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Abstract. Given a discrete (resp. profinite) group G, we define NCC(G) to be the
smallest number of cyclic (resp. procyclic) subgroups of G whose conjugates cover G. In
this paper we determine all residually finite discrete groups with finite NCC and give an
almost complete characterization of profinite groups with finite NCC.

1. Introduction

1.1. Motivation. Questions of covering groups by conjugacy classes of subgroups, fre-
quently called normal coverings, have a very long history. For instance, it is a classical
theorem from the 19th century that a finite group cannot be written as a union of con-
jugates of a (single) proper subgroup.1 In modern terminology, this theorem asserts that
finite groups are invariably generated, a property which attracted plenty of attention over
the past decade (see, e.g., [Min] and references therein). A lot of recent work was also
devoted to studying the normal covering number γ(G) for a finite non-cyclic group G –
the smallest number of proper subgroups whose conjugates cover G (see, e.g., [BPS] and
references therein as well as [BSW] for the investigation of a related quantity γw(G)).

In this paper we will study normal cyclic coverings, that is, coverings of groups by
conjugacy classes of cyclic subgroups. The main invariant we will be interested in is
defined as follows.

Definition. Let G be a group. We define NCC(G) to be the smallest k such that G can
be written as a union of conjugacy classes of k cyclic subgroups. If no such k exists, we
set NCC(G) =∞.

Our motivation for studying NCC was two-fold. On one hand, understanding which
infinite groups have finite NCC and the closely related property (BVC) is related to certain
problems about classifying spaces for families of subgroups, most notably a conjecture of
Juan-Pineda and Leary [JPL, Conjecture 1] and a question of Lück, Reich, Rognes and
Varisco [LRRV, Question 4.9] (see § 8 for details). On the other hand, it is natural
to compare NCC(G) with the classical and much better understood invariant k(G), the
number of conjugacy classes of G. One of the basic properties of k(G) is that for finite
G, it grows with the size of the group: k(G) → ∞ if |G| → ∞. Thus one may ask the
following question:

Question 1. Let C be a class of finite groups. Is it true that NCC(G)→∞ as |G| → ∞
for G ∈ C?

2020 Mathematics Subject Classification. Primary: 20D15; 20E18. Secondary: 20E26; 20E34; 20E45;
20G25.

1This theorem is often attributed to Burnside and appears in his 1897 book [Bu]. However, an equivalent
result stated in terms of permutation groups was already established by Jordan [Jo] in 1872.
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The answer to Question 1 is clearly negative if C contains all finite groups since NCC(G) =
1 for any cyclic group. Excluding cyclic groups is not sufficient for a positive answer as it
is easy to see that all non-abelian groups of order pq, with p and q distinct primes, have
NCC equal to 2. Von Puttkamer asked in his Ph.D. thesis whether the answer is positive
if C is the class of all non-cyclic finite p-groups for a fixed p > 2 [vP, Question 5.0.9], and
this question served as the original motivation for this project.

It is natural to approach von Puttkamer’s question via pro-p groups. If G is a profinite
group, NCC(G) is defined in the same way as for discrete2 groups except that one replaces
cyclic subgroups by procyclic subgroups (that is, closed subgroups topologically generated
by a single element). A standard argument (see Claim 2.15) shows that if for some
k ∈ N there exist infinitely many (non-isomorphic) non-cyclic finite p-groups G with
NCC(G) ≤ k, then there exists an infinite non-procyclic pro-p group G with NCC(G) ≤ k.
Conversely, it is clear that if G is any infinite pro-p group which is not procyclic and
NCC(G) = k < ∞, then sufficiently large finite quotients of G form an infinite family of
non-cyclic finite p-groups with NCC equal to k.

This led us to investigate which infinite pro-p groups have finite NCC. As we will
explain below, infinite non-procyclic pro-p groups with finite NCC do exist, and thus von
Puttkamer’s question has negative answer. However, it turns out that infinite pro-p groups
and more generally infinite profinite groups with finite NCC have very restricted structure
(see Theorems 1.3 and 1.5 and Proposition 1.4). Using these results, we will solve the
aforementioned conjecture from [JPL] and give a positive answer to [LRRV, Question 4.9]
for discrete residually finite groups (see Corollary 8.4). Going back to von Puttkamer’s
question, the proof of Claim 2.15 shows that Theorem 1.3 also yields strong constraints
on families of finite p-groups with bounded NCC and can possibly provide the first step
towards a satisfactory description of all such families. We are planning to address the
latter problem in a follow-up paper.

Remark. We would like to mention a simple characterization of NCC valid for all profinite
groups (so in particular for finite groups). If G is profinite, then NCC(G) is the number of
conjugacy classes of maximal procyclic subgroups of G. This is because in a profinite group
every procyclic subgroup is contained in a maximal procyclic subgroup. The corresponding
assertion in the discrete case (with procyclic subgroups replaced by cyclic subgroups) does
not always hold, even for residually finite groups. For example, G = ⊕pZ/pZ, where the
sum is over all primes, is a residually finite group which has infinite NCC but has no
maximal cyclic subgroups.

1.2. Discrete groups with finite NCC. Our first main theorem asserts that in the
discrete residually finite case there are no non-trivial examples with finite NCC, confirming
a conjecture of von Puttkamer [vP, Conjecture 5.0.1]:

Theorem 1.1. Let G be an infinite discrete residually finite group with finite NCC. Then
G is infinite cyclic or infinite dihedral (both of these do have finite NCC, 1 and 3 respec-
tively).

There are several classes of infinite discrete (not necessarily residually finite) groups
which were previously known to satisfy the implication of Theorem 1.1:

(a) virtually solvable groups,
(b) one-relator groups,

2In this paper by a discrete group we will simply mean a group not endowed with any topology.
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(c) acylindrically hyperbolic groups,
(d) 3-manifold groups,
(e) CAT(0) cube groups,
(f) finitely generated linear groups,
(g) arbitrary linear groups in characteristic zero.

In other words, every infinite group with finite NCC in one of these classes is either
infinite cyclic or infinite dihedral. For (a) this was proved by Groves and Wilson [GW].
Von Puttkamer and Wu proved the result for classes (b)-(e) in [vPW1] and for (f) in
[vPW2, Theorem 2.11].3 Finally, (g) is a combination of (a) and a theorem of Bernik [Be]
(see Theorem 5.4 for the statement) which, in turn, is based on the existence of generic
elements in Zariski-dense subgroups of semisimple algebraic groups in characteristic zero,
established by Prasad and Rapinchuk in [PR] (see also Proposition 3.5 and Remark 3.6 in
[CRRZ]).

Since finitely generated linear groups are residually finite, the result for (f) is a special
case of Theorem 1.1. However, we originally proved Theorem 1.1 only for finitely generated
groups, and the proof relied on the corresponding result for (f). To prove Theorem 1.1 in
the general case we will use a similar strategy, but instead of [vPW2, Theorem 2.11] we
will apply the above theorem from [Be].

Note that if a group G has finite NCC, then obviously so do all its quotients. Thus, we
get an immediate consequence of Theorem 1.1 applicable to arbitrary discrete groups.

Corollary 1.2. Let G be a discrete group with finite NCC. Then the largest residually
finite quotient of G (which is the image of G in its profinite completion) is finite, cyclic
or infinite dihedral.

Remark. There are plenty of known examples of infinite discrete groups which have
finitely many conjugacy classes and thus in particular have finite NCC. Such groups with
only 2 conjugacy classes (albeit infinitely generated) were constructed already in the clas-
sical paper of Higman, B.H. Neumann and H. Neumann [HNN]. To the best of our
knowledge, the first finitely generated examples are due to S. Ivanov [Ol, Theorem 41.2]
who in particular showed that there exist such groups of exponent p for every sufficiently
large prime p. Finally, the main theorem of a remarkable paper of Osin [Os] implies that
for any n ≥ 2 there exist infinite 2-generated groups with exactly n conjugacy classes. For
additional examples of infinite groups with finite NCC see [vPW2].

1.3. Profinite groups with finite NCC. We now turn to the classification of profinite
groups with finite NCC. We start by describing pro-p groups with finite NCC.

Theorem 1.3. Let p be a prime and G a pro-p group. Then G has finite NCC if and only
if one of the following 3 mutually exclusive conditions holds:

(i) G is finite.
(ii) G is infinite procyclic or p = 2 and G is infinite prodihedral, that is, the pro-2

completion of the infinite dihedral group.

3Technically, the results for all classes (a)-(f) were not established until [vPW2] since [GW] and [vPW1]
dealt not with groups with finite NCC, but with groups satisfying the related property (BVC) – see § 8.
However, the proofs of the corresponding results for (BVC) are completely analogous.
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(iii) G is isomorphic to an open torsion-free subgroup of PGL1(D) where D is the
quaternion division algebra4 over Qp.

Remark. Let us briefly comment on the structure of the groups in item (iii). Let D
be the quaternion division algebra over Qp and OD its ring of integers. The group
PGL1(D) = D×/Q×

p is virtually pro-p and virtually torsion-free. Moreover its first con-

gruence subgroup PGL1
1(OD) is pro-p and for p > 2 contains every pro-p subgroup of

PGL1(D). It is easy to show that if p > 3, already the group PGL1
1(OD) is torsion-free.

Let Nil denote the class of finite nilpotent groups. The classification of pro-Nil groups
with finite NCC easily reduces to the pro-p case. Indeed, if G is pro-Nil, it is a di-
rect product of its Sylow pro-p subgroups Gp. Moreover, by Lemma 2.3 below we have
NCC(G) =

∏
NCC(Gp). Thus a pro-Nil group G has finite NCC if and only if each Gp

has finite NCC and moreover NCC(Gp) = 1 for almost all p. Since pro-p groups with NCC
1 are exactly procyclic pro-p groups and a product of procyclic groups of coprime orders
is procyclic, we conclude the following:

Proposition 1.4. A pro-Nil group G has finite NCC if and only if G = C ×
∏k
i=1Hi

where C is a procyclic group and there exist distinct primes p1, . . . , pk not dividing |C|
such that each Hi is a non-procyclic pro-pi group with finite NCC.

Our last main theorem deals with arbitrary profinite groups with finite NCC.

Theorem 1.5. Let G be a profinite group with finite NCC. Then G contains an open
pro-Nil subgroup (which must also have finite NCC by Lemma 2.2).

Note that Theorem 1.3, Proposition 1.4 and Theorem 1.5 completely characterize profi-
nite groups which have an open subgroup with finite NCC. However, they do not provide
a classification of profinite groups with finite NCC up to isomorphism since finiteness of
NCC is not necessarily preserved by passing to finite index overgroups.

Profinite groups with countable NCC. Recently Jaikin-Zapirain and Nikolov [JN]
proved that any infinite compact Hausdorff group (in particular, any infinite profinite
group) has uncountably many conjugacy classes (see also [Wil1] and [Wil2] for some more
refined results of this type). Several recent papers investigated profinite groups in which
a countable union of procyclic subgroups (without taking conjugates) contains a large
portion of the group (in a suitable sense) – see, e.g. [AS].

As a natural continuation of this line of research, we propose the following problem.

Problem 1. Classify profinite groups with countable NCC.

A simple example of a profinite group with countable, but infinite NCC is given by Zp×
Z/pZ. More generally, it is easy to show that every virtually procyclic group has countably
many maximal procyclic subgroups, and therefore every profinite group with (BVC) has
countable NCC. There do exist groups with countable NCC and without (BVC), e.g.
Z×
p ⋉ Zp (the group of affine transformations of Zp) and PGL2(Zp). One can check that

Z×
p ⋉Zp has countable NCC directly from definition. The latter combined with the proof

of [BJL, Theorem G] implies that PGL2(Zp) has countable NCC. Despite these additional

4Such a division algebra is unique (up to isomorphism). Indeed, for any field F the number of isomor-
phism classes of central division of degree d is equal to the number of elements of order d in the Brauer
group Br(F ). It is well known that the Brauer group of any non-archimedean local field is isomorphic to
Q/Z and thus has a unique element of order 2.
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examples, it is feasible that the class of infinite profinite groups with countable NCC is
still quite small.

A standard argument using Baire Category Theorem shows that a profinite group G
with countable NCC must have a procyclic subgroup C such that ∪g∈GCg has non-empty
interior. Thus, as a further generalization of Problem 1 one can ask what can be said
about the groups with the latter property. We are grateful to Colin Reid for proposing
this question. We refer the reader to [Wes] for a discussion of the corresponding problem
about conjugacy classes of elements (classify profinite groups which have a conjugacy class
with non-empty interior); see also [JN, Question 2].

1.4. Outline of the paper.

• In § 2, we introduce a certain generalization of the NCC invariant, CC(G,Φ),
where Φ is a group acting on G by automorphisms, and prove some general results
about it.
• The proof of Theorem 1.5 is divided into three parts, which will be established in

§ 3, 4 and 7, respectively.
– In § 3 we prove that a profinite group with finite NCC has an open pro-Sol

subgroup (which also has finite NCC by Lemma 2.2). Here Sol denotes the
class of finite solvable groups.

– In § 4 we prove that if G is a pro-Sol group with finite NCC, then for some
k ∈ N the kth term of its derived series G(k) is pro-Nil.

– Finally, in § 7 we prove that if G is a pro-Sol group with finite NCC such
that G(k) is pro-Nil for some k ∈ N, then G is virtually pro-Nil.

• In § 5 we will prove Theorem 1.1 assuming Theorem 1.5 (whose proof will be
completed in § 7) and Theorem 1.3.
• In § 6 we will prove that pro-p groups with finite NCC are p-adic analytic and
then use this result to prove Theorem 1.3.
• Finally, in § 8 we will introduce property (BVC), a certain variation of finiteness of
NCC, and explain why Theorem 1.1 settles certain questions in topology dealing
with classifying spaces for families of subgroups.
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Theorem 1.3 and Proposition 7.2.

We are very grateful to Xiaolei Wu for asking5 us a version of von Puttkamer’s ques-
tion [vP, Question 5.0.9]. We would like to thank Andrei Rapinchuk for illuminating
discussions and suggesting the reference [Be] and Alex Lubotzky for bringing [BJL] to our
attention. We would also like to thank Andrei Jaikin-Zapirain, Ian Leary, Alex Lubotzky,
Colin Reid and John Wilson for helpful feedback on earlier versions of this paper.

5Xiaolei Wu asked this question at a ‘Functor Categories for Groups’ meeting, which was supported by
a London Mathematical Society Joint Research Group grant.



6 YIFTACH BARNEA, RACHEL CAMINA, MIKHAIL ERSHOV, AND MARK L. LEWIS

2. Cyclic covering number relative to a group of automorphisms

2.1. Covering numbers for subgroups, quotients and direct products. While we
are primarily interested in NCC, in the proofs it will be very convenient to work with a
certain generalization of NCC defined below which has better hereditary properties.

Definition. Let G be a discrete (resp. profinite) group and Φ a group acting on G by
group automorphisms6. A cyclic (resp. procyclic) Φ-cover of G is a collection of cyclic
(resp. procyclic) subgroups {Ci}i∈I of G such that G =

⋃
i∈I,φ∈Φ

φ(Ci). We define CC(G,Φ)

to be the smallest number of subgroups in a cyclic (resp. procyclic) Φ-cover of G.

Note that NCC(G) = CC(G,G) (where G acts on itself by conjugation).

Lemma 2.1. Let G be a group and Φ a group acting on G by automorphisms. The
following hold:

(i) If H is a Φ-invariant subgroup of G, then CC(H,Φ) ≤ CC(G,Φ). In particular, if
H is any normal subgroup of G, then CC(H,G) ≤ NCC(G).

(ii) If K is a Φ-invariant normal subgroup of G (so that Φ naturally acts on G/K),
then CC(G/K,Φ) ≤ CC(G,Φ). In particular, if K is any normal subgroup of G,
then NCC(G/K) ≤ NCC(G).

(iii) If Ψ is a finite index subgroup of Φ, then CC(G,Ψ) ≤ [Φ : Ψ]CC(G,Φ).

Proof. (i) and (ii) are obvious, and (iii) follows from the fact that for any action of Φ on
a set, any orbit of Φ is a union of at most [Φ : Ψ] orbits of Ψ. □

The next result which follows from Lemma 2.1 and has been well known before is
particularly useful.

Lemma 2.2. Let G be a group with finite NCC and H a subgroup of finite index. Then
H also has finite NCC and in fact NCC(H) ≤ [G : H] ·NCC(G)

Proof. We have NCC(H) = CC(H,H) ≤ [G : H] · CC(H,G) ≤ [G : H] · NCC(G) where
both CC numbers are with respect to the conjugation action, the first inequality holds by
Lemma 2.1(iii) and the second inequality holds by Lemma 2.1(i). □

Definition. LetG be a profinite group. The order of G is the supernatural number defined
as the least common multiple of the orders of finite quotients of G (a supernatural number
is a formal product

∏
p p

αp where p ranges over all primes and each αp ∈ Z≥0 ∪ {∞}).

Lemma 2.3. Let G and H be discrete or profinite groups and let Φ and Ψ be groups acting
by automorphisms on G and H, respectively, such that CC(G,Φ) and CC(H,Ψ) are both
finite. The following hold:

(a) CC(G ×H,Φ × Ψ) ≥ CC(G,Φ) · CC(H,Ψ). In particular, if G and H both have
finite NCC,

NCC(G×H) ≥ NCC(G) ·NCC(H).

(b) Assume now that G and H are profinite and have coprime orders. Then both
inequalities in (a) must be equalities.

6By a homomorphism between profinite groups we will always mean a continuous homomorphism unless
explicitly indicated otherwise.
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Proof. (a) For simplicity we will present a proof in the discrete case. The argument
in the profinite case is completely analogous. Let n = CC(G,Φ), m = CC(H,Ψ) and
t = CC(G × H,Φ × Ψ), and assume that t is finite (if t is infinite, there is nothing to
prove).

Let {Ck}tk=1 be a cyclic Φ×Ψ-cover of G×H. Let Gk and Hk denote the projections
of Ck to G and H, respectively. Obviously, Gk and Hk are cyclic and (φ × ψ)(Ck) ⊆
φ(Gk)×ψ(Hk) for all φ ∈ Φ and ψ ∈ Ψ. (Notice that φ(Gk)×ψ(Hk) need not be cyclic).
Thus, {Gk ×Hk}tk=1 is a Φ×Ψ-cover of G×H, that is,

G×H =
⋃

1≤k≤t,φ∈Φ,ψ∈Ψ
(φ× ψ)(Gk ×Hk) =

⋃
1≤k≤t,φ∈Φ,ψ∈Ψ

φ(Gk)× ψ(Hk). (∗ ∗ ∗)

If Gi ⊆ φ(Gj) for some i ̸= j and φ ∈ Φ, we can replace Gi by Gj and still have a
Φ × Ψ-cover of G × H. After applying this operation finitely many times, we obtain a
new cover which can be written as {Gk × Hk,j}1≤k≤n′,1≤j≤mk

where for i ̸= j we have
Gi ̸⊆ φ(Gj) for any φ ∈ Φ. By construction the number of sets in the new cover does
not exceed the number of sets in the original cover, that is, m1 + m2 + · · · + mn′ ≤ t.
Therefore, it suffices to show that n′ ≥ n and mk ≥ m for each k.

Projecting both sides of (***) to the first component, we see that {Gk}n
′
k=1 is a cyclic

Φ-cover of G, so n′ ≥ n. We now need to show that for a fixed k the collection {Hk,j}mk
j=1

is a cyclic Ψ-cover of H. Let xk be a generator of Gk. If i ̸= j, then xi ̸∈ φ(Gj) for any
φ ∈ Φ (for otherwise, Gi ⊆ φ(Gj) contrary to our assumption). Hence for any h ∈ H,
the pair (xk, h) must be in φ(Gk)× ψ(Hk,j) for some 1 ≤ j ≤ mk, φ ∈ Φ and ψ ∈ Ψ , so
h ∈ ψ(Hk,j). We conclude that {Hk,j}mk

j=1 is a cyclic Ψ-cover of H and thus mk ≥ m as
desired.

(b) Let {Gi}ni=1 be a cyclic Φ-cover of G and {Hj}mj=1 be a cyclic Ψ-cover of H. Since G
and H have coprime orders, this is true also for every Gi and Hj and therefore Gi×Hj is
procyclic (by the Chinese Remainder Theorem). Hence {Gi ×Hj}1≤i≤n,1≤j≤m is a cyclic
Φ × Ψ-cover of G ×H. Thus CC(G ×H,Φ × Ψ) ≤ nm = CC(G,Φ) · CC(H,Ψ), and by
(a) the equality must hold. □

2.2. Some restrictions on groups with finite NCC. In this subsection we will es-
tablish several results which impose restrictions on the structure of discrete and profinite
groups with finite NCC.

The following lemma proposed to us by the referee yields a strong restriction on the
torsion in pro-p groups with finite NCC:

Lemma 2.4. Let G be a pro-p group with finite NCC and T the set of its torsion elements.
Then the set T \ {1} is open. In particular, either T = {1} or T has non-empty interior.

Proof. If G = T , there is nothing to prove, so assume that G ̸= T .
For a subset A of G we denote by A the (topological) closure of A in G and by AG the

normal closure of A in G. By assumption there exist finitely many elements x1, . . . , xk

such that G =
k⋃
i=1
⟨xi⟩

G
. Since G is pro-p, any procyclic subgroup of G is either finite or

torsion-free. Thus, if Z =
⋃

xi ̸∈T
⟨xi⟩

G
, then Z = (G \ T ) ∪ {1} = G \ (T \ {1}) (note that

Z is non-empty and in particular contains 1 since G ̸= T ).
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Each set ⟨xi⟩
G

is compact (and hence closed in G) as it is a continuous image of the

compact topological space ⟨xi⟩×G. Hence Z is closed in G and therefore T \ {1} = G \Z
is open in G. □

We will explicitly use Lemma 2.4 in the proof of Theorem 1.3 in § 6; however, we will
also need the following generalization, both in § 6 and later in this subsection:

Lemma 2.5. Let G be a profinite group with finite NCC. Suppose that G can be written
as a disjoint union G = A ⊔B ⊔ C such that the following conditions hold:

(1) A,B and C are normal subsets (that is, invariant under conjugation);

(2) ⟨x⟩ ∩A = ∅ for all x ∈ B ⊔ C;
(3) ⟨a⟩ ∩ C = ∅ for all a ∈ A.

Then G has an open subset U such that A ⊆ U ⊆ A ⊔B.

Remark. The last assertion of Lemma 2.4 follows from Lemma 2.5 applied with A =
T \ {1}, B = {1} and C = G \ T , where T is the set of torsion elements.

Proof. As in the proof of Lemma 2.4, there exist finitely many elements x1, . . . , xk such

that G =
k⋃
i=1
⟨xi⟩

G
. Let I = {i : xi ∈ A}, Z =

⋃
i ̸∈I
⟨xi⟩

G
and U = G \ Z.

As in the proof of Lemma 2.4, Z is closed whence U is open. Conditions (1) and (2)
imply that A ∩ Z = ∅, so A is contained in U . On the other hand, (1) and (3) imply that⋃
i∈I
⟨xi⟩

G ∩ C = ∅, so C ⊆ Z and therefore U = G \ Z ⊆ G \ C = A ⊔B. □

The remaining results in this subsection deal with quotients of groups with finite NCC.
We start with the technically easier discrete case.

Lemma 2.6. Let G be a residually finite discrete group with finite NCC. Then either G
is infinite cyclic or G has finite abelianization.

Proof. The abelianization G/[G,G] is an abelian group with finite NCC, so it is a union of
finitely many cyclic subgroups and in particular finitely generated. Thus either G/[G,G]
is finite or G/[G,G] maps onto Z (whence so does G). In the latter case we can write
G = H ⋊ Z for some normal subgroup H, and it remains to show that H = {1}.

Suppose that H ̸= {1}. Since G is residually finite, it has a finite index normal subgroup
U which does not contain H. But then G/(U ∩ H) ∼= F ⋊ Z for some non-trivial finite
group F (isomorphic to H/U ∩H), and by [vPW2, Lemma 3.7] any semidirect product of
this form has infinite NCC, a contradiction. □

In the profinite case we will prove a somewhat similar, but more technical result:

Lemma 2.7. Let G be a profinite group, H a (closed) normal subgroup of G and Q =

G/H. Suppose that Q has a pro-p element x of infinite order (that is, ⟨x⟩ ∼= Zp) and |H|
is divisible by p. Then G has infinite NCC.

Proof. We first consider the special case where G = H×Q and |H| = p. Given an element
g ∈ G, let ordp(g) ∈ Z≥0 ∪ {∞} denote the exponent of p in the order of g (considered as

a supernatural number). Equivalently, pordp(g) is the order of the Sylow pro-p subgroup of

⟨g⟩.
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Suppose now that G has finite NCC. Let A = {g ∈ G : 0 < ordp(g) < ∞}, B = {g ∈
G : ordp(g) = 0} and C = {g ∈ G : ordp(g) = ∞}. Clearly, G = A ⊔ B ⊔ C, and it is
straightforward to check that the hypotheses of Lemma 2.5 hold. Thus, G has an open
subset U with A ⊆ U ⊆ A ⊔B.

Consider the pro-p subgroup P = H × ⟨x⟩ ∼= Z/pZ × Zp. Then A ∩ P = H \ {1} and
B ∩ P = {1}, so U ∩ P is an open subset of P containing H \ {1} and contained in H.
Thus, P contains a non-trivial finite open set, a contradiction.

We now treat the general case. Since |H| is divisible by p and the topology on H is
induced from G, there exists an open normal subgroup U of G such that the image of H in
G/U has order divisible by p. Let πU : G→ G/U and πH : G→ G/H = Q be the natural
projections, and consider the map π : G → G/U × Q given by π(g) = (πU (g), πH(g)).
Then π(UH) is an open subgroup of π(G), and note that π(UH) = πU (H)× πH(U). By
construction πU (H) has an element of order p, call it g, and πH(U) has a pro-p element
of infinite order (being an open subgroup of Q = πH(G)). Hence ⟨g⟩ × πH(U) is an
open subgroup of π(G) which satisfies the hypotheses of the special case considered at the
beginning of the proof and thus has infinite NCC. Since finiteness of NCC is inherited
by open subgroups and homomorphic images, it follows that G also has infinite NCC, as
desired. □

The following corollary of Lemma 2.7 yields a much stronger conclusion in the pro-p
case.

Corollary 2.8. Let G be an infinite pro-p group with finite NCC. Then G must be just-
infinite (that is, all of its proper continuous quotients are finite).

Proof. First by Lemma 2.9 below, G is finitely generated. Suppose that G has a non-
trivial closed normal subgroup H such that G/H is infinite. By the positive solution
to the general Burnside problem for pro-p groups [Ze], a finitely generated torsion pro-p
group is finite. Thus, G/H must contain an element x of infinite order. Then x and H
trivially satisfy the hypotheses of Lemma 2.7 and hence G has infinite NCC, contrary to
our assumption. □

2.3. Other lower bounds on NCC. In this subsection we collect some additional results
which provide either a lower bound on NCC of a group or a restriction on the structure
of a group with finite NCC.

We start by bounding the NCC of a pro-p group in terms of its number of generators.

Lemma 2.9. Let G be a pro-p group and d(G) its minimal number of generators. Then

NCC(G) ≥ pd(G)−1

p−1 . In particular, if G has finite NCC, then G is finitely generated.

Proof. Let Φ(G) denote the Frattini subgroup of G. By [DDMS, Propostions 1.9 and 1.13],
G/Φ(G) is an elementary abelian p-group with d(G) = d(G/Φ(G)). Hence

NCC(G) ≥ NCC(G/Φ(G)) =
|G/Φ(G)| − 1

p− 1
=
pd(G) − 1

p− 1
. □

Next we relate NCC to the set of orders of elements. The following definition will only
be introduced for discrete groups. The corresponding notion in the profinite case requires
extra care, but also will not be needed; in fact, here the case of finite groups will be
sufficient for our purposes.
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Definition. Let G be a non-trivial discrete group.

(a) An integer k > 1 will be called a primitive element order of G if G has a maximal
cyclic subgroup of order k.

(b) An integer k > 1 will be called a maximal element order of G if G has an element
of order k, but has no element whose order is a proper (finite) multiple of k.

We will denote the set of all primitive (resp. maximal) element orders of G by PEO(G)
(resp. MEO(G)).

Lemma 2.10. Let G be a discrete group. Then MEO(G) is a subset of PEO(G). More-
over, |PEO(G)| ≤ CC(G,Φ) for any Φ.

Proof. The first assertion is clear. If {Ci} is any cyclic Φ-cover of G, then for any max-
imal cyclic subgroup C of G, the Φ-orbit of C must contain one of the subgroups Ci, so
MC(G,Φ) ≤ CC(G,Φ) where MC(G,Φ) is the number of Φ-orbits of maximal cyclic sub-
groups. On the other hand, if C and C ′ are maximal cyclic subgroups of different orders,
they must be in different orbits. Thus, |PEO(G)| ≤ MC(G,Φ), which proves the second
assertion. □

The next result can be used, in particular, to show that if G is a group with finite
NCC, then a normal subgroup of G cannot decompose as a direct product of too many
non-abelian simple groups. We thank the referee for simplifying our original proof.

Lemma 2.11. Let H be a discrete or profinite group and Φ a group acting on H by
automorphisms. Suppose that there exists an integer e > 1 and elements h1, . . . , hk of H
with the following properties:

(i) Each hi has order e.
(ii) For any i ̸= j there is no φ ∈ Φ such that φ(⟨hi⟩) = ⟨hj⟩.

Then CC(H,Φ) ≥ k.

Proof. Suppose that CC(H,Φ) < k. Then there exists i ̸= j and φ ∈ Φ such that φ(⟨hi⟩)
and ⟨hj⟩ lie in the same cyclic or procyclic subgroup C of H. Since φ(⟨hi⟩) and ⟨hj⟩ both
have order e by (i) and cyclic or procyclic groups have at most one subgroup of any given
finite order, it follows that φ(⟨hi⟩) = ⟨hj⟩, contrary to (ii). □

Corollary 2.12. Let H = S1×· · ·×Sk where Si are non-abelian finite simple groups (not
necessarily distinct). Then CC(H,Φ) ≥ k for any group Φ acting on H by automorphisms.

Proof. We will only use the fact that each Si is a finite group of even order and has trivial
center.

Choose elements si ∈ Si of order 2, and for each 1 ≤ i ≤ k let hi = (s1, s2, . . . , si, 1, . . . , 1).
Since each si is non-central in Si, the sequence of centralizers C(h1) ⊃ C(h2) ⊃ · · · ⊃ C(hk)
is strictly decreasing. Hence the elements {hi} lie in different Φ-orbits. Since {hi} have
prime order (namely order 2), they satisfy the hypotheses of Lemma 2.11 and hence
CC(H,Φ) ≥ k. □

Before stating our last result of this section, we introduce one more definition.

Definition. Let G be a discrete or profinite group. We will say that G has property
(FMHFG)7 if for any finite group F there are only finitely many homomorphisms from G
to F .

7(FMHFG) stands for ‘finitely many homomorphisms to a finite group’.
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Remark. A discrete (resp. profinite) group G has (FMHFG) if and only if for any i ∈ N
it has finitely many subgroups (resp. open subgroups) of index i.

Clearly finitely generated groups have (FMHFG). A simple example of an infinitely
generated group with (FMHFG) is the direct sum or product of an infinite collection of
finite groups of pairwise coprime orders.

Lemma 2.13. Let G be a discrete or profinite group with finite NCC. Then G has
(FMHFG).

Remark. We will eventually prove that profinite and discrete residually finite groups with
finite NCC are finitely generated. However, Lemma 2.13 will be needed as an auxiliary
tool in order to establish finite generation.

Proof of Lemma 2.13. Fix a finite group F , and let K be the intersection of the kernels of
all homomorphisms from G to F . Then any homomorphism from G to F factors through
G/K, so it suffices to prove that G/K is finite.

Clearly G/K embeds into a direct power H =
∏
i∈I

F for some index set I. Since H

and hence G/K is torsion, all cyclic subgroups of H are closed, so there is no need to
distinguish between the discrete and profinite cases. For any element h ∈ H and i ∈ I we
denote by hi the i

th coordinate of h.
Take any h ∈ H, let e = ord(h), and let I(h) be any finite subset of I such that

LCM({ord(hi) : i ∈ I(h)}) = e. Then if some x ∈ H lies in a conjugate of ⟨h⟩ and xi = 1
for all i ∈ I(h), we must have x = 1. Since G/K has finite NCC, it lies in the union of

conjugacy classes of finitely many cyclic subgroups ⟨h1⟩, . . . , ⟨hk⟩. If J =
k⋃
i=1

I(hk), then

any g ∈ G/K such that gj = 1 for all j ∈ J must be trivial. But this means that G/K
embeds into the finite group

∏
j∈J

F , as desired. □

2.4. NCC of a profinite group and its finite quotients. In this last subsection we
will explain why the existence of a family of non-cyclic finite p-groups with bounded NCC
implies the existence of a non-procyclic pro-p group with finite NCC (see Claim 2.15
below). But first we need to establish the following standard lemma.

Lemma 2.14. Let G = lim←−
i∈I

Pi where {Pi}i∈I is an inverse system of finite groups in which

all the maps Pi → Pj are surjective. Then

NCC(G) = supNCC(Pi).

In particular, for any profinite group G we have NCC(G) = supNCC(P ) where P ranges
over all finite quotients of G.

Proof. By [DDMS, Proposition 1.4], the inverse limit of a system of compact (in particular,
finite) sets Pi is always non-empty. Moreover, the proof shows that if all the maps Pi → Pj
are surjective, then so is the induced map lim←−

i∈I
Pi → Pj . Thus, in our setting NCC(G) ≥

NCC(Pi) for each i, and so NCC(G) ≥ supNCC(Pi).
To prove the reverse inequality NCC(G) ≤ supNCC(Pi) we just need to show that if

k ∈ N is such that NCC(Pi) ≤ k for all i, then NCC(G) ≤ k. Take any such k, and for
each i ∈ I let Si be the set of all sequences (gi(1), . . . , gi(k)) ∈ P ki such that the conjugacy
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classes of the cyclic subgroups ⟨gi(1)⟩, . . . , ⟨gi(k)⟩ cover Pi. By the choice of k each Si is
non-empty. Moreover, the sets {Si} form an inverse system with the maps Si → Sj defined
componentwise. By [DDMS, Proposition 1.4], the inverse limit S = lim←−

i∈I
Si is non-empty;

on the other hand, we can naturally identify S with a subset of Gk. Let (g(1), . . . , g(k))

be any element of S, and let T =
k⋃
i=1
⟨g(i)⟩G (recall that AG denotes the normal closure of

A in G). Then T is a closed subset of G = lim←−
i∈I

Pi which projects onto each Pi, and from

this it is easy to deduce that T = G. Thus NCC(G) ≤ k, as desired. □

Claim 2.15. Suppose that for some k there exists an infinite sequence of noncyclic finite
p-groups {Pi} with NCC(Pi) ≤ k for all i. Then there exists an infinite non-procyclic
pro-p group G with NCC(G) ≤ k. Moreover, if d(Pi) = d for all i, we can assume that
d(G) = d.

Proof. First observe that if P is a finite p-group and d = d(G), then P/Φ(P ) ∼= (Z/pZ)d

whence NCC(P ) ≥ NCC((Z/pZ)d) = pd−1
p−1 . Hence for any family of finite p-groups with

bounded NCC, the sequence {d(Pi)} is also bounded. Thus, it suffices to prove Claim 2.15
assuming that there exists d ∈ N such that d(Pi) = d for all i.

Consider the following oriented graph Γk,d(p). The vertices of Γk,d(p) are (isomorphism
classes of) finite p-groups P with d(P ) = d and NCC(P ) ≤ k (thus by our hypothesis
Γk,d(p) is infinite). There is an oriented edge from P to Q if and only if Q ∼= P/Z where
|Z| = p and Z ⊆ Φ(P ).

Any finite p-group P with d(P ) = d and P ̸∼= (Z/pZ)d has a central subgroup Z of
order p lying in Φ(P ). Therefore, for any such P there is a directed path from P to
(Z/pZ)d in Γk,d(p). In particular Γk,d(p) is connected and thus contains an infinite path
Q1 ← Q2 ← Q3 ← · · · . Let G = lim←−Qi. Since d(Qi) = d for all i, we have d(G) = d. Also

by Lemma 2.14, NCC(G) = sup{NCC(Qi)}, so NCC(G) ≤ k, as desired. □

3. Reduction to the residually solvable case

Recall that by Nil and Sol we denote the classes of finite nilpotent and finite solvable
groups, respectively. The goal of this section is to establish the first of the three parts in
the proof of Theorem 1.5 (recall that the three parts were introduced in § 1.4).

Theorem 3.1. Let G be a profinite (resp. a discrete residually finite) group, and assume
that NCC(G) <∞. Then G is virtually pro-Sol (resp. virtually residually-Sol).

Theorem 3.1 in the discrete case immediately follows from its profinite analogue. Indeed,
let G be a discrete residually finite group with finite NCC. Then its profinite completion

Ĝ is a profinite group with finite NCC. By the profinite part of Theorem 3.1, Ĝ has an
open pro-Sol subgroup U , and so G ∩ U is a finite index residually-Sol subgroup of G.

Thus, it suffices to prove Theorem 3.1 for a profinite group G. This will be done by
analyzing the action of G on the factors of its chief series defined as follows.

Definition. Let G be a profinite group. A descending chain of open normal subgroups
G = G1 ⊇ G2 ⊇ · · · will be called a chief series of G if the following hold:

(i) {Gi} is a base of neighborhoods for the topology on G. Since G is profinite, this
is equivalent to requiring that ∩Gi = {1}.
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(ii) G does not have any normal subgroups lying strictly between Gi and Gi+1.

Note that a profinite group G has a series satisfying (i) if and only if it is countably
based. Moreover, if we start with any series {Gi} satisfying (i), then (ii) can always be
achieved by refining the series (since each Gi/Gi+1 is finite and hence has a chief series
in the usual sense). Recall that by Lemma 2.13 groups with finite NCC have property
(FMHFG) which is equivalent to having finitely many open subgroups of any given index
i. Thus, groups with finite NCC are countably based and hence admit a chief series.

Observation 3.2. Let G be a countably based profinite group. The following hold:

(a) G is pro-Nil if and only if it admits a chief series {Gi} such that G acts trivially
on each quotient Gi/Gi+1.

(b) G is pro-Sol if and only if it admits a chief series {Gi} such that each quotient
Gi/Gi+1 is abelian.

Remark. It is also easy to show that G is pro-Nil (resp. pro-Sol) if and only if every
chief series of G satisfies the extra condition in (a) (resp. (b)).

For the rest of this section we fix a profinite group G with (FMHFG) and also fix a
chief series {Gi} of G. For each i let Qi = Gi/Gi+1. We know that Qi ∼= Sni

i for some
finite simple group Si and ni ∈ N.

Lemma 3.3. Whenever Si is non-abelian we have ni ≤ NCC(G).

Proof. By Corollary 2.12 we have CC(Qi, G) ≥ ni (where CC is with respect to the
conjugation action of G on Qi), and by Lemma 2.1(i)(ii) CC(Qi, G) ≤ NCC(G). □

Lemma 3.4. For any non-abelian simple group S there are only finitely many i such that
Si = S.

Proof. Fix S. Since G has (FMHFG), there are only finitely many homomorphisms from

G to the finite group Aut(SNCC(G)). Let H be the intersection of the kernels of these
homomorphisms. Then H is an open subgroup of G. By Lemma 3.3, for any i with
Si = S, the group Aut(Qi) embeds into Aut(SNCC(G)), whence H acts trivially on Qi
and thus cannot contain Gi for any such i (since Gi acts non-trivially on Qi as Si is non-
abelian). On the other hand, since H is open, it must contain Gj for some j, so we can
only have Si = S for i < j. □

We are now ready to prove Theorem 3.1. In view of Observation 3.2(b), the result can
be reformulated as follows.

Proposition 3.5. Assume that NCC(G) <∞. Then Si is abelian for all sufficiently large
i and therefore G is virtually pro-Sol.

Proof. Let I be the set of all i such that Si is non-abelian. Our goal is to show that I is
finite. First we want to reduce the problem to the case where ni = 1 for all i ∈ I.

For each i the conjugation action of G on Qi = Sni
i induces a homomorphism πi : G→

Sym(ni). Since ni ≤ NCC(G) by Lemma 3.3 and G has (FMHFG) by Lemma 2.13, there
are only finitely many such homomorphisms. If H is the intersection of the kernels of these
homomorphisms, then H is an open subgroup of G which preserves each direct factor of
each Qi. Thus, H has a chief series (obtained by a refinement of the series {H ∩ Gi})
where all non-abelian chief factors are simple.
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Thus, replacing G by H (which also has finite NCC) we can assume that ni = 1 for
i ∈ I, as desired. Under this extra assumption, for each i ∈ I we have a homomorphism
πi : G→ Aut(Si).

For any finite simple group S, the outer automorphism group Out(S) is solvable of
derived length at most 3. This follows from the classification of finite simple groups
and the explicit description of Out(S) for every finite simple group S – see [GLS, Theo-

rem 2.5.12 and 7.1.1(a)]. Thus, if K = G(3) is the third (closed) derived subgroup of G,
then πi(K) ⊆ Inn(Si) for all i ∈ I. In fact, we have πi(K) = Inn(Si) for all i ∈ I. Indeed,
πi(G) contains πi(Si) = Inn(Si) and hence πi(K) contains Inn(S

(3)
i ) = Inn(Si) (since Si is

perfect).

Identifying Inn(Si) with Si, we can reformulate the conclusion of the previous paragraph
as follows. For every i ∈ I there exists an epimorphism φi : K → Si which is G-equivariant
with respect to the action of G on Si given by πi and the conjugation action of G on K.

Now take any finite subset J ⊆ I such that the groups {Sj}j∈J are pairwise non-
isomorphic and consider the diagonal map φ : K →

∏
j∈J

Sj , which is also G-equivariant.

By construction φ(K) surjects onto each direct factor Sj , and since {Sj} are pairwise non-
isomorphic non-abelian finite simple groups, φ is surjective. Hence NCC(G) ≥ CC(K,G) ≥
CC(

∏
j∈J

Sj , G) ≥ |J | where the first inequality holds by Lemma 2.1(i), the second is im-

mediate from the G-equivariance of φ and the third one holds by Corollary 2.12. Since
NCC(G) < ∞, we proved that the collection {Si}i∈I contains only finitely many pair-
wise non-isomorphic groups. Combined with Lemma 3.4, this implies that I is finite, as
desired. □

4. Reduction to the residually nilpotent case

Notation: Given a discrete group G we will denote by {G(i)}∞i=0 its derived series, that

is, define the subgroups G(i) inductively by G(0) = G and G(i) = [G(i−1), G(i−1)] for i ≥ 1.

If G is profinite, {G(i)} will denote the closed derived series, that is, G(i) = [G(i−1), G(i−1)]
for i ≥ 1.

In this section we will complete the second part of the proof of Theorem 1.5 by estab-
lishing the following result.

Theorem 4.1. Let G be a pro-Sol (resp. a discrete residually-Sol) group, and assume that

NCC(G) <∞. Then there exists k ∈ N such that G(k) is pro-Nil (resp. residually-Nil).

Similarly to Theorem 3.1, it suffices to prove Theorem 4.1 for pro-Sol groups.
The third and final part of the proof of Theorem 1.5 is fairly long and will be postponed

till § 7. However, Theorems 3.1 and 4.1 and Lemma 2.6 are sufficient to deduce the
counterpart of Theorem 1.5 for finitely generated discrete residually finite groups:

Corollary 4.2. Let G be a finitely generated discrete residually finite group with finite
NCC. Then G is virtually residually-Nil.

Proof. By Theorems 3.1 and 4.1, G has a finite index subgroup U such that U (k) is
residually-Nil for some k. If G is virtually cyclic, there is nothing to prove. If G is not
virtually cyclic, applying Lemma 2.6 k times we deduce that U (k) has finite index in G,
which finishes the proof. □



GROUPS COVERED BY CONJUGATES OF FINITELY MANY (PRO)CYCLIC SUBGROUPS 15

We now begin the proof of Theorem 4.1. For the rest of the section we fix a pro-Sol
group G with finite NCC. By Observation 3.2(b), G admits a chief series {Gi} such that
all the quotients Qi = Gi/Gi+1 are abelian. We will also fix such a chief series. For each
i we have Qi ∼= Fni

pi for some prime pi and ni ∈ N.
We start by reducing Theorem 4.1 to a certain result on solvable subgroups of linear

groups over finite fields (see Proposition 4.3 below).
For each i we can think of Qi as a finite-dimensional vector space over Fpi . To emphasize

this point of view we will write GL(Qi) instead of Aut(Qi). Let Ti denote the image of G
in GL(Qi). Note that each Ti must be solvable. To prove Theorem 4.1 it suffices to show
that the derived lengths of the groups Ti are bounded by some k ∈ N (in fact, we will

explicitly bound k in terms of NCC(G)). Indeed, if this is true, then G(k) acts trivially on

all chief factors Qi = Gi/Gi+1 and hence also on their subgroups (Gi∩G(k))/(Gi+1∩G(k))

as well as on the chief factors of any chief series of G(k) refining {Gi ∩ G(k)}∞i=1. Hence

G(k) must be pro-Nil by Observation 3.2(a).
For each i we have NCC(Ti) ≤ NCC(G). On the other hand, if C is the conjugacy class

of a cyclic subgroup of G/Gi+1, then the intersection of C with Qi is either trivial or is
the orbit of a 1-dimensional subspace of Qi under the action of Ti. Thus the action of Ti
on the set of 1-dimensional subspaces of Qi has at most NCC(G) orbits.

Let T ′
i be the subgroup of GL(Qi) generated by Ti and the scalar matrices. Then T ′

i is
also solvable with ℓ(Ti) ≤ ℓ(T ′

i ) where ℓ(·) denotes the derived length (in fact, ℓ(Ti) = ℓ(T ′
i )

unless Ti is the trivial group), and the action of T ′
i on the set of nonzero elements of Qi

has the same number of orbits as the action of Ti on 1-dimensional subspaces. Thus, if we
bound the derived length of T ′

i in terms of the number of orbits of its action on Qi \ {0},
we will be done. More precisely, we are now reduced to proving the following result:

Proposition 4.3. Let H be a solvable subgroup of GLn(Fp) for some prime p. Consider
H as an abstract group acting on Fnp , and let r be the number of orbits of this action. Then
the derived length of H is bounded above by f(r) for some absolute function f (independent
of p and n).

We need some preparation before proving Proposition 4.3.

Definition. Let P be a permutation group acting on a set X.

(i) Define r(P ) to be the number of orbits of P on X.
(ii) The rank of P , denoted rk (P ), is the number of orbits of the diagonal action of P

on X ×X.
(iii) The degree of P is the cardinality of X.

The following result is well known, but for completeness we provide a sketch of proof.

Lemma 4.4. Let H be a subgroup of GL(V ) for some nonzero vector space V over a field
F , and let AH be the group generated by H and all translations x 7→ x+ v with v ∈ V (so
AH is a subgroup of the affine group AGL(V )). The following hold:

(a) r(H) = rk (AH).
(b) Assume that either |F | is prime or H contains all (nonzero) scalar operators.

Then H is irreducible as a linear group (that is, V has no non-trivial H-invariant
subspaces) if and only if AH is primitive as a permutation group.

Sketch of proof. (a) holds since AH acts transitively on V and H is a point stabilizer in
AH (namely the stabilizer of 0).
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(b) If V contains a non-trivial H-invariant subspace W then cosets of W form a non-
trivial AH-invariant partition of V , so AH is not primitive.

Suppose now that AH is not primitive, and let Ω be a non-trivial AH-invariant partition
of V . Let W be the block of Ω containing 0. Then W is H-invariant since H fixes 0. Since
AH contains all maps of the form x 7→ x+a, a ∈ V , it is easy to show thatW is a subgroup
of V (and hence also a subspace if |F | is prime). If |F | is not prime, by assumption AH
contains all maps of the form x 7→ λx + a, a ∈ V , λ ∈ F which similarly implies that W
is a subspace. Thus H is not irreducible. □

Proof of Proposition 4.3. We first consider the case where H is an irreducible subgroup
of GLn(Fp). In this case Proposition 4.3 easily follows from a theorem of Seager [Sea,
Theorem 1] whose simplified version is stated below:

Theorem 4.5 ([Sea]). Let P be a solvable primitive permutation group of rank r and
degree d. Then one of the following holds:

(i) d ≤ f1(r) for some absolute function f1.
(ii) There exist a prime p and integers m and k with k ≤ f2(r) for some absolute

function f2 such that P embeds into the permutation wreath product S(pm) wr[k] Sk.
Here [k] = {1, . . . , k}, Sk is the symmetric group on [k] and S(pm) is the group
of all maps Fpm → Fpm of the form x 7→ aσ(x) + b with a, b ∈ Fpm, a ̸= 0 and
σ ∈ Aut(Fpm).

Since H is solvable, the group AH (defined as in Lemma 4.4) is also solvable. Since H
is irreducible, AH is primitive, so we can apply Theorem 4.5 to P = AH. If (i) holds,
then the order of P (and hence also its derived length) is bounded by a function of r,
so we are done. Suppose now that (ii) holds. If Q is the projection of P to Sk, then P
embeds into S(pm) wr[k]Q, and since P is solvable, so is Q. It is straightforward to check
that S(pm) is solvable of derived length ≤ 3, whence the derived length of the wreath
product S(pm) wr[k]Q (and hence also the derived length of P ) is bounded by a function
of k and hence also by a function of r, as desired. Thus we proved Proposition 4.3 when
H is irreducible.

Now consider the general case. Let V = Fnp , and let {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V be
a maximal chain of H-invariant subspaces. Note that t < r = r(H) since vectors lying in
Vi \ Vi−1 and Vj \ Vj−1 for i ̸= j cannot lie in the same orbit of H.

Let Hi be the canonical image of H in GL(Vi/Vi−1). Then each Hi is an irreducible
solvable linear group with r(Hi) ≤ r and hence by Proposition 4.3 in the irreducible
case, its derived length ℓ(Hi) is bounded above by firr(r) for some absolute function firr.

On the other hand, the kernel K of the natural projection H →
t∏
i=1

Hi is a nilpotent

group of class ≤ t − 1 (see the proof below). Hence ℓ(K) ≤ log 2(t − 1), and therefore
ℓ(H) ≤ ℓ(K) + ℓ(

∏
Hi) ≤ log 2(t− 1) + max ℓ(Hi) < log 2(r) + firr(r), as desired.

To prove that K is nilpotent of class ≤ t − 1 notice that K ⊆ 1 + I where I is the set
of all f ∈ End(V ) such that f(Vj) ⊆ Vj−1 for all 1 ≤ j ≤ t. Clearly I is a ring (without 1)
and It = 0, whence 1 + I is a group. By direct computation [1 + Ij , 1 + I] ⊆ 1 + Ij+1 for
all j. Hence γtK ⊆ γt(1 + I) = {1}, as desired. □
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5. Proof of Theorem 1.1

In this section we will prove Theorem 1.1, assuming the other main results of this paper
that will be proved later. We will also use the following immediate fact:

Observation 5.1. Let G be a profinite group containing a dense subgroup Γ which has
finite NCC (as a discrete group). Then G has finite NCC. Hence the profinite and pro-p
completions of a discrete group with finite NCC have finite NCC.

Proof. The first claim follows directly from definitions. The second claim follows from the
first one and the fact that finiteness of NCC is inherited by quotients. □

For the rest of the section we fix an infinite residually finite discrete group G with finite
NCC. Our goal is to show that G is cyclic or dihedral. Thanks to the following result, it
will be sufficient to show that G is virtually solvable:

Proposition 5.2. Let G be an infinite virtually solvable discrete group with finite NCC.
Then G is cyclic or dihedral.

Proposition 5.2 is a direct combination of the main result of [GW] which implies that
discrete virtually solvable groups with finite NCC are virtually cyclic and [vPW2, Propo-
sition 3.8] which asserts that an infinite virtually cyclic group with finite NCC is cyclic or
dihedral.

The rest of the proof will be divided into three steps, with the first step proving Theo-
rem 1.1 in a special case and each of the subsequent steps reducing to the previous one. In
Steps 1 and 3, we will give a separate argument in the finitely generated case using more
elementary ingredients.

Step 1: G is residually-p for some prime p. In this case G embeds in its pro-p completion

Ĝp. The group Ĝp is a pro-p group with finite NCC and therefore p-adic analytic by

Theorem 6.3. In particular, Ĝp (and hence also G) is linear over Qp.
If G is finitely generated, we can deduce that G is cyclic or dihedral directly from the

following theorem of Puttkamer and Wu [vPW2]:

Theorem 5.3. Let H be an infinite finitely generated discrete linear8 group with finite
NCC. Then H is cyclic or dihedral.

If G is not necessarily finitely generated, we argue as follows. Let Λp be the set of

eigenvalues of elements of G (with respect to a fixed embedding of Ĝp into GLn(Qp) for
some n ∈ N). Since G has finite NCC, Λp is a union of finitely many cyclic subgroups of

Qp
×
(where Qp is the algebraic closure of Qp). In particular, Λp lies in a finitely generated

subfield of Qp. We can now deduce that G is virtually solvable (thereby completing the
proof of Theorem 1.1 for residually-p groups) using the following theorem of Bernik [Be]:

Theorem 5.4. Let A be a linear semigroup in characteristic zero such that the eigenvalues
of all elements of A lie in some finitely generated subfield. Then the subgroup generated
by A is virtually solvable.

Step 2: G is residually-Nil. Then G embeds in its pro-Nil completion Ĝnilp which is

a pro-Nil group and thus is a direct product of its Sylow pro-p subgroups Ĝp. Note that

each Ĝp is the pro-p completion of G.

8As usual, by a linear group we will mean a group embeddable in GLn(F ) for some field F and n ∈ N.
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Let Gp denote the image of G in Ĝp. Then Gp has finite NCC (being a quotient of G)
and is residually-p, so by Step 1 Gp is finite, infinite cyclic or infinite dihedral; moreover,
the last case may only occur when p = 2 (since a residually-p group cannot have q-torsion
for q ̸= p). If Gp is finite, it must be a finite p-group. If in addition Gp is non-cyclic, its
abelianization is also non-cyclic and hence NCC(Gp) ≥ p+1. Since NCC(Gp) ≤ NCC(G),
there are only finitely many p for which Gp is finite non-abelian. It follows that Gp is
abelian for almost all p and virtually abelian for all p. Since G embeds into

∏
Gp, it must

be virtually abelian, and we are done.

Step 3: G is an arbitrary residually finite group. Since finiteness of NCC is preserved
by passing to finite index subgroups, by Step 2 it suffices to show that G has a finite
index residually-Nil subgroup H. If G is finitely generated, this holds by Corollary 4.2.

In the general case, consider the profinite completion Ĝ. It has finite NCC and hence
by Theorem 1.5 has an open pro-Nil subgroup U . Then H = G ∩ U is a finite index
residually-Nil subgroup of G.

6. Pro-p groups with finite NCC

In this section we will prove Theorem 1.3. Our first goal is to show that pro-p groups
with finite NCC are p-adic analytic (see Theorem 6.3 below). We start with the definition
of p-adic analytic groups and stating several characterizations of compact p-adic analytic
groups.

Definition. A topological group G is called p-adic analytic if it can be given the structure
of a manifold over Qp (compatible with the topology on G) such that the multiplication
map (x, y) 7→ xy and the inversion map x 7→ x−1 are analytic.

It is quite remarkable that for compact groups, the property of being p-adic analytic is
equivalent to other natural conditions of very different flavor, some of which are collected
in the following theorem. We refer the reader to [DDMS] for the proof of this theorem
and other characterizations of p-adic analytic groups.

Theorem 6.1. Let G be a compact topological group. The following are equivalent:

(a) G is p-adic analytic;
(b) G is isomorphic to a closed subgroup of GLn(Zp) for some n ∈ N;
(c) G is virtually pro-p and has finite rank, that is, there exists d ∈ N such that

d(H) ≤ d for every closed subgroup H of G.

Remark. The equivalence of (a) and (b) in Theorem 6.1 immediately implies that closed
subgroups of p-adic analytic groups are p-adic analytic. It also implies that compact
p-adic analytic groups are virtually torsion-free. Indeed, it suffices to prove the latter
for GLn(Zp), and an easy direct computation shows that the kth congruence subgroup

GLkn(Zp) = Ker (GLn(Zp)→ GLn(Zp/pkZp)) is torsion-free if either p > 2 or k ≥ 2.

In order to prove that pro-p groups with finite NCC are p-adic analytic we will use
another important characterization, which deals with the dimension subgroups.

Given a group G, let {Dn}∞n=1 be the dimension series of G in characteristic p. It is
defined by Dn = Dn(G) = {g ∈ G : g ≡ 1 mod In}, where I is the augmentation ideal of
the group algebra Fp[G], and has the following properties:

(a) [Dn, Dm] ⊆ Dn+m for all n,m ∈ N.
(b) Dp

n ⊆ Dnp for all n ∈ N.
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(c) G is residually-p if and only if
⋂
n∈N

Dn = {1}.

In fact, {Dn} is the fastest descending chain of subgroups satisfying (a) and (b), but this
will not be important for our purposes. If G is a finitely generated pro-p group, it is not
difficult to show that each Dn is open in G (see, e.g. [DDMS, § 11]).

We will use the well-known characterization of p-adic analytic pro-p groups in terms of
their dimension series (see, e.g. [DDMS, § 11]):

Theorem 6.2. Let G be a finitely generated pro-p group G. Then G is p-adic analytic if
and only if Dn(G) = Dn+1(G) for some n ∈ N.

We are now ready to prove Theorem 6.3:

Theorem 6.3. Any pro-p group with finite NCC is p-adic analytic.

Proof. Fix a pro-p group G. For any 1 ̸= x ∈ G define deg (x) to be the unique integer n
such that x ∈ Dn \Dn+1 (such n exists by (c) above). Also set deg (1) =∞. The following
3 properties of degree are straightforward:

(i) Conjugate elements have the same degree (this holds by (a) above with m = 1).
(ii) deg (xp) ≥ pdeg (x) for all x ∈ G (this holds by (b)).
(iii) If λ ∈ Z×

p is a unit of Zp, then deg (x) = deg (xλ) for all x ∈ G (since in this case

x and xλ generate the same procyclic subgroup).

Let us now assume that G has finite NCC, so there exists a finite subset {x1, . . . , xk}
of G such that every element of G is conjugate to xλi for some 1 ≤ i ≤ k and λ ∈ Zp. Let
di = deg (xi) (without loss of generality we can assume that xi ̸= 1, so di <∞), and more

generally let di,j = deg (xp
j

i ).

Property (iii) above implies that for each λ ∈ Zp we have deg (xλi ) = di,j for some j and
hence by (i) (and the choice of {x1, . . . , xk}), the degree of any nonzero element of G is
equal to di,j for some i and j.

On the other hand, di,j ≥ pjdi by (ii), so for eachN ∈ N there are at most k(⌊log p(N)⌋+
1) possible degrees of elements of G which are ≤ N . Since k(⌊log p(N)⌋+1) < N for large
enough N , there exists n ∈ N which is not the degree of any element of G. But this means
precisely that Dn(G) = Dn+1(G) and hence G is p-adic analytic by Theorem 6.2. □

Our next result shows that a compact p-adic analytic group with finite NCC must have
an element with small centralizer.

Proposition 6.4. Let G be a compact p-adic analytic group with finite NCC. Then there
exists g ∈ G whose centralizer C(g) is one-dimensional.

In order to prove Proposition 6.4, we need a simple lemma:

Lemma 6.5. Let X and Y be p-adic manifolds and ψ : X → Y an analytic map whose
image has non-empty interior. Then dimX ≥ dimY .

Proof. It is not hard to prove Lemma 6.5 directly, but it also follows immediately from
Sard’s Lemma for p-adic manifolds, as we now explain.

Let K be the set of critical points of ψ, that is, the set of all x ∈ X such that the
derivative map Dx(ψ) : Tx(X) → Tψ(x)Y is not surjective (where Tx(X) and Tψ(x)Y are
the tangent spaces). By Sard’s Lemma over Qp [BKL, Theorem 2.3.3], ψ(K) has measure
zero in Y and thus cannot have non-empty interior. Hence K ̸= X, and for any x ∈ X \K
we have dimX = dimTx(X) ≥ Tψ(x)Y = dimY , as desired. □
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Proof of Proposition 6.4. By assumption there exist finitely many elements x1, . . . , xk ∈ G
such that G = ∪ki=1⟨xi⟩

G
, and assume that k is smallest possible. As in the proof of

Lemma 2.5, each set ⟨xi⟩
G
is closed and hence G \ ∪j ̸=i⟨xj⟩

G
is open. By the minimality

of k the latter set is also non-empty, so ⟨xi⟩
G
has non-empty interior.

We can think of the conjugation map φ : (y, g) 7→ g−1yg restricted to ⟨xi⟩ × G as a

map φi : ⟨xi⟩ ×G/C(xi)→ G. Since G is p-adic analytic and C(xi) is a closed subgroup,
the quotient G/C(xi) is a p-adic manifold, and it is straightforward to check that φi is an
analytic map.

Since Im (φi) = ⟨xi⟩
G
, Lemma 6.5 is applicable, so dim(⟨xi⟩ × G/C(xi)) ≥ dim(G).

Since dim(⟨xi⟩ ×G/C(xi)) = dim(⟨xi⟩) + dim(G)− dimC(xi) ≤ 1 + dim(G)− dimC(xi),
we deduce that dimC(xi) ≤ 1 for each i. It remains to show that there exists i such that
dimC(xi) ≥ 1, and the latter is definitely true if xi is not torsion (since C(xi) contains

⟨xi⟩).
Finally, at least one xi is not torsion since otherwise G is torsion which is impossible

since G is infinite and virtually torsion-free. □

To each p-adic analytic groupG one can associate aQp-Lie algebra L(G) with dimL(G) =
dim(G) such that L(G) depends only on the commensurability class of G. For a classi-
cal definition of L(G) we refer the reader to Serre’s book [Ser2], but for us it will be
more convenient to follow the approach in [DDMS] (which, in turn, is based on Lazard’s
manuscript [La]) and define L(G) in terms of a certain Zp-Lie subalgebra which can be
associated to any uniform pro-p group.

A pro-p group G is called powerful if [G,G] ⊆ Gp where p equals p if p > 2 and 4 if
p = 2 and Gp is the subgroup generated by pth powers. A pro-p group G is uniform if
it is both powerful and torsion-free. Powerful (in particular, uniform) pro-p groups are
always p-adic analytic. Conversely, every p-adic analyic group contains an open uniform
subgroup [DDMS, Corollary 8.34]. To any uniform pro-p group G one can associate a
Zp-Lie algebra LG (see [DDMS, § 6,7] for a proof):

Proposition 6.6. Let G be a uniform pro-p group. There exists a structure of a normed
Qp-algebra on Qp[G] with the following properties:

(a) Let Q̂p[G] be the completion of Qp[G] (with respect to the chosen norm). Then the

function log : G→ Q̂p[G] given by

log (g) =

∞∑
i=1

(−1)i−1

i
(g − 1)i

is well defined (that is, the series converges) and injective. Moreover, log is a
bi-analytic homeomorphism onto its image.

(b) LG = log (G) is a Zp-Lie subalgebra of Q̂p[G] (with respect to the commutator
bracket).

Given a p-adic analytic group G, one can now define L(G) as follows: choose any open
uniform pro-p subgroup H and set L(G) = Qp ⊗Zp LH . In [DDMS, § 9] it is shown that
L(G) defined in this way is independent of the choice of H (up to isomorphism) and
moreover is isomorphic to the Lie algebra of G as defined in [Ser2].

We will need the following basic properties of LG and the log map defined above.
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Proposition 6.7. Let G be a uniform pro-p group and exp : LG → G the inverse of the
map log : G→ LG. The following hold:

(i) Let I be an ideal of LG such that LG/I is torsion-free. Then exp(I) is a (closed)
normal subgroup of G.

(ii) Let x, y ∈ G. Then x and y commute if and only if [log (x), log (y)] = 0.

Proof. (i) holds by [DDMS, Proposition 7.15].
(ii) The Lie algebra LG admits an alternative definition (see [DDMS, § 4] for that

definition and [DDMS, Corollary 7.14] for the proof of its equivalence to the definition of
LG given above). According to this alternative definition and [DDMS, Lemma 7.12] we
have [log (x), log (y)] = lim

n→∞
1
2n log ([x

pn , yp
n
]) for all x, y ∈ G which immediately implies

the forward direction.
To prove the backwards direction, take any u, v ∈ LG with [u, v] = 0. We need to show

that exp(u) and exp(v) commute. In [DDMS, § 6], it is proved that exp(u) · exp(v) =

exp(Φ(u, v)) where Φ(u, v) =
∞∑
i=1

fi(u, v), each fi(u, v) is a homogeneous Lie polynomial

in u and v of degree i and f1(u, v) = u+ v. Since [u, v] = 0, it follows that fi(u, v) = 0 for
i > 1 whence exp(u) · exp(v) = exp(u+ v) = exp(v + u) = exp(v) · exp(u), as desired. □

As an easy consequence of Proposition 6.4, Corollary 2.8 and Proposition 6.7, we deduce
that for a pro-p group G with finite NCC, there are very few possibilities for L(G):

Corollary 6.8. Let G be an infinite pro-p group with finite NCC (so that G is p-adic
analytic by Theorem 6.3). Then L(G) is isomorphic to Qp, sl2(Qp) or sl1(D) where D is
the quaternion division algebra over Qp.

Proof. After passing to an open subgroup, we can assume that G is uniform. We claim
that L(G) has no nonzero proper Qp-ideals (that is, ideals which are also Qp-subspaces).
Indeed, suppose that I is a nonzero Qp-ideal of L(G). Then LG ∩ I is a nonzero ideal
of LG and LG/(LG ∩ I) is torsion-free (as it embeds in L(G)/I), so by Proposition 6.7,
N = exp(LG ∩ I) is a non-trivial normal subgroup of G. Since G is just-infinite by
Corollary 2.8, N is open in G whence LG ∩ I is open in LG. Since LG/(LG ∩ I) is also
torsion-free, it must be trivial. Thus I contains LG and hence I = L(G).

Thus we proved that L(G) is either one-dimensional (and thus isomorphic to Qp) or
simple (non-abelian). Let us proceed with the latter case.

By Proposition 6.4, there exists g ∈ G with dimCG(g) = 1. By Proposition 6.7(ii) we
have log (CG(g)) = CLG

(log (g)). Since log : G → LG is bi-analytic, Lemma 6.5 implies
that dimCLG

(log (g)) = dimCG(g) = 1. Since CL(G)(log (g)) = QpCLG
(log (g)), it follows

that dimCL(G)(log (g)) = 1 as well.
Let r denote the rank of L(G). By one of the definitions of the rank, r is the minimal

value of dimCL(G)(x) as x ranges over L(G), so we must have r = 1. Finally, it is
well known that there are only two simple Lie algebras of rank 1 over Qp: sl2(Qp) and
sl1(D). □

We are now ready to prove Theorem 1.3 whose statement is recalled below:

Theorem 1.3. Let p be a prime and G a pro-p group. Then G has finite NCC if and only
if one of the following 3 mutually exclusive conditions holds:

(i) G is finite.
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(ii) G is infinite procyclic or p = 2 and G is infinite prodihedral, that is, the pro-2
completion of the infinite dihedral group.

(iii) G is isomorphic to an open torsion-free subgroup of PGL1(D) where D is the
quaternion division algebra over Qp.

Proof. We start with the ‘only if’ direction. In view of Corollary 6.8, it suffices to prove
the following:

(1) If G has finite NCC and L(G) ∼= Qp, then either G ∼= Zp or p = 2 and G is infinite
prodihedral.

(2) If L(G) ∼= sl2(Qp), then G has infinite NCC.
(3) If L(G) ∼= sl1(D), then G is an open subgroup of PGL1(D).
(4) If G is an open pro-p subgroup of PGL1(D) with non-trivial torsion, then G has

infinite NCC.

(1) In this case G must be virtually Zp. Let Z be an open normal subgroup of G
isomorphic to Zp, and let φ : G → Aut(Z) be the map induced by conjugation. Since Z
is abelian, φ is not injective. Since G has finite NCC, it is just-infinite, so Imφ must be
finite; in fact, a finite p-group. It is clear that Aut(Zp) ∼= Z×

p , and it is well known that

Z×
p
∼= Zp × Z/(p − 1)Z for p > 2 and Z×

2
∼= Z2 × Z/2Z (see, e.g. [Go, Corollary 5.8.2]).

Thus, if p > 2, then Aut(Z) has no non-trivial finite p-subgroups, so φ must be trivial,
and if p = 2, then Aut(Z) has a unique non-trivial finite subgroup which has order 2.
It follows that CG(Z), the centralizer of Z in G (which coincides with Kerφ) equals the
entire G if p > 2 and has index at most 2 in G if p = 2.

If CG(Z) contains a (non-trivial) torsion element g, then ⟨g⟩×Z is an open subgroup ofG
which is not just-infinite and hence has infinite NCC, contrary to Lemma 2.2. Thus, CG(Z)
is torsion-free. A well-known theorem of Serre [Ser1] asserts that a finitely generated pro-p
group which is virtually free and torsion-free must be free. Thus, CG(Z) ∼= Zp. Recall
that CG(Z) = G if p > 2, so we are done in the case. If p = 2, we know that G contains a
subgroup U of index ≤ 2 isomorphic to Z2. Thus, G ∼= Z2 as well or G contains a torsion
element (necessarily of order 2) which acts on U by inversion, in which case G is infinite
prodihedral.

(2) Suppose now that L(G) ∼= sl2(Qp), so that G contains an open subgroup of SL2(Zp).
Recall that an element g of GLn(F ) for some field F is called unipotent if all if its eigen-
values are equal to 1. After replacing G by an open subgroup, we can assume that

(*) all elements of G are either diagonalizable or unipotent.

Indeed, any element of SL2(Zp) which is neither diagonalizable nor unipotent must have
eigenvalue −1 with multiplicity 2. If p ̸= 2, such an element cannot lie inside any pro-p
subgroup, and if p = 2, such an element lies outside SL2

2(Z2).
Now assume that G has finite NCC, and apply Lemma 2.5 where A is the set of non-

trivial unipotent elements in G, B = {1} and C = G \ (A ⊔ B). Condition (*) implies
that C is precisely the set of non-trivial diagonalizable elements whence the hypotheses of
Lemma 2.5 are clearly satisfied. Note that A ̸= {1} as G contains non-trivial elements of

the form

(
1 λ
0 1

)
, so by Lemma 2.5, A ∪ {1} has non-empty interior and hence the same

is true for the set of all unipotent elements in SL2(Qp). It is easy to see directly that the
latter is false (e.g. using the fact that the unipotent elements in SL2(Qp) are precisely
2× 2 matrices with determinant 1 and trace 2).
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(3) Since L(PGL1(D)) ∼= sl1(D), we can immediately deduce that G is commensurable
with PGL1(D), but proving that G is a subgroup of PGL1(D) requires more work. We
first recall the notion of the commensurator of a profinite group.

Definition. Let P be a profinite group. The commensurator of P , denoted Comm(P ),
is the group of equivalence classes of isomorphisms φ : U → V where U and V are open
subgroups of P . Here two isomorphisms φ : U → V and φ′ : U ′ → V ′ are equivalent if
they coincide on an open subgroup of U ∩ U ′.

For any profinite group P the conjugation action of P on itself induces a canonical
homomorphism P → Comm(P ). On the other hand, if Q is another profinite group
which is commensurable to P (that is, Q and P have isomorphic open subgroups), then
Comm(Q) ∼= Comm(P ), and thus we obtain a homomorphism φ : P → Comm(Q).

We proceed with the proof in case (3). Since G is commensurable with PGL1(D),
as we just explained, there is a natural homomorphism φ : G → Comm(PGL1(D)).
The image of φ must be infinite (for otherwise, G is virtually abelian, which is clearly
a contradiction) and hence by Corollary 2.8, the kernel of φ must be trivial, so G embeds
into Comm(PGL1(D)).

We claim that Comm(PGL1(D)) ∼= PGL1(D). Indeed, by [BEW, Theorem 3.12], if
H is any compact p-adic analytic group, then Comm(H) is isomorphic to AutQp(L(H)),
so Comm(PGL1(D)) ∼= AutQp(sl1(D)). By [JT, Proposition 8.1], AutQp(sl1(D)) is iso-
morphic to AutQp(D), the group of automorphisms of D considered as an associative

Qp-algebra.
9 Finally, AutQp(D) ∼= PGL1(D) by the Skolem-Noether theorem.

Thus, we proved that G is isomorphic to a (closed) subgroup of PGL1(D), and since
G is commensurable with PGL1(D), this subgroup must be open (e.g. since PGL1(D) is
compact p-adic analytic, so its closed non-open subgroups have strictly smaller dimension).

(4) Finally, suppose that G is an open pro-p subgroup of PGL1(D) with non-trivial
torsion. Assume that G has finite NCC. By Lemma 2.4 the set of torsion elements in G
has non-empty interior. Let T be set of all torsion elements in PGL1(D). Since PGL1(D)
is virtually torsion-free, the orders of torsion elements are bounded, so there exists k ∈ N
such that T = {g ∈ PGL1(D) : gk = 1}. Let ρ : D× → PGL1(D) be the natural
projection. Then ρ−1(T ) also has non-empty interior. On the other hand, if we identify
D with Q4

p (by choosing any basis), then ρ−1(T )∪ {0} is a proper Zariski closed subset of

Q4
p and thus must have empty interior, a contradiction.

This concludes the proof of the ‘only if’ direction of Theorem 1.3. We now prove the
‘if’ direction. It is clear that the groups in families (i) and (ii) have finite NCC, so we
only need to explain why open torsion-free pro-p subgroups of PGL1(D) have finite NCC.
This fact was essentially known prior to this paper. It may have been indirectly observed
by many mathematicians, but the earliest reference in the literature we are aware of is a
paper of Jaikin-Zapirain [Ja].

Let us say that a group has finite NAC if it can be covered by the conjugacy classes
of finitely many abelian subgroups or, equivalently, has finitely many conjugacy classes of
maximal abelian subgroups. Similarly to NCC, finiteness of NAC is preserved by passing
to open subgroups. The proof of Theorem 1.3 in [Ja] shows that for any p-adic field F and
any finite-dimensional central division algebra D over F , the group PGL1(D) has finite

9The result in [JT] is stated only for p = 2, but the proof works for all p.
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NAC. It remains to show that if F = Qp, deg (D) = 2 and G is an open torsion-free pro-p
subgroup of PGL1(D), then any maximal abelian subgroup of G is procyclic.

Since maximal abelian subgroups must be closed, it suffices to show that any closed
torsion-free abelian pro-p subgroup of PGL1(D) is procyclic. Any such group A is also
finitely generated and hence isomorphic to Zkp for some k ∈ Z≥0. But then the Lie algebra
L(A) is abelian of dimension k, and sl1(D) has no abelian subalgebras of dimension > 1.
Thus, k ≤ 1, so A is procyclic, as desired. □

Remark. The central problem investigated in [Ja] is the following: given a pro-p group G,
how fast/slow can the number of conjugacy classes of finite quotients G/N grow relative
to the size of G/N? Finiteness of NAC for the groups of the form PGL1(D) was used in
[Ja] to show that for every ε > 0 there is a finitely generated pro-p group G such that
the number of conjugacy classes of G/N is at most |G/N |ε whenever |G/N | is sufficiently
large.

Finiteness of NAC for the groups PGL1(D), with D as in Theorem 1.3, was also estab-
lished by Böge, Jarden and Lubotzky in [BJL] using the same argument as in [Ja], but in
a very different context. In the terminology of [BJL], a profinite group G is called sliceable
if there exist finitely many closed subgroups of infinite index H1, . . . ,Hk whose conjugacy
classes cover G. [BJL, Theorem D] asserts that the groups of the form PGL1(D) are
sliceable (but the proof shows they actually have finite NAC). The notion of a sliceable
group was introduced in [BJL] in connection with the number-theoretic problem on the
existence of Kronecker field towers. It would be interesting to find any number-theoretic
questions more directly related to Theorem 1.3.

7. Profinite groups with finite NCC

In this section we complete the proof of Theorem 1.5 by establishing the following result.

Theorem 7.1. Let G be a pro-Sol group with finite NCC, and suppose that G(i) is pro-Nil
for some i. Then G is virtually pro-Nil.

Theorem 7.1 is a fairly easy consequence of the following proposition:

Proposition 7.2. Let G be a metabelian profinite group with finite NCC, and let A be an
abelian closed normal subgroup of G such that G/A is also abelian. The following hold:

(a) G has an open abelian subgroup containing A;
(b) G is virtually procyclic.

We will first prove Theorem 7.1 assuming Proposition 7.2 and then prove Proposi-
tion 7.2.

Proof of Theorem 7.1. Let us consider the set of all pairs (H, k) where H is an open

subgroup of G and k ∈ Z≥0 is such that H(k) is pro-Nil (by hypotheses this set is non-
empty). Among all such pairs (H, k) choose one where k is minimal. Theorem 7.1 is
equivalent to the assertion that k = 0.

First we assume that k ≥ 2 and consider the metabelian group Q = H/H(2). Since
Q has finite NCC (as H does), it is virtually procyclic by Proposition 7.2(b). Thus H
has an open subgroup M whose image in Q is procyclic and in particular abelian. Then
[M,M ] ⊆ H(2), whence M (k−1) = [M,M ](k−2) ⊆ (H(2))(k−2) = H(k), and so M (k−1) is
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pro-Nil. Since M is open in H and hence in G, this contradicts minimality of k. Thus we
proved that k ≤ 1.

Since k ≤ 1, the group K = [H,H] is pro-Nil. We will now use this fact to prove

directly that H (and hence G) is virtually pro-Nil. By Proposition 7.2(a), Q = H/H(2)

has an open abelian subgroup V containing [H,H]/H(2). If U is the preimage of V in H,

then U is an open subgroup of H containing K = [H,H] such that [U,U ] ⊆ H(2), so in

particular [U,K] ⊆ H(2) = [K,K]. Then γ3(U) = [U, [U,U ]] ⊆ [U,K] ⊆ [K,K].
A well-known theorem of P. Hall asserts that if X is a group which has a normal

nilpotent subgroup Y such that X/[Y, Y ] is nilpotent, then X itself is nilpotent (see, e.g.
[Ro, 5.2.10]). It is straightforward to extend this theorem to pro-Nil groups. We know
that K is pro-Nil, and we just showed that U/[K,K] is nilpotent of class ≤ 2. Hence by
Hall’s theorem U is pro-Nil. Since U is open in G, the proof is complete. □

We now turn to the proof of Proposition 7.2. The proof presented below uses several
ideas suggested by the referee and is much shorter and more conceptual than our original
proof. We will need the following well-known result:

Lemma 7.3 (Proposition 5.5 in [DDMS]). Let G be a finitely generated pro-p group,
and let Aut(G,Φ(G)) be the kernel of the natural map Aut(G) → Aut(G/Φ(G)). Then
Aut(G,Φ(G)) is a pro-p group and therefore Aut(G) is virtually pro-p.

Proof of Proposition 7.2. We start by deducing (b) from (a). Abelian profinite groups
with finite NCC are virtually procyclic – this is not hard to prove directly, but also follows
from the classification of pro-Nil groups with finite NCC (Corollary 1.4) which is already
completed at this stage. Hence virtually abelian profinite groups with finite NCC are also
virtually procyclic, so part (b) of Proposition 7.2 indeed follows from part (a).

(a) First note that G/A is an abelian profinite group with finite NCC and hence is
virtually procyclic. Replacing G by an open subgroup containing A, we can assume
from now on that G/A itself is procyclic. Thus, we can write G = AD for some procyclic
subgroup D. Since A and D are abelian, they are direct product of Sylow pro-p subgroups:
A =

∏
Ap and D =

∏
Dp where p ranges over all primes.

The conjugation action of G induces maps π : G→ Aut(A) as well as πp : G→ Aut(Ap)
for each prime p. Proposition 7.2(a) asserts exactly that π(G) is finite. Also note that
π(G) = π(D) and πp(G) = πp(D).

We proceed with a few more auxiliary results.

Lemma 7.4. The minimal number of generators d(Ap) is finite for all p.

Proof. Fix a prime p, and let {Gi}∞i=1 be any descending chain of open normal subgroups
of G which form a base of neighborhoods of identity. Let Vp = Ap/A

p
p, and let {Vp,i}i∈N

be the filtration of Vp induced by {Gi}. Since Gi are open and normal in G, the subspaces
Vp,i are G-invariant and have finite codimension in Vp.

Suppose now that d(Ap) = ∞. Then Vp is infinite and thus we can find an infinite
sequence i1 < i2 < · · · such that the subspaces Vp,ik are all distinct. Choose vk ∈
Vp,ik \ Vp,ik+1

. Then the subspaces Fpvi and Fpvj cannot be in the same G-orbit for i ̸= j,
so G acts on the set of 1-dimensional subspaces of Vp with infinitely many orbits. On
the other hand, the number of such orbits is exactly CC(Vp, G), and by Lemma 2.1(i)(ii)
CC(Vp, G) ≤ NCC(G). Since NCC(G) <∞, we reached a contradiction. □

Lemma 7.5. If Dp is infinite, then Ap is trivial.
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Proof. Suppose this is false for some p. Then there exists an epimorphism ρp : G → Zp
with |Ker ρp| (considered as a supernatural number) divisible by p. Since G has finite
NCC, this contradicts Lemma 2.7. □

Lemma 7.6. For each p the group πp(D) is finite.

Proof. Let D′
p =

∏
q ̸=pDq, so that D = Dp ×D′

p. We already know that πp(Dp) is finite

by Lemma 7.5, so it suffices to show that πp(D
′
p) is finite.

Since d(Ap) is finite by Lemma 7.4, the group Aut(Ap) is virtually pro-p by Lemma 7.3.
On the other hand, |D′

p| is coprime to p, so its image πp(D
′
p) has trivial intersection

with any pro-p subgroup of Aut(Ap). Hence πp(D
′
p) has trivial intersection with an open

subgroup of Aut(Ap) and is therefore finite, as desired. □

Recall that for a group Φ acting by automorphisms on a profinite group H we denote
by CC(H,Φ) the smallest number of procyclic subgroups of H whose Φ-orbits cover H.
Equivalently, CC(H,Φ) is the number of Φ-orbits of maximal procyclic subgroups of H.

Lemma 7.7. There are only finitely many p for which CC(Ap, D) > 1.

Proof. Supoose that CC(Ap, D) > 1 for infinitely many p. Since CC(Ap, D) = CC(Ap, G) =
CC(Ap, πp(G)), Lemma 2.3 implies that CC(A,

∏
p
πp(G)) = ∞. Since π(G) is a sub-

group of
∏
p
πp(G), we have CC(A,G) = CC(A, π(G)) ≥ CC(A,

∏
p
πp(G)), and finally

NCC(G) ≥ CC(A,G) by Lemma 2.1(i). Thus, NCC(G) =∞, a contradiction. □

Since πp(G) is finite for each p, we can replace G by G/
∏
p∈F

Ap for any finite set of

primes F without affecting whether π(G) is finite or not. In view of Lemma 7.7, after
doing so we can assume the following:

(*) For each prime p we have CC(Ap, D) = 1, that is, any two maximal procyclic
subgroups of Ap are conjugate by an element of D.

We proceed with the proof of Proposition 7.2, now assuming (*). For each prime p
choose a maximal procyclic subgroup Cp of Ap. Note that Cp and Ap have the same
centralizer in D. This follows from (*) and the fact that D is abelian which implies that
all D-conjugates of Cp have the same centralizer.

Now let P be the set of all primes p such that Ap is non-trivial. If P is finite, π(G) is
finite by Lemma 7.6, so assume that P is infinite and enumerate its elements arbitrarily:

P = {p1, p2, . . .}. For each n ∈ N let Pn = {p1, p2, . . . , pn}. Let C(n) =
n∏
i=1

Cpi , let B(n)

be the centralizer of C(n) in D and D(n) =
∏
p ̸∈Pn

Dp ∩B(n) (note that the product is over

all primes lying outside of Pn, not just the ones in P \Pn). The groups
∏
p ̸∈Pn

Dp and B(n)

are both open in D. The former holds since for any p ∈ Pn the group Ap is non-trivial
and hence Dp is finite by Lemma 7.5. And B(n) is open in D by Lemma 7.6. Hence D(n)
is also open in D.

Let E(n) = C(n)D(n). By construction C(n) and D(n) are both procyclic and have
coprime orders; moreover D(n) centralizes C(n), so E(n) is procyclic for each n. Since
G has finite NCC, it has a procyclic subgroup L which contains some conjugate of E(n)
for arbitrarily large n. In particular, L must contain some conjugate C ′

pi of Cpi for each
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i. On the other hand, L contains a conjugate of D(m) for some m, and replacing L by a
conjugate, we can assume that L contains D(m).

We already observed that Cpi (and hence also C ′
pi) has the same centralizer in D as

Api . Hence the centralizer of L in D is contained in the centralizer of A =
n∏
i=1

Api . On

the other hand, L contains D(m) (which commutes with D as D is abelian), so D(m)
centralizes A. Thus AD(m) is an abelian group containing A, and it is open in G since
D(m) is open in D. □

8. Connections with topology

The following terminology was introduced in [vPW2]:

Definition. A discrete group G has property (bCyc) if G has finite NCC.

In this section we will introduce two variations of property (bCyc) denoted (bVC) and
(BVC) and discuss how they are related to (bCyc) and to each other. We will then explain
how properties (bCyc) and (BVC) naturally arise in the study of certain classifying spaces
for families of subgroups.

We start with a very general definition.

Definition. Let G be a group and let F be a class of groups closed under isomorphisms
and subgroups. We will say that

(i) G has property (bF) if there exist finitely many subgroups of G which lie in F and
whose conjugacy classes cover G;

(ii) G has property (BF) if there exist finitely many subgroups H1, . . . ,Hk of G which
lie in F and such that every subgroup of G lying in F is conjugate to a subgroup
of Hi for some i.

Below we will denote the classes of cyclic and virtually cyclic groups by Cyc and V C,
respectively. Clearly, properties (BCyc) and (bCyc) are equivalent to each other and hold
if and only if the group has finite NCC. The notation (BVC) was introduced in [GW],
while properties (bCyc) and (bVC) were formally introduced in [vPW2] (the notation for
(bVC) in [vPW1] is (bVCyc)).

The following observation is immediate from definitions.

Observation 8.1. The following hold:

(a) If F contains all cyclic groups, then (BF) implies (bF).
(b) If F1 ⊆ F2, then (bF1) implies (bF2).
(c) If F is closed under quotients, then any quotient of a group with (bF) has (bF).

Thus either of the properties (BVC) and (BCyc)=(bCyc) implies (bVC). Unlike (bVC),
property (BVC) is not inherited by quotients, and (bCyc) does not imply (BVC) (see
Corollary 4.22 and Example 1.12 in [vPW2]). There are plenty of groups which have
(BVC), but not (bCyc), e.g. any virtually cyclic group which is not finite, cyclic or
infinite dihedral. However, discrete torsion-free groups with (BVC) have (bCyc) since a
torsion-free virtually cyclic group must be cyclic. The latter holds, for instance, since any
infinite virtually cyclic group V has a unique maximal finite normal subgroup N such
that V/N is infinite cyclic or infinite dihedral [Wa, Lemma 4.1]. Further, residually finite
groups with (BVC) are not far from having (bCyc):
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Lemma 8.2 (see Lemma 5.0.2 in [vP]). Let G be a discrete residually finite group with
(BVC). Then some finite index subgroup H of G has (bCyc).

Property (BF) naturally arises in the study of the classifying space EF (G) defined as
follows:

Definition. Let G be a discrete group and let F be as above. A classifying space EF (G) is
a G-CW complex (that is, a CW complex with a cellular action of G) such that for every
subgroup H of G, the H-fixed point space EF (G)H is empty if H ̸∈ F and contractible (in
particular, non-empty) if H ∈ F .

It is known that EF (G) is unique up to G-homotopy.

A G-CW complex is said to be finite type if it has finitely many G-orbits of cells in
each dimension and finite if it is of finite type and finite-dimensional. Juan-Pineda and
Leary [JPL, Conjecture 1] conjectured that a classifying space EV C(G) cannot be finite
unless G is virtually cyclic. A similar question of Lück, Reich, Rognes and Varisco [LRRV,
Question 4.9] asks whether ECyc(G) cannot be of finite type unless G is finite, cyclic or
dihedral.

The following result establishes the basic relation between property (BF) for G and the
classifying space EF (G):

Claim 8.3. G admits EF (G) with finitely many 0-cells if and only if G has (BF).

Claim 8.3 in the case F = V C is Lemma 1.3 in [vPW1]. The proof in the general case
is identical.

Corollary 8.4. Let G be a residually finite group. Then

(a) [JPL, Conjecture 1] holds for G and
(b) [LRRV, Question 4.9] has positive answer for G.

Proof. Suppose that ECyc(G) has finite type. Then by Claim 8.3 G has (BCyc)=(bCyc),
so (b) follows directly from Theorem 1.1. To prove (a) we use the same argument in
conjunction with Lemma 8.2. □
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