and therefore this
generalization doesn’t yield new groups. However, it allows us to represent
every element of Q(s, r) in many different ways, which will be useful at
times.
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4 The groups Q1(s, r) as deformations of SL1
2(Fp[[t]])

As mentioned in the introduction, the groups {Q1(s, r)} can be thought
of as deformations of SL1

2(Fp[[t]]). In fact there is a natural bijective map
ϕs,r : SL1

2(Fp[[t]]) → Q1(s, r) given by the formula(
a b
c d

)
7→

[
r

√
(a ◦ tq) · tr + (c ◦ tq)
(b ◦ tq) · tr + (d ◦ tq)

]
=

[
r

√
aqtr + cq

bqtr + dq

]
, where q = ps.

Notice that the map ϕs,r ”transposes matrices”. This is due to our conven-
tions about multiplication in the Nottingham group.
Remark. Under the same map the group Q(s, r) corresponds to a Sylow
pro-p subgroup of SL2(Fp[[t]]).

Some useful properties of the map ϕs,r are stated in the following propo-
sition.

Proposition 4.1. Let G = SL1
2(Fp[[t]]), H = Q1(s, r) and let ϕ = ϕs,r be

as above. Let Gn = SLn
2 (Fp[[t]]) be the nth congruence subgroup of G and

set Hn = ϕ(Gn).
1) Hn = H ∩Nqn−r.
2) The groups {Hn} form a central filtration of H.
3) If g1, g2 ∈ G with g1 − g2 ∈ tnM2(Fp[[t]]), then ϕ(g1) ≡ ϕ(g2)

mod Hn.

Proof. 1) The inclusion Hn ⊆ H ∩ Nqn−r is obvious. Now let g ∈ Imϕ ∩
Nqn−r. Then there exist a, b, c, d ∈ Fp[[t]] with ad− bc = 1, a0 = d0 = 1 and
b0 = c0 = 0 such that

g(t) = r

√
aqtr + bq

cqtq + dq
= t · (a/d)q/r ·

(
1 + (b/a)qt−r

1 + (c/d)qtr

)1/r

.

We have b/a = αtn1 + . . . , c/d = βtn2 + . . . , a/d = 1 + γtn3 + . . . for some

n1, n2, n3 ∈ N and α, β, γ 6= 0. Now g(t) ≡ t(1+
α

r
tqn1−r +

γ

r
tqn3 − β

r
tqn2+r)

mod tN+1Fp[[t]], where N = min(qn1 − r, qn3, qn2 + r). On the other hand
we know that g(t)≡ t mod tqn−r+1Fp[[t]], whence n1, n2, n3 ≥ n. Therefore
b, c ∈ tnFp[[t]] and a − d ∈ tnFp[[t]]. Since ad − bc = 1, it follows that
a− 1, d− 1 ∈ tnFp[[t]], whence g ∈ ϕ(Gn).

2) Set Qn = H ∩ Nn. Let gn = r
√
tr + tqn ∈ Qqn−r\Qqn. It follows from

the results of the previous section that the group Qqn−r/Qqn is elementary
cyclic whence Qqn−r = 〈gn〉Qqn. Therefore,

(Hn,Hm)=(Qqn−r,Qqm−r)⊆ (〈gn〉, 〈gm〉)(〈gn〉,Qqm)(〈gm〉,Qqn)(Qqm,Qqn).
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The last three factors clearly lie in Qq(n+m)−r = Hn+m. To finish the proof
it remains to check that (gn, gm) ∈ Nq(n+m)−r. We have

gqm−r·gqn−r(t) = r
√
tr + tqn◦ r

√
tr + tqm = r

√
tr + tqm + tqn (1 + tqm−r)qn/r ≡

t
r

√
1 + tqm−r + tqn−r

(
1 + tq2m−qr

)n/r ≡ r
√
tr + tqm + tqn mod tNFp[[t]].

where N = 1 + qn − r + q2m − qr = qn + qm − r + 1 + q((q − 1)m −
r) ≥ qn + qm − r + 1. The last expression is symmetric in m and n,
whence gqn−r · gqm−r(t) − gqm−r · gqn−r(t) ∈ tqm+qn−r+1Fp[[t]]. Therefore,
gqm−r · gqn−r ≡ gqn−r · gqm−r mod Nq(n+m)−r, and we are done.

3) If g1, g2 ∈ G with g1 − g2 ∈ tnM2(Fp[[t]]), then clearly ϕ(g1)(t) −
ϕ(g2)(t) ∈ tqn−r+1Fp[[t]], whence ϕ(g1) ≡ ϕ(g2) mod Qqn−r.

�
Our next goal is to show that ϕs,r induces an isomorphism of the graded

Lie algebras of SL1
2(Fp[[t]]) and Q1(s, r) with respect to the lower central

series.
Definition. Let G and H be pro-p groups with fixed filtrations {Gn} and
{Hn}. A map ϕ : G→ H is called an approximation of degree k if

(a) ϕ is bijective and ϕ(Gn) = Hn for all n;

(b) there exists a positive integer k s.t. for any x ∈ Gm and y ∈ Gn we
have ϕ(xy) ≡ ϕ(x)ϕ(y) mod Hm+n+k.

The maximal k for which condition (b) holds is called the degree of ϕ. Thus
an approximation of degree ∞ is simply an isomorphism.

Proposition 4.2. Let ϕ : G→ H be an approximation map with respect to
some central filtrations {Gn} of G and {Hn} of H.

1) ϕ induces an isomorphism ϕ∗ of the graded Lie rings of G and H given
by the formula ϕ∗(LT g) = LTϕ(g).

2) If Gn = γnG, then Hn = γnH.

Proof. Let x ∈ Gn and y ∈ Gm. We have: ϕ(xy) ≡ ϕ(x)ϕ(y) mod Hn+m+k

and ϕ(yx) ≡ ϕ(y)ϕ(x) mod Hn+m+k, whence

ϕ(xy) ≡ ϕ(y)ϕ(x)(ϕ(x), ϕ(y)) ≡ ϕ(yx) · (ϕ(x), ϕ(y)) mod Hn+m+k.

On the other hand,

ϕ(xy) = ϕ(yx · (x, y)) ≡ ϕ(yx)ϕ((x, y)) mod Hn+m+min(n,m)+k.
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Therefore, (ϕ(x), ϕ(y)) ≡ ϕ((x, y)) mod Hn+m+k, and the first part of the
proposition easily follows.

To prove the second part we use induction on n. Suppose we have already
shown that Hn = γnH. Let l > n and x ∈ Hl. Then x = ϕ(y) for some
y ∈ Gl = γlG. Now y can be written in the form

∏
i
(zi, ti) where zi ∈ γl−1G

and ti ∈ G. We have:
ϕ(y) = ϕ(

∏
(zi, ti)) ≡

∏
ϕ((zi, ti)) ≡

∏
(ϕ(zi), ϕ(ti)) mod Hl+k.

Now (ϕ(zi), ϕ(ti)) ∈ (Hl−1,H) ⊆ (γnH,H) = γn+1H. It follows that Hl ⊆
Hl+kγn+1H ⊆ Hl+2kγn+1H ⊆ · · · ⊆ γn+1H. On the other hand, Hn+1 ⊇
(Hn,H) = γn+1H. The proof is completed. �

Now we are ready to show that ϕs,r : SL1
2(Fp[[t]]) → Q1(s, r) is an

approximation map. We will keep the notations of Proposition 4.1.

Proposition 4.3. The map ϕ : G → H is an approximation map with
respect to the filtrations {Gn} and {Hn}, and deg (ϕ) ≥ (q − 1)/2, where
q = ps.

Proof. Let g1 =
(
a11 a12

a21 a22

)
and g2 =

(
b11 b12
b21 b22

)
be two elements of G

with deg g1 = n and deg g2 = m. Set h1 = ϕ(g1) and h2 = ϕ(g2). We have

ϕ(g1)ϕ(g2) = h1h2 =

[
r

√
aq

11t
r + aq

21

aq
12t

r + aq
22

]
·

[
r

√
bq11t

r + bq21
bq12t

r + bq22

]
=[

r

√
(b̃q11a

q
11 + b̃q21a

q
12)t

r + (b̃q11a
q
21 + b̃q21a

q
22)

(b̃q12a
q
11 + b̃q22a

q
12)tr + (b̃q12a

q
21 + b̃q22a

q
22)

]
,

where b̃ij = bij ◦ h1(t), and

ϕ(g1g2) =

[
r

√
(aq

11b
q
11 + aq

12b
q
21)t

r + (aq
21b

q
11 + aq

22b
q
21)

(aq
11b

q
12 + aq

12b
q
22)tr + (aq

21b
q
12 + aq

22b
q
22)

]
.

We need to prove that ϕ(g1g2) ≡ ϕ(g1)ϕ(g2) mod Hn+m+(q−1)/2. Ac-
cording to part 3) of Proposition 4.1, this is equivalent to showing that
ai1b̃1j + ai2b̃2j − ai1b1j − ai2b2j ∈ tn+m+(q−1)/2Fp[[t]] for i, j = 1, 2. Clearly,
it will be sufficient to check that b̃ij − bij ∈ tn+m+(q−1)/2Fp[[t]] for i, j = 1, 2.
We’ll do the case i = j = 1; the other cases are analogous.
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We know that b11 = 1 +
∑

i≥m βit
i, whence b̃11 = 1 +

∑
i≥m βi(h1(t))i.

Since h1(t) ∈ Qqn−r, we have h1(t) = t(1 +
∑

j≥qn−r µjt
j). Therefore,

b̃11 = 1 +
∑
i≥m

βit
i(1 +

∑
j≥qn−r

µjt
j)i ≡ b11 mod tm+qn−rFp[[t]].

It remains to note that m+qn−r ≥ n+m+q−1−r ≥ n+m+(q−1)/2 �

Remark. We have actually shown that lims→∞ degϕs,r = ∞, i.e. as s→∞
the groups {Q1(s, r)} ”converge” to SL1

2(Fp[[t]]).
Since Gn = γnG, the last two propositions imply that Hn = γnH, and

ϕs,r induces an isomorphism of the graded Lie algebras of SL1
2(Fp[[t]]) and

Q1(s, r) with respect to the lower central series. Therefore the Lie algebra
of Q1(s, r) is isomorphic to sl2(Fp)⊗ tFp[t] as a graded Lie algebra. The fact
that Q1(s, r) is hereditarily just-infinite easily follows from this.

Before completing the proof of Theorem 1.1, we remark that SL1
2(Fp[[t]])

is not the unique linear group whose Lie algebra with respect to the lower
central series is isomorphic to sl2(Fp)⊗tFp[t] − the same is true for the group
SL1

2(Zp). However, these two groups have different Lie algebras with respect
to the Zassenhaus filtration. In the case of SL1

2(Fp[[t]]), the Zassenhaus fil-
tration coincides with the lower central series, and the associated Lie algebra
is isomorphic to sl2(Fp) ⊗ tFp[t] as a restricted Lie algebra. On the other
hand, the Lie algebra of SL1

2(Zp) with respect to the Zassenhaus filtration
is abelian. Theorem 1.1 asserts that the groups Q1(s, r) and SL1

2(Fp[[t]])
cannot be distinguished in this way.

Note that since the Lie algebra sl2(Fp) ⊗ tFp[t] is centerless, any two
restricted structures on it must be identical. Therefore, to finish the proof
of Theorem 1.1, it suffices to show that the Zassenhaus filtration of Q =
Q1(s, r) coincides with the lower central series. The latter amounts to check-
ing the inclusion (γiQ)p ⊆ γpiQ for all i. We know that γiQ = Qqi−r,
where Qj = Q ∩ Nj as before. Recall that Qqi−r = 〈f〉Qqi where f is
an arbitrary element of Qqi−r\Qqi. It will be convenient for us to take
f = fqi−r =

[
t(1 + tqi−r)−1/(qi−r)

]
since this element has order p. Now any

g ∈ Qqi−r can be written in the form g = hfλ where h ∈ Qqi and λ ∈ N.
We need to show that gp ∈ Qpqi−r. It follows from Hall-Petrescu formula
that (hfλ)p = hpfpλ ·w1 ·w2 where w1 is a product of commutators in h and
fλ of length at least p and w2 is a product of pth powers of commutators of
length at least 2.

We have hp ∈ Qpqi, (fqi−r)pλ = 1, w1 ∈ (γiQ, . . . , γiQ) ⊆ γpiQ since
h, fqi−r ∈ γiQ, and w2 ∈ (Nqi−r,Nqi−r)p ⊆ N2p(qi−r). Since 2p(qi − r) ≥
2pqi− pq > pqi− r, all four factors lie in γpiQ. �
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5 Hausdorff dimension and rigid groups

We start by reviewing some basic facts about Hausdorff dimension (see [BSh]
and [Sh] for more details).

Let G be a profinite group with fixed filtration {Gn}. As already stated
in the introduction, the Hausdorff dimension of a subgroup H of G can be
computed by the formula

Hdim GH = lim inf
n→∞

log |HGn : Gn|
log |G : Gn|

.

It is clear that the Hausdorff dimension of a subgroup is a real number
between 0 and 1, and that open subgroups always have dimension 1.

If G is a pro-p group and the filtration {Gn} is p-central, the Haus-
dorff dimension of a subgroup H is completely determined by its Lie algebra
LG(H). In particular, the formula for Hausdorff dimension can be rewritten

as follows. Given a graded Lie algebra L =
∞⊕

n=1
Ln and its graded subalge-

bra M =
∞⊕

n=1
Mn, define the lower density of M in L to be ldenseL(M ) =

lim inf
n→∞

∑n
k=1 dimMk∑n
k=1 dimLk

. One can now check that Hdim G(H) = ldenseL(G)L(H ).

The following simple property of Hausdorff dimension will be frequently
used. Let C ⊆ B ⊆ A be profinite groups, let {An} be some filtration of A,
and let {Bn} and {Cn} be the induced filtrations on B and C. Then

Hdim AC ≥ Hdim BC ·Hdim AB (5.1)

where dimension is computed with respect to the above filtrations. If either
Hdim AB or Hdim BC is pure, we have equality in the above formula, and
if both Hdim AB or Hdim BC are pure, then so is Hdim AC.

Determination of the set of possible Hausdorff dimensions of subgroups of
a given group G, called the spectrum of G, can be considered as a first step in
understanding the subgroup structure of G. The knowledge of the spectrum
can also be used to prove that two given groups are not commensurable
(see [BK] for examples of such applications). The problem with the above
notion is its dependence on the choice of a filtration. If G is pro-p, one may
elect to use some natural filtration, e.g. Zassenhaus filtration, but in that
case it is hard to control how the filtration changes if we replace a group by
a finite index subgroup. In this section we introduce the notion of a rigid
group. Hausdorff dimension of subgroups of groups with this property will
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be independent of the choice of a filtration under very mild assumptions
on the latter. We remark that our notion of rigidity is a variation of the
concept of finite obliquity introduced in [KLP].
Definition. Let G be a profinite group. A filtration {Γn} of G is called
strongly rigid if there exists e ∈ N such that for any subgroup N oCG we
have Γn+e ⊆ N ⊆ Γn for some n ∈ N.
Definition. A profinite group G is called rigid if there exists C ∈ N such
that for any N1, N2 oCG either |N1 : N1 ∩N2| < C or |N2 : N1 ∩N2| < C.
Definition. A profinite group G is called strongly rigid if some finite width
filtration of G is rigid.
Remark. It is easy to see that a strongly rigid group is rigid and just-
infinite.

The following basic properties of rigid groups will be used in this paper.

Lemma 5.1. Let G be a profinite group and let H be an open subgroup of
G. If H is rigid, then so is G.

Proof. Let A,B o
CG. Then A ∩ H,B ∩ H o

CH. Since |A : A ∩ H| and
|B : B ∩H| are bounded by |G : H|, the result follows. �

Lemma 5.2. Let G be a group which has a filtration consisting of rigid
subgroups. Then any group commensurable to G is rigid.

Proof. Let H be commensurable to G. Find open subgroups A ⊆ H and
B ⊆ G such that A ∼= B. By assumption B contains an open rigid subgroup,
whence H is rigid by the previous lemma. �

Lemma 5.3. Let G be a rigid group and let H be a subgroup of G.
1) H has the same Hausdorff dimension with respect to all finite width

filtrations of G.
2) If H has pure dimension with respect to some finite width filtration of

G, then H has absolute dimension.

Proof. We’ll prove the first assertion of the lemma; the proof of the second
assertion is completely analogous. Let H be a subgroup of G, and let {An}
and {Bn} be two finite width filtrations of G. Set

a(n) = |H : H ∩An|, a0(n) = |G : An|, αn = log a(n)/log a0(n),
b(n) = |H : H ∩Bn|, b0(n) = |G : Bn|, βn = log b(n)/log b0(n).

It suffices to show that Limset ({αn}) = Limset ({βn}), where Limset (·)
stands for the set of limit points of a sequence.
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Let c = max
n∈N

|Bn : Bn+1|. Then for any n ∈ N we can find m = m(n)

such that a0(n) ≤ b0(m) ≤ c ·a0(n). Since G is rigid, there exists a constant
c′ such that |An : An ∩Bm| < c′ and |Bm : An ∩Bm| < c′. Now,

a(n) ≤ |H : H ∩An ∩Bm| ≤ |H : H ∩Bm| · |Bm : An ∩Bm| ≤ c′b(m),

and similarly b(m) ≤ c′a(n).
Obtained estimates clearly imply that limn→∞ |αn − βm(n)| = 0, whence

Limset ({αn}) ⊂ Limset ({βn}). The reverse inequality is proved in the same
way. �

Proposition 5.4. A Lie simple pro-p group is hereditarily rigid.

Proof. Let G be a Lie simple pro-p group and let {Gn} be a finite width
filtration of G such that the associated Lie algebra L = L(G) is isomorphic
to g⊗ tFp[t] as a graded Lie algebra, where g is simple over Fp. Denote by
{Ln} be the corresponding filtration of L. By Lemma 5.2 it’ll be sufficient
to show that the subgroup Gn of G is rigid for any n. Let n be fixed. Take
g ∈ Gk\Gk+1 where k ≥ n and let u = LT g. Then u = xtk for some x ∈ g.
Let I = [u, Ln] be the ideal of Ln generated by u. Using simplicity of g it’s
easy to show that I ⊇ Lk+e where e depends only on n. On the other hand,
I ⊆ LG(gGn), and therefore Gk+e ⊆ gGn ⊆ Gk, whence Gn is rigid.

�

Remark. Similarly one can show that the Nottingham group N (Fp) is hered-
itarily rigid.

6 The centralizers of elements of order p in N (Fp)

In this section we give an explicit description of the centralizers of elements
of order p in the Nottingham group and use it to prove Theorems 1.5 and 1.8.
We start with the following easy observation.

Lemma 6.1. Regard N = N (Fp) as a subgroup of the group of auto-
morphisms of Fp((t)). Let H ⊂ N be a finite subgroup and let K be the
fixed field of H. Then the normalizer of H in N coincides with the set
StabNK = {g ∈ N | g(K) = K}.

Proof. First of all we remark that since N is a pro-p group, the conditions
g(K) = K and g(K) ⊆ K are equivalent. By Galois theory we know that
H = {g ∈ N | g |K= id}. Take any g ∈ N such that g(K) ⊆ K. Then for
any h ∈ H and any a ∈ K we have ghg−1a = gg−1a = a (since g−1a ∈ K).
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Thus ghg−1 ∈ H. In the other direction, if ghg−1 = h′ ∈ H, then for any
a ∈ K we have ghg−1a = h′a = a, whence h(g−1a) = g−1a. Therefore
g−1(K) ⊆ K. �

Proof of Theorem 1.5:
Let f be an element of order p. By Theorem 1.4 it suffices to consider

the case f = fn =
[

t
n
√

1− tn

]
. Let Kn be the fixed field of fn. We claim

that Kn = Fp((sn)), where sn =
tp

n
√

1− tn(p−1)
. Indeed, we have:

fn(sn) =
tp

n
√

1− tn(p−1)
◦ t

n
√

1− tn
=

(
t

n
√

1− tn

)p

n

√
1− tn(p−1)

(1− tn)p−1

=
tp

n
√

(1− tn)p − tn(p−1)(1− tn)
=

tp

n
√

1− tn(p−1)
= sn.

Thus fn fixes Fp((sn)). On the other hand, [Fp((t)) : Kn] = card 〈fn〉 = p ,
whence Kn = Fp((sn)).

Lemma 6.2. Let fn,Kn be as above. Set A = StabN (Kn), B = CentN (fn)

and C =
{

t
n
√

1 + tnα
| α ∈ Kn and tnα ∈ tFp[[t]]

}
. Then A = B = C.

Proof. First of all notice that CentN (fn) = NormN (〈fn〉), since the elements
f i

n and f j
n with i 6≡ j mod p have distinct leading terms and thus cannot be

conjugate. Therefore A = B by Lemma 6.1. Now we will prove that B = C.

Pick g ∈ N and write g(t) in the form
t

n
√

1− tnα
for some α ∈ Fp((t)). Let

us compute g · fn and fn · g. We have

g · fn(t) =
t

n
√

1− tn
◦ t

n
√

1− tnα
=

t
n
√

1− tnα

n

√
1− tn

1− tnα

=
t

n
√

1− tnα− tn
,

fn · g(t) =
t

n
√

1− tnα
◦ t

n
√

1− tn
=

t
n
√

1− tn

n

√
1− tn

1− tn
α̃

=
t

n
√

1− tnα̃− tn
,
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where α̃ = α ◦ t
n
√

1− tn
. But α ◦ t

n
√

1− tn
= fn(α). Thus g commutes with

fn if and only if fn(α) = α, which is equivalent to saying that α ∈ Kn �

Denote the centralizer of fn by Cn. Since Kn
∼= Fp((t)), we obtain a

homomorphism θn from Cn to N (Fp) defined as follows: take g ∈ Cn; then

g(sn) = sn(1 + g1sn + g2s
2
n + . . . ) for some gi ∈ Fp.

Set
θn(g) =

[
t(1 + g1t+ g2t

2 + . . . )
]
∈ N (Fp).

Clearly, the kernel of this map is the cyclic group of order p generated by
fn. To find the image of θn we compute g(sn) for g ∈ Cn. We know that

g(t) =
t

n
√

1 + tnα
, where α = β ◦ sn for some β ∈ Fp((t)). Therefore we have

g(sn) =
tp

n
√

1− tn(p−1)
◦ t

n
√

1 + tnα
=

tp

n
√

(1 + tnα)p

n

√
1− tn(p−1)

(1 + tnα)p−1

=

tp

n
√

(1 + tnα)p − tn(p−1)(1 + tnα)
=

tp

n
√

1 + tnpαp − tn(p−1) − tnpα
=

tp

n
√

1− tn(p−1)

n

√
1 +

tnp

1− tn(p−1)
(αp − α)

=
sn

n
√

1 + sn
n(β(sn)p − β(sn))

.

Therefore θng (t) =
t

n
√

1 + tn(βp − β)
.

If γ ∈ tFp[[t]], then the equation βp − β = γ always has the solution in
tFp[[t]], namely β = −γ − γp − γp2 − . . . . Finally, given a ∈ tFp[[t]], the

equation
t

n
√

1 + tnγ
= t · (1 + a) has the solution

γ =
(1 + a)−n − 1

tn

which lies in tFp[[t]] whenever a ∈ tn+1Fp[[t]]. Therefore the image of θn

contains the congruence subgroup Nn+1, and the proof is completed. �

Proof of Theorem 1.8. We consider 3 cases:
Case 1: H is finite.
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First of all we remark that the quotient of the normalizer of H by the
centralizer of H acts faithfully on H, and since H is finite, the centralizer
has finite index in the normalizer. Since N is rigid, it will be enough to prove

that the normalizer of H has pure Hausdorff dimension
1
|H|

with respect to

the congruence filtration of N . By Theorem 1.4 the statement is true when
|H| = p, and we proceed by induction on |H| = pk.

Let z ∈ H be a central element of order p and denote its centralizer in
G by C. If F ⊂ Fp((t)) is the fixed field of z and G′ = Aut 1(F ) ∼= N (Fp),
we have a map θ : C → G′ as described in the proof of Theorem 1.5. Set
H ′ = θ(H). Let N ′ = Nθ(C)(H ′) be the normalizer of H ′ in θ(C) and let
N = NG(H)∩C. Note that CentG(H) ⊆ N ⊆ NG(H), so it suffices to show
that N has pure Hausdorff dimension 1/pk in G.

Clearly, N = θ−1(N ′). Now by induction Hdim G′(N ′) =
1

pk−1
. It is easy

to check that the pullback under θ of the congruence filtration of G′ and the
restriction of the congruence filtration of G to C are the same apart from a
finite number of terms. Since Ker θ is finite and Im θ is cofinite, we conclude

that Hdim C(N)= Hdim θ(C)(N ′) = Hdim G′(N ′) =
1

pk−1
. Therefore,

Hdim G(N) = Hdim G(C) ·Hdim C(N) =
1

pk−1
· 1
p

=
1
pk
.

Case 2: H is infinite torsion.
In this case by Zelmanov’s solution to the restricted Burnside problem

H contains finite subgroups of arbitrarily large order, whence the centralizer
of H has absolute dimension zero by the previous case.
Case 3: H is not torsion.

This is the only case where we need to use Wintenberger’s theorem. Let
h ∈ H be an element of infinite order, let C = CentG(h) ⊇ CentG(H), and
let J = {j ∈ N | C ∩ Gj 6= C ∩ Gj+1}, where {Gj} is the congruence
filtration of G. Suppose that J has nonzero upper density ε. Choose n ∈ N
s.t. pnε > 1 and set M = deg (hpn

). Now let j ∈ J with j > M and choose
k ∈ C with deg (k) = j. By Theorem 1.7 applied to the abelian group 〈k, h〉
we have j ≡ M mod pn, which contradicts the assumption on the density
of J . Therefore the subgroup C has absolute dimension zero in G. �
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7 Nonlinearity criteria

In this section we establish two nonlinearity criteria and use them to prove
Theorem 1.2.

Proof of Theorem 1.6.
In the course of the proof we will use some facts from the theory of linear

algebraic groups for which [Ma, Chapter 1] is a good reference.
Suppose that G is just-infinite and linear over some pro-p ring. By a

theorem of Jaikin-Zapirain [JZ] G is linear over Qp or Fp((t)). Since p-
adic analytic groups are virtually torsion free, we are left with the second
possibility. In this case by Pink’s theorem [P] there exist subgroups Γ3 C
Γ2 C Γ1 C Γ = G where

Γ/Γ1 is finite;
Γ1/Γ2 is abelian of finite exponent;
there exists a local field F of characteristic p, a connected semisimple

adjoint algebraic group A over F with a universal cover π : Ã → A and an
open compact subgroup L of Ã(F ) such that Γ2/Γ3 is isomorphic to π(L)
as a topological group;

Γ3 is solvable.

Since G is just-infinite, the subgroup Γ3 is either trivial or has finite index
in G. In the latter case G is a just-infinite solvable group, hence p-adic
analytic. Thus we can assume that Γ3 = {1}. Since G is finitely generated,
Γ2 has finite index in G. The kernel of the map π is finite, whence Γ2 is
isomorphic to an open subgroup of L which we call H. We consider 2 cases:

Case 1: Ã is isotropic.
In this case there exists an F -monomorphism of F -groups Ga,F → Ã

(where Ga,F denotes the additive group of a field F ). Embed Ã as an F -
subgroup of GLn for some n, and let ϕ : Ga,F(F ) → Ã(F ) and ψ : Ã(F ) →
GLn(F ) be the corresponding maps between the groups of F -points. The
congruence filtration of GLn(F ) induces a finite width filtration on H ⊂
A(F ). Since the subgroup K = ϕ(Ga,F(F ))∩H is isomorphic to (Fp[[t]],+),
it will be sufficient to show that K has positive Hausdorff dimension in H
with respect to the above filtration. The latter easily follows from the fact
that θ = ψ ◦ ϕ is a morphism of affine varieties, whence the entries of the
matrix θ(x) = ψ ϕ(x) are polynomials in x.

Case 2: Ã is anisotropic.
Since Ã is simply connected, it is a direct product of finitely many almost

simple groups Ai. Each Ai is obtained by restriction of scalars from an
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absolutely almost simple group Bi defined and anisotropic over some finite
extension Fi of F , and Ai(F ) is isomorphic to Bi(Fi) as a topological group.
By the classification of absolutely almost simple algebraic groups over local
fields (see [Ti]), Bi(Fi) is isomorphic to the group SL1(Di) of reduced norm 1
elements of a finite-dimensional division algebra Di over Fi. Such an algebra
has no elements of order p because xp = 1 implies (x − 1)p = 0. Therefore
the pro-p group H ⊆ Ã(F ) is torsion-free. �

Proof of Corollary 1.9. Let H be a group satisfying the conditions of the
corollary and suppose that H is linear. According to Theorem 1.6, H has
an open subgroup K which has an abelian subgroup S of positive Hausdorff
dimension with respect to some (hence arbitrary by Lemma 5.3) finite width
filtration of K. On the other hand, by Theorem 1.8, S has dimension zero
in N (Fp) with respect to the congruence filtration. But this contradicts
formula (5.1) applied to the triple S ⊂ K ⊂ N (Fp).

�

Proposition 7.1. Let G be a pro-p group. Suppose that there exists a
sequence {gn ∈ G} of torsion elements converging to the identity such that
CentG(gn) has infinite index in G for each n, but the group CentG(gn)/〈gn〉
is isomorphic to an open subgroup of G. Then G is not linear over any field
(as an abstract group).

Proof. Assume that G is linear and let n be the minimal positive integer such
that some open subgroup H of G can be embedded into a linear algebraic
group A of dimension n. We know that H contains some element of the
sequence {gn}, call it g. We have
CentH(g) ⊆ CentA(g) and CentH(g)/〈g〉 ⊆ CentA(g)/〈g〉.

The group CentA(g)/〈g〉 is algebraic as a quotient of an algebraic sub-
group by a Zariski closed normal subgroup. Moreover, the dimension of this
group is less than n for otherwise the index |A : CentA(g)| would be finite,
contrary to our assumptions. On the other hand, the group CentH(g)/〈g〉
is isomorphic to an open subgroup of G, thus we have a contradiction. �

Proof of Theorem 1.2.

Part 1: We need to check that Q = Q1(s, r) satisfies the conditions of Corol-
lary 1.9, which is straightforward. Indeed, this group is not virtually torsion

free, since the elements fn =
[

t
n
√

1− tn

]
lie in Q when n ≡ r mod ps. It is

also hereditarily rigid by Proposition 5.4.

22



Part 2: It will be more convenient for us to prove nonlinearity of the group
Q = Q(1, r), which is equivalent to the assertion of the theorem. Our goal is
to show that Q satisfies the conditions of Proposition 7.1 where the sequence
of elements of order p is chosen as above. We have seen in Section 6 that
the centralizer of fn in N (Fp) consists of the elements[

t
n
√

1 + tn · (β ◦ sn)

]
, where sn =

tp

n
√

1− tn(p−1)
, and the map

ϕ :

[
t

n
√

1 + tn(β ◦ sn)

]
7→

[
t

n
√

1 + tn(βp − β)

]
is a homomorphism from C = CentN (fn) to N with Kerϕ = 〈fn〉 and
Imϕ ⊇ Nn+1. It suffices to check that ϕ(Q∩C) contains an open subgroup
of Q.

As we mentioned before, if n ≡ r mod p, then any element of Q can

be written in the form

[
n

√
atn + b

ctn + d

]
for some a, b, c, d ∈ Fp((tp)). Take any

g ∈ N (Fp) and write it in the form g =
[

t
n
√

1 + tnγ

]
for some γ. It follows

from the above remark that g ∈ Q if and only if there exist a, b, c, d ∈ Fp((tp))

such that
atn + b

ctn + d
=

tn

1 + tnγ
, which is equivalent to γ =

ctn + d

atn + b
− 1
tn

.

Assume now that g =
[

t
n
√

1 + tnγ

]
∈ Q ∩ Nn+1. Then γ is of the above

form and γ ∈ tFp[[t]]. We know that Imϕ ⊇ Nn+1 and the preimage of g is

equal to

[
t

n
√

1 + tn(β ◦ sn)

]
, where β = −γ − γp − γp2 − . . . . We have

β ◦ sn = −γ ◦ sn − γp ◦ sn − · · · =

−
c̃

tnp

1− tn(p−1)
+ d̃

ã
tnp

1− tn(p−1)
+ b̃

+ e+
1− tn(p−1)

tnp
=

(c̃tnp + d̃)tn + d̃tnp

(ãtnp + b̃)tn + b̃tnp
+

1
tnp

+ e− 1
tn

=

a1t
n + b1

c1tn + d1
+ e1 −

1
tn

=
(a1 + c1e1)tn + (b1 + d1e1)

c1tn + d1
− 1
tn
,

where ã, b̃, c̃, d̃, e, a1, b1, c1, d1, e1 ∈ Fp((tp)). Thus β◦sn has the desired form,
whence ϕ−1(g) ∈ Q. �
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8 Natural subgroups of the groups {Q(s, r)}
In this section we discuss the subgroup structure of the groups {Q(s, r)}.
The following subgroups are of particular interest.

1. The upper triangular subgroup
B+(s, r) = {t 7→ r

√
atr + b for some a, b ∈ Fp((tp

s
))} ∩ N (Fp).

2. The lower triangular subgroup

B−(s, r) = {t 7→ t
r
√
atr + b

for some a, b ∈ Fp((tp
s
))} ∩ N (Fp).

3. The strictly upper triangular subgroup
U+(s, r) = {t 7→ r

√
tr + b for some b ∈ Fp((tp

s
))} ∩ N (Fp).

4. The strictly lower triangular subgroup

U−(s, r) = {t 7→ t
r
√

1 + trb
for some b ∈ Fp((tp

s
))} ∩ N (Fp).

5. The diagonal subgroup T (s) = {t 7→ t · a | a ∈ Fp((tp
s
))} ∩ N (Fp).

Remarks.
1) Some of the above groups have been studied before. The groups {B+(s, 1)}
were shown to be hereditarily just-infinite of finite width in [BK]. The groups
{T (s)} were studied by Fesenko [F] in connection with certain number-
theoretic questions. Fesenko proved that these groups are hereditarily just-
infinite; it is believed that they also have finite width.

2) Let s be fixed. The definitions of all the groups above make sense as long
as p - r, and for any such r we have U±(s, r) ⊂ B±(s, r) ⊂ Q(s, r). As we
remarked before, Q(s, r) = Q(s, r′) if r′ ≡ ±r mod ps. The situation with
the groups {B±(s, r)} is similar: B±(s, r) = B±(s, r′) if r′ ≡ r mod ps, and
B+(s, r) = B−(s, r′) if r′ ≡ −r mod ps. On the other hand, the groups
{U±(s, r)} are all distinct; moreover, U+(s, r) ∩ U−(s′, r′) = {1} if r 6= r′.

The groups {B±(s, r)} and {U±(s, r)} share certain properties of their Lie
group counterparts:

Q(s, r) = B+(s, r)U−(s, r) = U−(s, r)B+(s, r) =
U+(s, r)B−(s, r) = B−(s, r)U+(s, r),

B+(s, r)∩U−(s, r) = B−(s, r)∩U+(s, r) = {1}, B+(s, r)∩B−(s, r) = T (s).

It turns out that the analogy with matrix groups goes further, and the
subgroups {B±(s, r)} admit an abstract characterization as follows.
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Proposition 8.1. Let K be a non-open subgroup of Q = Q(s, r). Then
HdimQ(K) ≤ 2/3 and the equality holds if and only of K is conjugate in Q
to an open subgroup of B+(s, r) or B−(s, r).

Let us say that B ⊂ Q = Q(s, r) is a Borel subgroup if B is conjugate
to B+(s, r) or B−(s, r). According to the above proposition, B is a Borel
subgroup if and only if HdimQ(B) = 2/3 and B is maximal with this prop-
erty. This characterization will play a crucial role in the proof of Theorem
1.3. The proof of Proposition 8.1 will be postponed until the next section.

Each of the groups Q(s, r) has another interesting family of subgroups
{Q(s, r;n)}∞n=1 defined as follows. If n = pak where p - k, set Q(s, r;n) =
Q(s+a, r)∩A(k), where A(k) = {

[
t(1 + akt

k + a2kt
2k + . . . )

]
}. These sub-

groups seem to be the analogues of the subgroups of {SL2(Fp[[tn]])}∞n=1 of
SL2(Fp[[t]]). It turns out that each of the groups {Q(s, r;n)} is commen-
surable to one of the groups considered before. Indeed, given s, r, k with
p - r, k, we can find u such that uk ≡ r mod ps. Let ϕk : N (Fp) → N (Fp)

be a monomorphism defined by [α] 7→
[

k
√
α ◦ tk

]
. It’s easy to see that ϕk

maps Q(s, u) onto an open subgroup of Q(s, r) ∩ A(k).
Remark. Similarly one can show that the groups Q(s, r) and Q(s, r′) can

be embedded into each other as subgroups of positive Hausdorff dimension.
Now let us discuss the Hausdorff spectra of the groups {Q(s, r)} and their

connection with the spectra of N (Fp) and SL1
2(Fp[[t]]). It follows from the

results of [BSh] that if G is any sl2(Fp)-group, then SpecG ⊆ [0, 2/3] ∪ {1}.
In the case G = SL1

2(Fp[[t]]) the whole interval [0, 2/3] lies in the spectrum
(see [BSh]). The proof is based on the following idea. Let B and U be the
subgroups of the upper triangular and the strictly upper triangular matrices
in G respectively. Then Hdim GB = 2/3 and Hdim GU = 1/3, and we have
U ∼= Fp[[t]] and B/U ∼= Fp[[t]]

∗. Now the groups Fp[[t]] and Fp[[t]]
∗ have

plenty of subgroups of any given size, and the inclusion SpecG ⊃ [0, 2/3]
easily follows. In the case of the groups {Q(s, r)} we can say the following.

Proposition 8.2. The following hold:
a)
⋃∞

n=1{1/n} ∪
⋃∞

n=1{2/3n} ⊆ SpecQ(s, r) ⊆ [0, 2/3] ∪ {1};
b) SpecQ(1, 1) ⊇ [0, 1/3].

For the proof of part a) one just needs to check that HdimQ(s,r)Q(s, r;n) =
1/n and HdimQ(s,r)B(s, r;n) = 2/3n where B(s, r;n) is a Borel subgroup
of Q(s, r;n). Part b) follows from [BK, Lemma 4.1]. The situation here is
similar to the case of SL2, as all the subgroups contributing to the interval
[0, 1/3] can be chosen inside the subgroup U+(1, 1). On the other hand, it
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is not clear how many points from (1/3, 2/3) lie in the spectrum of Q(s, r).
The reason is that unlike the case of SL2, the group B+(s, r) is very far from
being solvable.

Finally, using formula (5.1) and the fact that Q(s, r) has absolute Haus-
dorff dimension 3/ps in N , we obtain the following relation between the
spectra of N and Q(s, r):

SpecN ⊇
∞⋃

s=1

(ps−1)/2⋃
r=1

3
ps

SpecQ(s, r).

Thus we conclude that SpecN ⊇ {3/(pk)}∞k=1. Combining this with the
results of [BK], we get the following information about SpecN for p > 2:

[0, 1
p ]∪{ 3

2p}∪ {
3
p}∪ {

1
n}
∞
n=1 ∪{1

p + 1
ps }∞s=1 ⊆ SpecN ⊆ [0, 2

p ]∪{3
p}∪ {

1
n}
∞
n=1.

Remark. The fact that SpecN ∩ (2/p, 3/p) = ∅ was never stated before, but
it is actually an easy consequence of the proof of [BSh, Theorem 1.6].

As one can see, the only unknown part of SpecN lies in the open interval
(1/p, 2/p). Our investigation yielded two previously unknown points in the
spectrum: {3/p} and {3/2p}.

9 Classification up to commensurability

The goal of this section is to obtain a partial classification up to commen-
surability of the groups in the families B = {B+(s, r)}, Q = {Q(s, r)} and
T = {T (s)}.

Theorem 9.1. a) If two groups belonging to the families B,Q or T are
commensurable, they belong to the same family.
b) The groups {B+(s, 1)}∞s=1 are pairwise non-commensurable.
c) The groups {Q(s, 1)}∞s=1 are pairwise non-commensurable.
d) None of the groups in these families is commensurable to N if p 6= 3.

Remark. When p = 3, the group Q(1, 1) coincides with the Nottingham
group N .

Part b) of this theorem is proved in [BK]. The proof is based on the
computation of certain commensurability invariants ρ+ and ρ− which are
defined as follows. Let G be a pro-p group such that G(n) is open in G
for all n (where G(n) is the nth term of the derived series of G). Define
ρ+(G) = lim sup

n→∞
n
√

log |G : G(n)| and ρ−(G) = lim inf
n→∞

n
√

log |G : G(n)|. We
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will make use of these invariants as well to prove the other assertions of the
theorem.

Proposition 9.2. The following hold:
1) ρ+(Q(s, r)) = ρ−(Q(s, r)) = 2 for all r, s.
2) ρ−(B+(s+ 1, r)) > ρ+(B+(s, 1)) > 2 for all r, s.

Proof. Part 1) It is obvious that ρ±(Q(s, r)) ≥ 2 since G(n) ⊆ γ2n(G). On
the other hand, if G is a pro-p group and L is its graded Lie algebra with
respect to some filtration, then LG(G(n)) ⊇ L(n). Thus it suffices to show
that lim sup

n→∞
n
√

log |L : L(n)| = 2. Since ρ+ is a commensurability invariant

we can assume (by Theorem 1.1) that L = sl2(Fp)⊗ tFp[t]. But then clearly
log p|L : L(n)| = 3 · (2n − 1), and the result follows.
Part 2) We’ll need the following lemma:

Lemma 9.3. Let K be a subgroup of N . Set bn(K) = max{m | K(n) ⊆ Nm}
and define ρ̃(K) := lim inf

n→∞
n
√
bn(K). Then:

1) If K ⊆ L, then ρ̃(K) ≥ ρ̃(L).
2) If HdimN (K) > 0, then ρ̃(K) ≤ ρ−(K).

Remark. The value of ρ̃ depends on the embedding of K in N .

Proof. Part 1) is obvious.

Part 2): Set α(n) =
log |K : K ∩Nn|

log |N : Nn|
. We have:

log |K : K(n)|≥ log |K : K∩Nbn |=
log |K : K ∩Nbn |

log |N : Nbn |
log |N : Nbn |= α(bn)(bn−1),

whence
1
n

log (log |K : K(n)|) ≥ 1
n

(logα(bn) + log (bn − 1)). Now,

lim inf
n→∞

α(bn) ≥ HdimNK > 0, lim inf
n→∞

1
n

log (log |K : K(n)|) = log ρ−(K),

and lim inf
n→∞

1
n

log (bn − 1) = log ρ̃(K), and the desired inequality follows. �

Now we can finish the proof of the proposition. Pick u ∈ N such that
ru ≡ 1 mod ps. Let ϕu : N (Fp) → N (Fp) be a monomorphism defined
by [α] 7→

[
u
√
α ◦ tu

]
. It’s easy to see that ϕu maps B+(s, r) onto an open

subgroup of B+(s, 1) ∩ A(u). Since B+(s, 1) ∩ A(u) has positive Hausdorff
dimension in N , Lemma 9.3 yields

ρ−(B+(s, r)) = ρ−(B+(s, 1) ∩ A(u)) ≥ ρ̃(B+(s, 1) ∩ A(u)) ≥ ρ̃(B+(s, 1)).
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On the other hand, from the proofs of [BK, Proposition 8.5] and [BK, The-
orem 1.6] it follows that ρ̃(B+(s + 1, 1)) > ρ+(B+(s, 1)) > 2. The proof is
completed. �

Proof of Theorem 9.1
The groups in the family T are clearly distinct from the others: they are
torsion free, while the groups in the families B and Q are not virtually
torsion free. The families B and Q can be separated via the invariant ρ+ by
Proposition 9.2. This finishes the proof of the first part.
Part 3) According to Proposition 8.1, Q(s, 1) has at most 2 commensura-
bility classes of subgroups of Hausdorff dimension 2/3, and these classes
are represented by the subgroups B+(s, 1) and B−(s, 1) = B+(s, ps − 1). If
Q(s, 1) and Q(s′, 1) with s < s′ were commensurable to each other, then
B+(s, 1) would be commensurable to B+(s′, 1) or B+(s′, ps′ − 1), which is
clearly impossible by Proposition 9.2.
Part 4) The groups {B+(s, r)} are not commensurable toN since ρ+(N )=2.
Finally, to show that Q(s, r) is not commensurable to N , it suffices to note
that N has no subgroup of Hausdorff dimension 2/3: it is proved in [BSh]
that the Hausdorff dimension of a non-open subgroup of N can’t exceed 1/2
for p > 5 and 3/5 for p = 5. Since N is hereditarily rigid, we are done.

�
The remainder of this section is devoted to the proof of Proposition 8.1.

We start with some rather general considerations.

Recall that {Nn} denotes the congruence filtration of N . For the rest
of this section we fix the following notation: if G is a subgroup of N , then
L(G) = LN (G) will denote the graded Lie algebra of G with respect to the
induced filtration {G ∩Nn}. For I ⊆ N, define LI :=

⊕
i∈I

Fpei ⊆ L(N ).

Recall that r ∈ N has degree n if r ∈ Nn\Nn+1. Given an element r of
degree n and a subgroupH ofN , the largest integerm such that r ∈ Nn+mH
will be called the depth of r with respect to H and denoted by dep (r,H).
It’s clear that dep (r,H) = ∞ if and only if r ∈ H and dep (r,H) = 0 if and
only if LT (r) /∈ LN (H).

Any element r ∈ N can be written in the form r = h · s where h ∈ H
and deg (s) = deg (r) + dep (r,H). Such a factorization will be referred to
as a standard decomposition of r with respect to H. While it’s not unique,
the leading term of s is independent of the choice of decomposition (here we
use the fact that all the factors Nn/Nn+1 are cyclic).

Now let H ⊆ G be fixed subgroups of N . We have L(H) = LI and
L(G) = LI0 for some I ⊆ I0 ⊆ N. Let R be another subgroup of G such
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that L(R) = L(H) and set m = m(R,H) = min
r∈R

dep (r,H).

For each i ∈ I0 we choose an element of G whose leading term is equal
to ei. The particular choice of such element is not important, and by abuse
of notation this element will also be denoted by ei. Given r ∈ R, let hs be
its standard decomposition. Let n = deg (r) = deg (h). Write h = eαn · h′,
s = eβn+m · s′ with deg (h′) > n and deg (s′) > n + m. Numbers α and β

are well defined modulo p. We claim that their ratio
β

α
depends only on

n = deg (r).
Indeed, let r1 = h1s1 and r2 = h2s2 be two elements of the same degree.

Set α1 = α(r1), α2 = α(r2), β1 = β(r1), β2 = β(r2) and consider the element
r = rα2

1 · r−α1
2 . We have

r = rα2
1 · r−α1

2 = (h1s1)α2 · (h2s2)−α1 ≡ hα2
1 ·h−α1

2 · sα2
1 · s−α1

2 mod Nn+m+1.

Note that hα2
1 · h−α1

2 ∈ Nn+1 and sα2
1 · s−α1

2 ≡ eα2β1−α1β2
n+m mod Nn+m+1.

Since dep (r,H) ≥ m, it follows that α2β1 − α1β2 = 0 (here we use the fact
that LT (s1),LT (s2) /∈ LI by the definition of a standard decomposition,
whence en+m /∈ LI unless β1 = β2 = 0, and in the latter case there is
nothing to prove).

Let us denote the ratio
β

α
by λ(n). We can view λ as a function from

I to Fp. Notice that λ is not identically zero unless R = H. Here are the
main properties of this function.

Lemma 9.4. Let i, j ∈ I. The following hold:
a) if i+m ∈ I or i+m 6∈ I0, then λ(i) = 0;
b) if i+ j +m /∈ I, then

(j − i)(λ(i+ j)− λ(i)− λ(j)) = m(λ(j)− λ(i)).

Remark. If i + j /∈ I, we define λ(i + j) to be any number. The latter
can only happen when [ei, ej ] = 0, i.e. when j − i ≡p 0, whence our choice
doesn’t affect the value of the left hand side.

Proof. Part a) is obvious. To prove part b) choose r1, r2 ∈ R with deg (r1) =
i, deg (r2) = j and assume for convenience that r1 ≡ ei mod Ni+1 and r2 ≡
ej mod Nj+1. Let r1 = h1s1 and r2 = h2s2 be standard decompositions
of these elements. Then we have s1 ≡ e

λ(i)
i+m mod Ni+m+1 and s2 ≡ e

λ(j)
j+m

mod Nj+m+1.
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Consider the element (r1, r2). We have (r1, r2) ≡ (h1, h2)·(s1, h2)·(h1, s2)
mod Ni+j+m+1; moreover, (h1, h2) ≡ ej−i

i+j mod Ni+j+1 ∩H and

(h1, s2) · (s1, h2) ≡ e
λ(j)(j+m−i)+λ(i)(j−m−i)
i+j+m mod Ni+j+m+1.

Since dep ((r1, r2),H) ≥ m, part b) of the lemma follows from these
formulas.

�
Proof of Proposition 8.1.

Recall that the Hausdorff dimension of K in Q = Q(s, r) is equal to the
density of L(K) in L(Q). Since L(Q) is commensurable to sl2(tFp[t]), it
follows from [BShZ] that the density of L(K) is at most 2/3, and the equal-
ity is obtained if and only if L(K) is cofinite in b−(s, r) =

⊕
n≡0,r mod q

Fpen

or in b+(s, r) =
⊕

n≡0,−r mod q

Fpen, where q = ps. Both cases are analo-

gous and we’ll treat the second one. Clearly there exists M ∈ N such that
L(K ∩ NM ) = LI where I = {i ∈ N | i ≡q 0,−r and i ≥M}. Our goal is to
prove that K∩NM is conjugate to B+(s, r)∩NM . The following proposition
which can be proved by adapting the argument of [Pa, Lemma 4] enables us
to ”guess” the conjugating element right away.

Proposition 9.5. Let h ∈ Q(s, r) with ps | deg (h). Then there exists
g ∈ Q(s, r) such that ghg−1 ∈ T (s).

Now choose g ∈ Q(s, r) such that g(K ∩ NM )g−1 ∩ T (s) 6= {1}. We claim
that g(K ∩NM )g−1 = B+(s, r)∩NM . Let G = Q(s, r), R = g(K ∩NM )g−1,
H = B+(s, r)∩NM and set m = m(R,H). We’re going to apply Lemma 9.4
to the function λ associated to this triple to prove λ is identically zero
whence H = R. We have I = {i ∈ N | i ≡q 0,−r and i ≥ M} and
I0 = {i ∈ N | i ≡q 0,±r}. We consider three cases:
Case 1: m 6≡q r, 2r.

In this case λ is identically zero by Lemma 9.4 a).
Case 2: m ≡q r.

If i ≡q −r then i+m ∈ I, whence λ(i) = 0. Now take i ≡q j ≡q 0. Since
i+ j +m 6∈ I, Lemma 9.4 b) yields m(λ(i)− λ(j)) = 0. But we know that
λ(i0) = 0 for some i0 ≡q 0 since R ∩ T (s) 6= {1}. Therefore λ is identically
zero.
Case 3: m ≡q 2r.

If i ≡q 0 then i + m 6∈ I0, whence λ(i) = 0. Now take i ≡q 0 and
j ≡q −r. Once again part b) of Lemma 9.4 can be applied, and we have
−r(λ(i+ j)−λ(j)) = 2rλ(j), whence −λ(i+ j) = λ(j). The same argument
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applied to the pairs (i, i + j) and (2i, j) yields −λ(2i + j) = λ(i + j) and
−λ(2i+ j) = λ(j). It follows from these three equalities that λ(j) = 0.

To finish the proof of the proposition we note that gKg−1 normalizes
g(K ∩ NM )g−1. On the other hand, the normalizer of B+(s, r) ∩ NM in
Q(s, r) coincides with B+(s, r) since the latter group is maximal non-open
in Q(s, r). Therefore gKg−1 ⊆ B+(s, r). �

Remark. Using the same method one can prove that any subgroup of N (Fp)
of Hausdorff dimension 3/p is conjugate to an open subgroup of Q(1, r) for
some r.

10 Open questions

1. In this paper we answered the questions from [Ba] for n = 2. Do there
exist non-linear pro-p groups with Lie algebras isomorphic to sln(Fp)⊗tFp[t]
for n > 2 ? While the answer to this question may very well be positive,
it seems that potential examples must be of completely different nature
from the groups {Q1(s, r)}. Still one can find natural multi-dimensional
generalizations of the groups {Q1(s, r)} among subgroups of the Cartan-
type groups Wn = Aut 1Fp[[x1, . . . xn]]. For example, when s = r = 1, the
group Q1(1, 1) is the first one in the family {Q1

n(1, 1)}∞n=1, where Q1
n(1, 1)

is the subgroup of Wn consisting of the elements

f : xi 7→
∑n

j=1 a
p
i,jxj + ap

i,n+1∑n
j=1 a

p
n+1,jxj + ap

n+1,n+1

for 1 ≤ i ≤ n

s.t. aij − δij ∈ mn, where mn is the maximal ideal of Fp[[x1, . . . xn]].

A related family consists of the groups Q̃1
n(1, 1) = {f ∈ Wn+1 | f(xi) =∑n+1

j=1 a
p
i,jxj for 1 ≤ i ≤ n+ 1 s.t. aij − δij ∈ mn+1 and det ((aij)) = 1}.

The Lie algebras of the groupsQ1
n(1, 1) and Q̃1

n(1, 1) with respect to their
lower central series are isomorphic to sln+1(Fp)⊗mn and sln+1(Fp)⊗mn+1

respectively and thus don’t have finite width. These groups appear to be
just-infinite unlike the linear groups SLnFp[[x1, . . . xk]] with k > 1.

2. In the course of the proof of Theorem 1.1 we’ve shown that the
groups {Q1(s, r)} in some sense converge to SL1

2(Fp[[t]]) as s → ∞. Can
this fact be used to find more similarities between SL1

2(Fp[[t]]) and Q1(s, r)
for s large enough? For example, is the group Q1(s, r) finitely presented?
Finite presentability of SL1

n(Fp[[t]]) was established in [LSh], but the proof
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presented there is not Lie-theoretic and doesn’t extend to non-linear groups.
If the answer to the above question is positive for s large enough, it is likely
to imply that the Nottingham group is finitely presented.
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