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Abstract. Given a discrete (resp. profinite) group G, we define NCC(G) to be the
smallest number of cyclic (resp. procyclic) subgroups of G whose conjugates cover G. In
this paper we determine all residually finite discrete groups with finite NCC and give an
almost complete characterization of profinite groups with finite NCC. As a consequence
we can show, for example, that for any k ∈ N and any prime p > 3 the number of finite
p-groups P with more than 3 generators and NCC(P ) = k is finite.

1. Introduction

1.1. Motivation. Questions of covering groups by conjugacy classes of subgroups, fre-
quently called normal coverings, have a very long history. For instance, it is a classical
theorem from the 19th century that a finite group cannot be written as a union of con-
jugates of a (single) proper subgroup.1 In modern terminology, this theorem asserts that
finite groups are invariably generated, a property which attracted plenty of attention over
the past decade (see, e.g., [Min] and references therein). A lot of recent work was also
devoted to studying the normal covering number γ(G) for a finite non-cyclic group G –
the smallest number of proper subgroups whose conjugates cover G (see, e.g., [BPS] and
references therein as well as [BSW] for the investigation of a related quantity γw(G)).

In this paper we will study normal cyclic coverings, that is, coverings of groups by
conjugacy classes of cyclic subgroups. The main invariant we will be interested in is
defined as follows.

Definition. Let G be a group. We define NCC(G) to be the smallest k such that G can
be written as a union of conjugacy classes of k cyclic subgroups. If no such k exists, we
set NCC(G) =∞. Here NCC is an abbreviation for normal cyclic covering.

Our motivation for studying NCC was two-fold. On one hand, understanding which
infinite groups have finite NCC and the closely related property (BVC) is related to certain
problems about classifying spaces for families of subgroups, most notably a conjecture of
Juan-Pineda and Leary [JPL, Conjecture 1] and a question of Lück, Reich, Rognes and
Varisco [LRRV, Question 4.9] (see § 11.1 for details). On the other hand, it is natural
to compare NCC(G) with the classical and much better understood invariant k(G), the
number of conjugacy classes of G. One of the basic properties of k(G) is that for finite
G, it grows with the size of the group: k(G) → ∞ if |G| → ∞. Thus one may ask the
following question:

Question 1. Let C be a class of finite groups. Is it true that NCC(G)→∞ as |G| → ∞
for G ∈ C?

1This theorem is often attributed to Burnside and appears in his 1897 book [Bu]. However, an equivalent
result stated in terms of permutation groups was already established by Jordan [Jo] in 1872.
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The answer to Question 1 is clearly negative if C contains all finite groups since NCC(G) =
1 for any cyclic group. Excluding cyclic groups is not sufficient for a positive answer as it
is easy to see that all non-abelian groups of order pq, with p and q distinct primes, have
NCC equal to 2. Von Puttkamer asked in his Ph.D. thesis whether the answer is positive
if C is the class of all non-cyclic finite p-groups for a fixed p > 2 [vP, Question 5.0.9], and
this question served as the original motivation for this project.

It is natural to approach von Puttkamer’s question via pro-p groups. If G is a profinite
group, NCC(G) is defined in the same way as for discrete 2 groups except that one replaces
cyclic subgroups by procyclic subgroups (that is, closed subgroups topologically generated
by a single element). A standard argument (see Claim 8.3) shows that if for some k ∈ N
there exist infinitely many (non-isomorphic) non-cyclic finite p-groups G with NCC(G) ≤
k, then there exists an infinite non-procyclic pro-p group G with NCC(G) ≤ k. Conversely,
it is clear that if G is any infinite pro-p group which is not procyclic and NCC(G) = k <∞,
then sufficiently large finite quotients of G form an infinite family of non-cyclic finite p-
groups with NCC equal to k.

This led us to investigate which infinite pro-p groups have finite NCC. As we will
explain below, infinite non-procyclic pro-p groups with finite NCC do exist, and thus von
Puttkamer’s question has negative answer as stated in [vP]. However, it turns out that
infinite pro-p groups and more generally infinite profinite groups with finite NCC have
very restricted structure (see Theorems 1.3 and 1.5 and Corollary 1.4), so our results can
be viewed as saying that von Puttkamer’s question has positive answer apart from a small
family of exceptions. Using these results we will solve the aforementioned conjecture from
[JPL] and give a positive answer to [LRRV, Question 4.9] for discrete residually finite
groups (see Corollary 11.5).

Remark. We would like to mention a simple alternative characterization of NCC valid
for all profinite groups (so in particular for finite groups) although it will not be used in
the paper. If G is profinite, then NCC(G) is the number of conjugacy classes of maximal
procyclic subgroups of G. This is because in a profinite group every procyclic subgroup is
contained in a maximal procyclic subgroup. The corresponding assertion in the discrete
case (with procyclic subgroups replaced by cyclic subgroups) does not always hold, even
for residually finite groups. For example, G = ⊕pZ/pZ, where the sum is over all primes,
is a residually finite group which has infinite NCC but has no maximal cyclic subgroups.

1.2. Discrete groups with finite NCC. Our first main theorem asserts that in the
discrete residually finite case there are no non-trivial examples with finite NCC, confirming
a conjecture of von Puttkamer [vP, Conjecture 5.0.1]:

Theorem 1.1. Let G be an infinite discrete residually finite group with finite NCC. Then
G is infinite cyclic or infinite dihedral (both of these do have finite NCC, 1 and 3 respec-
tively).

There are several classes of infinite discrete (not necessarily residually finite) groups
which were previously known to satisfy the conclusion of Theorem 1.1:

(a) virtually solvable groups,
(b) one-relator groups,
(c) acylindrically hyperbolic groups,
(d) 3-manifold groups,

2In this paper by a discrete group we will simply mean a group not endowed with any topology.
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(e) CAT(0) cube groups,
(f) finitely generated linear groups,
(g) arbitrary linear groups in characteristic zero.

For (a) this was proved by Groves and Wilson [GW]. Von Puttkamer and Wu proved
the result for classes (b)-(e) in [vPW1] and for (f) in [vPW2, Theorem 2.11].3 Finally, (g)
is a combination of (a) and a theorem of Bernik [Be] (see Theorem 5.2 for the statement)
which, in turn, is based on the existence of generic elements in Zariski-dense subgroups of
semisimple algebraic groups in characteristic zero, established by Prasad and Rapinchuk
in [PR] (see also Proposition 3.5 and Remark 3.6 in [CRRZ]).

Since finitely generated linear groups are residually finite, the result for (f) is a special
case of Theorem 1.1. However, our original proof of Theorem 1.1 which only applied to
finitely generated groups actually reduced Theorem 1.1 to the corresponding result for (f).
To prove Theorem 1.1 in the general case we will use a similar reduction strategy, but
instead of [vPW2, Theorem 2.11] we will apply the above theorem from [Be].

Note that if a group G has finite NCC, then obviously so do all its quotients. Thus, we
get an immediate consequence of Theorem 1.1 applicable to arbitrary discrete groups.

Corollary 1.2. Let G be a discrete group with finite NCC. Then the image of G in its
profinite completion (which is the largest residually finite quotient of G) is finite, cyclic or
infinite dihedral.

Remark. There are plenty of known examples of infinite discrete groups which have
finitely many conjugacy classes and thus in particular have finite NCC. Such groups with
only 2 conjugacy classes (albeit infinitely generated) were constructed already in the clas-
sical paper of Higman, B.H. Neumann and H. Neumann [HNN]. To the best of our
knowledge, the first finitely generated examples are due to S. Ivanov [Ol, Theorem 41.2].
Finally, the main theorem of a remarkable paper of Osin [Os] implies that for any n ≥ 2
there exist infinite 2-generated groups with exactly n conjugacy classes; moreover there
exist such groups of exponent p for all sufficiently large prime p. For additional examples
of infinite groups with finite NCC see [vPW2].

1.3. Profinite groups with finite NCC. We now turn to the classification of profinite
groups with finite NCC. We start by describing pro-p groups with finite NCC.

Theorem 1.3. Let p be a prime and G a pro-p group. Then G has finite NCC if and only
if one of the following 3 mutually exclusive conditions holds:

(i) G is finite.
(ii) G is infinite procyclic or p = 2 and G is infinite prodihedral, that is, the pro-2

completion of the infinite dihedral group.
(iii) G is isomorphic to an open torsion-free subgroup of PGL1(D) where D is the

quaternion division algebra over Qp.

Remark. Let us briefly comment on the structure of the groups in item (iii). Let D
be the quaternion division algebra over Qp and OD its ring of integers. The group
PGL1(D) = D×/Q×p is virtually pro-p and virtually torsion-free. Moreover its first con-

gruence subgroup PGL1
1(OD) is pro-p and for p > 2 contains every pro-p subgroup of

3Technically, the results for all classes (a)-(f) were not established until [vPW2] since [GW] and [vPW1]
dealt not with groups with finite NCC, but with groups satisfying the related property (BVC) – see § 11.1.
However, the proofs of the corresponding results for (BVC) are completely analogous.
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PGL1(D) (see § 7.2 for the definition of PGL1
1(OD)). It is easy to show that if p > 3,

already the group PGL1
1(OD) is torsion-free. Further, if p > 2, then PGL1

1(OD) is isomor-
phic to SL1

1(OD), the first congruence subgroup of SL1(D) where SL1(D) is the group of
elements of reduced norm 1 in D. See Lemmas 7.9 and 7.10 and Corollary 7.11 for the
proofs of these statements.

The classification of pronilpotent groups with finite NCC easily reduces to the pro-p
case. Indeed, if G is pronilpotent, it is a direct product of its Sylow pro-p subgroups Gp.
Moreover, by Lemma 2.3 below we have NCC(G) =

∏
NCC(Gp). Thus a pronilpotent

group G has finite NCC if and only if each Gp has finite NCC and moreover NCC(Gp) = 1
for almost all p. Since pro-p groups with NCC 1 are exactly procyclic pro-p groups and
a product of procyclic groups of coprime orders is procyclic, we obtain the following
corollary:

Corollary 1.4. A pronilpotent group G has finite NCC if and only if G = C ×
∏k
i=1Hi

where C is a procyclic group and there exist distinct primes p1, . . . , pk not dividing |C|
such that each Hi is a non-cyclic pro-pi group with finite NCC.

The following theorem completes the classification of arbitrary profinite groups with
finite NCC up to commensurability by reducing the problem to the pronilpotent case.

Theorem 1.5. Let G be a profinite group with finite NCC. Then G contains an open
pronilpotent subgroup (which must also have finite NCC by Lemma 2.2).

Note that Theorem 1.5 does not provide a complete description of profinite groups with
finite NCC up to isomorphism since finiteness of NCC is not necessarily preserved by finite
index overgroups. Nevertheless, we will prove a variation of Theorem 1.5 which provides
a precise characterization of groups which have an open pronilpotent subgroup with finite
NCC – by Theorem 11.3 these are precisely the groups with property (BVC). By definition
a profinite group G has (BVC) if it has finitely many virtually procyclic subgroups {Vi}ni=1
such that every virtually procyclic subgroup of G is conjugate to a subgroup of Vi for some
i (see § 11 for details).

Back to von Puttkamer’s question. Finiteness of NCC for the groups in item (iii)
of Theorem 1.3 (which yields a negative answer to von Puttkamer’s question, as discussed
above) was essentially known prior to this paper. It may have been indirectly observed
by many mathematicians, but the earliest reference in the literature we are aware of is a
paper of Jaikin-Zapirain [Ja]. Let F be a p-adic field and D a finite-dimensional central
division algebra over F . The proof of Theorem 1.3 in [Ja] shows that PGL1(D) is covered
by the conjugacy classes of finitely many abelian subgroups – in the terminology of § 7
this says that PGL1(D) has finite NAC. This result easily implies that if F = Qp and
deg (D) = 2, then any open torsion-free pro-p subgroup G of PGL1(D) has finite NCC.
Indeed, finiteness of NAC is preserved by open subgroups, so any such G has finite NAC.
Since G is torsion-free and pro-p, all of its closed abelian subgroups must be procyclic
(this is because sl1(D), the Lie algebra of PGL1(D), is 3-dimensional and non-abelian and
has no 2-dimensional subalgebras), and thus G has finite NCC.

The central problem investigated in [Ja] is the following: given a pro-p group G, how
fast/slow can the number of conjugacy classes of finite quotients G/N grow relative to the
size of G/N? Finiteness of NAC for the groups of the form PGL1(D) was used in [Ja] to
show that for every ε > 0 there is a finitely generated pro-p group G such that the number
of conjugacy classes of G/N is at most |G/N |ε whenever |G/N | is sufficiently large.
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Finiteness of NAC for the groups of the form PGL1(D), with D as in the previous
paragraph, was also established by Böge, Jarden and Lubotzky in [BJL] using the same
argument as in [Ja], but in a very different context. In the terminology of [BJL], a profinite
group G is called sliceable if there exist finitely many closed subgroups of infinite index
H1, . . . ,Hk whose conjugacy classes cover G. [BJL, Theorem D] asserts that the groups
of the form PGL1(D) are sliceable (but the proof shows they actually have finite NAC).
The notion of a sliceable group was introduced in [BJL] in connection with the number-
theoretic problem on the existence of Kronecker field towers. It would be interesting to
find any number-theoretic questions more directly related to Theorem 1.3.

Profinite groups with countable NCC. Recently Jaikin-Zapirain and Nikolov [JN]
proved that any infinite compact Hausdorff group (in particular, any infinite profinite
group) has uncountably many conjugacy classes (see also [Wil1] and [Wil2] for some more
refined results of this type). Several recent papers investigated profinite groups in which
a countable union of procyclic subgroups (without taking conjugates) contains a large
portion of the group (in a suitable sense) – see, e.g. [AS].

As a natural continuation of this line of research with our results, we propose the
following problem.

Problem 1. Classify profinite groups with countable NCC.

A simple example of a profinite group with countable, but infinite NCC is given by Zp×
Z/pZ. More generally, it is easy to show that every virtually procyclic group has countably
many maximal procyclic subgroups, and therefore every profinite group with (BVC) has
countable NCC. There do exist groups with countable NCC and without (BVC), e.g.
Z×p n Zp (the group of affine transformations of Zp) and PGL2(Zp). One can check that

Z×p nZp has countable NCC directly from definition. The latter combined with the proof
of [BJL, Theorem G] implies that PGL2(Zp) has countable NCC. Despite these additional
examples, it is feasible that the class of infinite profinite groups with countable NCC is
still quite small.

A standard argument using Baire Category Theorem shows that a profinite group G
with countable NCC must have a procyclic subgroup C such that ∪g∈GCg has non-empty
interior. Thus, as a further generalization of Problem 1 one can ask what can be said
about the groups with the latter property. We are grateful to Colin Reid for proposing
this question. We refer the reader to [Wes] for a discussion of the corresponding problem
about conjugacy classes of elements (classify profinite groups which have a conjugacy class
with non-empty interior); see also [JN, Question 2].

1.4. Some quantitative questions and applications to finite p-groups. Fix a prime
p, and let D be the quaternion division algebra over Qp. The group PGL1(D) has in-
finitely many non-isomorphic open torsion-free subgroups (for instance, the congruence
subgroups PGLk1(OD) are always open, torsion-free for sufficiently large k, and pairwise
non-isomorphic as their abelianizations have different orders). Thus, by Theorem 1.3 there
are infinitely many infinite pro-p groups with finite NCC. However, we will prove that there
are only finitely many such groups with a given value of NCC.

Theorem 1.6. For any prime p and integer k there are only finitely many infinite pro-p
groups G with NCC(G) = k.

Let us now consider the following two sets (for each prime p):



6 YIFTACH BARNEA, RACHEL CAMINA, MIKHAIL ERSHOV, AND MARK L. LEWIS

(i) Let NCCI(p) be the set of all k > 1 for which there exists an infinite pro-p group
G with NCC(G) = k.

(ii) Let NCCII(p) be the set of all k > 1 for which there exists an infinite family of
finite p-groups {Pi} with NCC(Pi) = k for all i.

Since there are infinitely many infinite pro-p groups with finite NCC, Theorem 1.6
implies that the set NCCI(p) is infinite. It is easy to show that NCC of any profinite
group G is equal to the supremum of NCC of finite quotients of G (see Lemma 2.12).
Therefore NCCI(p) ⊆ NCCII(p) (so in particular, NCCII(p) is also infinite). We do not
know whether the reverse inclusion holds (for more on this see the remark at the end
of § 8), but we will show that the sets NCCI(p) and NCCII(p) have the same minimal
element, which will be denoted by NCCmin(p).

The following theorem provides an explicit formula for NCCmin(p):

Theorem 1.7.

NCCmin(p) =

 3 if p = 2
9 if p = 3
p+ 2 if p > 3.

Problem 2. Describe explicitly the sets NCCI(p) and NCCII(p). In particular, determine
whether NCCII(p) strictly contains NCCI(p).

By contrast to the set of possible values of NCC(G), there is an absolute upper bound
on d(G) (the minimal number of generators of G) for an infinite pro-p group with finite
NCC or for an infinite family of finite p-groups with constant NCC.

Fix a prime p, and let dNCC(p) be the set of all d for which there exists an infinite pro-p
group G with finite NCC and d(G) = d.

Theorem 1.8. The following hold:

(a) An integer d lies in dNCC(p) if and only if there exists an infinite family {Pn} of
finite p-groups such that d(Pn) = d for all n and NCC(Pn) is the same for all n.

(b) (1) dNCC(p) = {1, 2, 3} for p > 3.
(2) {1, 2, 3} ⊆ dNCC(3) ⊆ {1, 2, 3, 4}.
(3) {1, 2, 3} ⊆ dNCC(2) ⊆ {1, 2, 3, 4, 5, 6}.

Remark. Part (b) is an easy consequence of Theorem 1.3 and basic results on the minimal
number of generators of p-adic analytic groups.

A finite p-group P with d generators has an elementary abelian p-group quotient of

order pd. The NCC of such an elementary abelian p-group is pd−1
p−1 , so NCC(P ) ≥ pd−1

p−1 .

Using this observation and Theorem 1.8, we deduce the following:

Corollary 1.9. Fix p and k. Then the number of finite p-groups P with NCC(P ) = k
and d(P ) 6∈ dNCC(p) is finite.

Problem 3. In light of Corollary 1.9, find an explicit bound for the number of finite p-
groups P with NCC(P ) = k and d(P ) 6∈ dNCC(p). Find other possible information about
such groups, e.g., bounds on their nilpotency class or their derived length.

If d ∈ dNCC(p), then Theorem 1.8 implies that there are infinitely many d-generated
finite p-groups with bounded NCC since we can simply take finite quotients of one of the
pro-p groups G with d(G) = d and finite NCC in Theorem 1.3. In this case, it would be
interesting to know whether every such finite p-group is close to being such a quotient.
For instance, we can ask the following:
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Problem 4. Assume that d ∈ dNCC(p). Does there exist a function f such that every
finite p-group P with d(P ) = d and NCC(P ) = k has a normal subgroup N of order
≤ f(p, d, k) such that P/N is a quotient of an infinite pro-p group G with d(G) = d and
NCC(G) <∞? If yes, can one also require that NCC(G) ≤ k?

Additional motivation for Problem 4 is provided by a theorem of Leedham-Green [LG,
Theorems 6,7] which asserts that every finite p-group of a fixed coclass r can be obtained
from an infinite pro-p group of finite coclass in a similar way. We will also discuss a natural
graph-theoretic interpretation of Problem 4 in § 8.

From p-groups to p-adic analytic groups. Our combined proof of Theorem 1.3 and
Corollary 1.9 uses a well-established method for studying finite p-groups: given a question
about finite p-groups, one first reformulates it in terms of pro-p groups, then shows that
the resulting pro-p groups must be p-adic analytic and finally uses the structure of p-adic
analytic groups to answer the question. For example, this idea was used in the solution to
the coclass conjectures. Recently, Jaikin-Zapirain and Tent [JT] applied this method and
classification of simple p-adic Lie algebras to show that for any odd k < 25 there are only
finitely many finite 2-groups with k real conjugacy classes, while there are infinitely many
such groups for k = 25. It is interesting to note that the proof of the latter result also
uses groups of the form PGL1(D): finite 2-groups with exactly 25 real conjugacy classes
are obtained as quotients of PGL1

1(D) where D is a degree 3 central division algebra over
Q2.

1.5. Outline of the paper.

• In § 2, we introduce a certain generalization of the NCC invariant, CC(G,Φ),
where Φ is a group acting on G by automorphisms, and prove some general results
about it.
• The proof of Theorem 1.5 is divided into three parts, which will be established in

§ 3, 4 and 10, respectively.
– In § 3 we prove that a profinite group with finite NCC has an open prosolvable

subgroup (which also has finite NCC by Lemma 2.2).
– In § 4 we prove that if G is a prosolvable group with finite NCC, then for

some k ∈ N the kth term of its derived series G(k) is pronilpotent.
– Finally in § 10 we prove that if G is a prosolvable group with finite NCC such

that G(k) is pronilpotent for some k ∈ N, then G is virtually pronilpotent.
• § 6 deals with pro-p groups. In particular, in § 6 we will prove that pro-p groups

with finite NCC are p-adic analytic.
• In § 7 we will first recall various basic results about finite-dimensional division

algebras and their multiplicative groups and also describe the structure of finite-
dimensional division algebras over local fields. We will then use these results
to compute NCC for the groups PGL1(D) and their first congruence subgroups
PGL1

1(OD) where D is the quaternion division algebra over Qp (see Theorem 7.15).
• In § 8 we will prove the results stated in § 1.4 including Theorems 1.6, 1.7 and 1.8.
• Theorem 1.3 will be established in § 9.
• Theorem 1.1 will be proved in § 5. We will first prove Theorem 1.1 for finitely gen-

erated groups. This result is an easy consequence of the first two parts of the proof
of Theorem 1.5, p-adic analyticity of pro-p groups with finite NCC and [vPW1,
Theorem 2.11] which asserts that the only infinite finitely generated discrete lin-
ear groups with finite NCC are Z and the infinite dihedral group. The proof of
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Theorem 1.1 in the general case will use both Theorem 1.3 and 1.5 as well as the
aforementioned result from [Be] (Theorem 5.2).
• Finally, in § 11 we will introduce property (BVC), a certain variation of finiteness

of NCC, and prove Theorem 11.3 which completely classifies profinite groups with
(BVC).

Acknowledgments. We are very grateful to Xiaolei Wu for asking us a version of von
Puttkamer’s question [vP, Question 5.0.9]. We would like to thank Andrei Rapinchuk for
illuminating discussions and suggesting the reference [Be] and Alex Lubotzky for bringing
[BJL] to our attention. We would also like to thank Andrei Jaikin-Zapirain, Ian Leary,
Alex Lubotzky, Colin Reid and John Wilson for helpful feedback on earlier versions of this
paper.

2. Cyclic covering number relative to a group of automorphisms

In this section we will establish some basic properties of the NCC invariant and some
of its generalization defined below.

2.1. Covering numbers for subgroups, quotients and direct products. While we
are primarily interested in NCC, in the proofs it will be very convenient to work with a
certain generalization of NCC defined below which has better hereditary properties.

Definition. Let G be a discrete (resp. profinite) group and Φ a group acting on G by
group automorphisms4. A cyclic (resp. procyclic) Φ-cover of G is a collection of cyclic
(resp. procyclic) subgroups {Ci}i∈I of G such that G =

⋃
i∈I,ϕ∈Φ

ϕ(Ci). We define CC(G,Φ)

to be the smallest number of subgroups in a cyclic (resp. procyclic) Φ-cover of G.

Note that NCC(G) = CC(G,G) (where G acts on itself by conjugation).

Lemma 2.1. Let G be a group and Φ a group acting on G by automorphisms. The
following hold:

(i) If H is a Φ-invariant subgroup of G, then CC(H,Φ) ≤ CC(G,Φ). In particular, if
H is any normal subgroup of G, then CC(H,G) ≤ NCC(G).

(ii) If K is a Φ-invariant normal subgroup of G (so that Φ naturally acts on G/K),
then CC(G/K,Φ) ≤ CC(G,Φ). In particular, if K is any normal subgroup of G,
then NCC(G/K) ≤ NCC(G).

(iii) If Ψ is a finite index subgroup of Φ, then CC(G,Ψ) ≤ [Φ : Ψ]CC(G,Φ).

Proof. (i) and (ii) are obvious, and (iii) follows from the fact that for any action of Φ on
a set, any orbit of Φ is a union of at most [Φ : Ψ] orbits of Ψ. �

The next result which follows from Lemma 2.1 and has been well known before is
particularly useful.

Lemma 2.2. Let G be a group with finite NCC and H a subgroup of finite index. Then
H also has finite NCC and in fact NCC(H) ≤ [G : H] ·NCC(G)

Proof. We have NCC(H) = CC(H,H) ≤ [G : H] · CC(H,G) ≤ [G : H] · NCC(G) where
both CC numbers are with respect to the conjugation action, the first inequality holds by
Lemma 2.1(iii) and the second inequality holds by Lemma 2.1(i). �

4By a homomorphism between profinite groups we will always mean a continuous homomorphism unless
explicitly indicated otherwise
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Definition. LetG be a profinite group. The order of G is the supernatural number defined
as the least common multiple of the orders of finite quotients of G (a supernatural number
is a formal product

∏
p p

αp where p ranges over all primes and each αp ∈ Z≥0 ∪ {∞}).

Lemma 2.3. Let G and H be discrete or profinite groups and let Φ and Ψ be groups acting
by automorphisms on G and H, respectively, such that CC(G,Φ) and CC(H,Ψ) are both
finite. The following hold:

(a) CC(G ×H,Φ × Ψ) ≥ CC(G,Φ) · CC(H,Ψ). In particular, if G and H both have
finite NCC,

NCC(G×H) ≥ NCC(G) ·NCC(H).

(b) Assume now that G and H are profinite and have coprime orders. Then both
inequalities in (a) must be equalities.

Proof. (a) For simplicity we will present a proof in the discrete case. The argument
in the profinite case is completely analogous. Let n = CC(G,Φ), m = CC(H,Ψ) and
t = CC(G × H,Φ × Ψ), and assume that t is finite (if t is infinite, there is nothing to
prove).

Let {Ck}tk=1 be a cyclic Φ×Ψ-cover of G×H. Let Gk and Hk denote the projections
of Ck to G and H, respectively. Obviously, Gk and Hk are cyclic and (ϕ × ψ)(Ck) ⊆
ϕ(Gk)×ψ(Hk) for all ϕ ∈ Φ and ψ ∈ Ψ. (Notice that ϕ(Gk)×ψ(Hk) need not be cyclic).
Thus, {Gk ×Hk}tk=1 is a Φ×Ψ-cover of G×H, that is,

G×H =
⋃

1≤k≤t,ϕ∈Φ,ψ∈Ψ

(ϕ× ψ)(Gk ×Hk) =
⋃

1≤k≤t,ϕ∈Φ,ψ∈Ψ

ϕ(Gk)× ψ(Hk). (∗ ∗ ∗)

If Gi ⊆ ϕ(Gj) for some i 6= j and ϕ ∈ Φ, we can replace Gi by Gj and still have a
Φ × Ψ-cover of G × H. After applying this operation finitely many times, we obtain a
new cover which can be written as {Gk × Hk,j}1≤k≤n′,1≤j≤mk where for i 6= j we have
Gi 6⊆ ϕ(Gj) for any ϕ ∈ Φ. By construction the number of sets in the new cover does
not exceed the number of sets in the original cover, that is, m1 + m2 + · · · + mn′ ≤ t.
Therefore, it suffices to show that n′ ≥ n and mk ≥ m for each k.

Projecting both sides of (***) to the first component, we see that {Gk}n
′
k=1 is a cyclic

Φ-cover of G, so n′ ≥ n. We now need to show that for a fixed k the collection {Hk,j}mkj=1

is a cyclic Ψ-cover of H. Let xk be a generator of Gk. If i 6= j, then xi 6∈ ϕ(Gj) for any
ϕ ∈ Φ (for otherwise, Gi ⊆ ϕ(Gj) contrary to our assumption). Hence for any h ∈ H,
the pair (xk, h) must be in ϕ(Gk)× ψ(Hk,j) for some 1 ≤ j ≤ mk, ϕ ∈ Φ and ψ ∈ Ψ , so
h ∈ ψ(Hk,j). We conclude that {Hk,j}mkj=1 is a cyclic Ψ-cover of H and thus mk ≥ m as
desired.

(b) Let {Gi}ni=1 be a cyclic Φ-cover of G and {Hj}mj=1 be a cyclic Ψ-cover of H. Since G
and H have coprime orders, this is true also for every Gi and Hj and therefore Gi×Hj is
procyclic (by the Chinese Remainder Theorem). Hence {Gi ×Hj}1≤i≤n,1≤j≤m is a cyclic
Φ × Ψ-cover of G ×H. Thus CC(G ×H,Φ × Ψ) ≤ nm = CC(G,Φ) · CC(H,Ψ), and by
(a) the equality must hold.

�

2.2. Quotients of groups with finite NCC. In this subsection we collect several results
which impose restrictions on infinite quotients of discrete and profinite groups with finite
NCC. We start with the technically easier discrete case.
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Lemma 2.4. Let G be a residually finite discrete group with finite NCC, and assume that
G is not cyclic. Then Z is not a homomorphic image of G. Thus, if in addition G is
finitely generated, then G has finite abelianization.

Proof. We argue by contradiction. Suppose that there exists an epimorphism π : G→ 〈x〉
where 〈x〉 is infinite cyclic. Let H = Kerπ. Since G is not cyclic, H is non-trivial. Since
G is residually finite, there exists an epimorphism ϕ : G→ F from G to some finite group
F such that ϕ(H) 6= {1}.

Now let g ∈ G be any element such that π(g) = x, let h ∈ H be any element such that

ϕ(h) 6= 1, and let n = |F |. Consider the sequence of elements {gi = gn
i
h}∞i=1. We claim

that gi and gj cannot lie in conjugates of the same cyclic subgroup for i 6= j. Indeed,

suppose that there exists t ∈ G and i < j such that gn
i
h ∼ ta and gn

j
h ∼ tb for some

a, b ∈ Z where ∼ denotes conjugacy in G.
Let xc be the projection of t to 〈x〉. Then projecting both sides of the above conjugacy

relations onto 〈x〉, we get xn
i

= xac and xn
j

= xbc. Thus, ni = ac and nj = bc, whence

b = nka where k = j−i. Therefore, (gn
i
h)n

k ∼ tnka = tb ∼ gnjh. Now applying ϕ : G→ F
to both sides and recalling that n = |F |, we get ϕ(h) = 1, contrary to the choice of h. �

In the profinite case we will prove a somewhat different result (see Lemma 2.6 below).
Its proof will follow the same general approach as that of Lemma 2.4, but will involve
extra technicalities. First we will introduce some additional terminology.

Definition. Let G be a profinite group and x ∈ G.

(i) Let p be a prime. We will say that x is a pro-p element if 〈x〉 (the procyclic
subgroup generated by x) is a pro-p group. Thus, x is a pro-p element ⇐⇒
〈x〉 ∼= Zp or x has (finite) p-power order ⇐⇒ the image of x in any finite quotient
of G has p-power order.

(ii) More generally, let S be a set of primes. We will say that x is a pro-S element if

|〈x〉| is a product of primes from S (equivalently, the order of the image of x in
any finite quotient of G is a product of primes from S).

(iii) If p is a prime, we will say that x is a pro-p′ element if x is pro-S where S is the
set of all primes different from p.

Observation 2.5. Let x be an element of a profinite group Q and S a set of primes.

(a) If x is pro-S, then so is any homomorphic image of x.
(b) If x and y are commuting pro-S elements, then xy is also pro-S.
(c) If x is both pro-S and pro-S′, where S′ is the complement of S, then x = 1.
(d) If π : G→ Q is an epimorphism of profinite groups and x ∈ Q is a pro-S element,

there exists a pro-S element g ∈ G with π(g) = x.

Proof. (a), (b) and (c) are obvious, so we will only prove (d). Take any g0 with π(g0) = x.

The procyclic group 〈g0〉 decomposes as a direct product of its q-Sylow subgroups, so we
can write g0 = gg′ where g is pro-S, g′ is pro-S′ (where S′ is the complement of S) and g

and g′ both lie in 〈g0〉 (and therefore commute).
Applying π to both sides, we get x = π(g)π(g′) and hence π(g)−1x = π(g′). By (a),

π(g) is pro-S and π(g′) is pro-S′. Since π(g) commutes with π(g′) and hence with x, by (b)
π(g)−1x is pro-S and hence by (c) π(g)−1x = π(g′) = 1. Thus, x = π(g) as desired. �
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Lemma 2.6. Let G be a profinite group, H a (closed) normal subgroup of G and Q =

G/H. Suppose that Q has a pro-p element x of infinite order (that is, 〈x〉 ∼= Zp) and |H|
is divisible by p. Then G has infinite NCC.

Proof. Let π : G → Q = G/H be the natural projection. By Observation 2.5(d), G
contains a pro-p element g with π(g) = x. Since |H| is divisible by p and the topology of
H is induced from G, there exists an open normal subgroup U of G such that the image
of H in G/U has order divisible by p.

Let ϕ : G→ G/U be the natural projection. Since |ϕ(H)| is divisible by p, there exists
h ∈ H such that ϕ(h) has order p. Since g is a pro-p element, ϕ(g) has order pn for some
n ∈ Z≥0. Replacing g (resp. x) by gp

n
(resp. xp

n
) (which will not affect the hypotheses

of Lemma 2.6), we can assume that ϕ(g) = 1, that is, g ∈ U .

Consider the infinite sequence of elements {gk = gp
k
h}∞k=1. We claim that distinct

elements in this sequence cannot lie in conjugate procyclic subgroups (and therefore
NCC(G) = ∞). Suppose that gi and gj , with i < j do lie in conjugate procyclic sub-

groups, so there exist t, u, v ∈ G such that gi ∈ 〈tu〉 and gj ∈ 〈tv〉. In profinite groups

there is a well-defined operation of raising an element to a power α where α ∈ Ẑ (profinite

completion of Z). Thus, there exist α, β ∈ Ẑ such that gi ∼ tα and gj ∼ tβ where again ∼
denotes conjugacy in G. We will now derive mutually exclusive conditions on α and β by
projecting both sides of these relations to G/U and G/H.

Given γ ∈ Ẑ, let νp(γ) ∈ Z≥0 ∪ {∞} be the exponent of the highest power of p dividing
γ. It is defined by νp(γ) = lim νp(ci) where {ci} is any integer sequence converging to γ.
The function νp inherits all the standard properties of its restriction to Z except that we
may have νp(γ) =∞ for nonzero γ. In fact, νp(γ) =∞ if and only if γ is a pro-p′ element

of (Ẑ,+).

Let us now project the relations gi ∼ tα and gj ∼ tβ to G/U . Recalling that the

projection to G/U is denoted by ϕ and that g ∈ U , we get ϕ(h) ∼ ϕ(t)α and ϕ(h) ∼ ϕ(t)β.
Recall also that ϕ(h) has order p and G/U is finite. This means that νp(α) and νp(β) are
both finite (otherwise, the order of ϕ(h) would be coprime to p) and moreover,

1 = νp(ord(ϕ(h)) = νp(ord(ϕ(t)))− νp(α) = νp(ord(ϕ(t)))− νp(β),

whence νp(α) = νp(β).

Now consider the projection π : G→ Q = G/H and let y = π(t). We get xp
i

= π(gi) ∼
yα and xp

j
= π(gj) ∼ yβ. Choose a finite quotient R of Q where the images of yα and

yβ are non-trivial (recall that x has infinite order, so such R exists), and let ρ : Q → R
be the projection. Since x is a pro-p element, ρ(x) has order pm for some m ∈ N, and we
must have m > j (recall that j > i) since ρ(yβ) 6= 1. It follows that

m− j = νp(ord(ρ(x)p
j
)) = νp(ord(ρ(yβ))) = νp(ord(ρ(y)))− νp(β)

and similarly m− i = νp(ord(ρ(y)))− νp(α). Thus, νp(β)− νp(α) = j − i > 0, contrary to
our earlier conclusion. �

Lemma 2.6 provides a very strong restriction in the case of pro-p groups:

Corollary 2.7. Let G be an infinite pro-p group with finite NCC. Then G must be just-
infinite (that is, all of its proper continuous quotients are finite).
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Proof. First we prove that G is finitely generated. Below we denote the minimal number
of generators of a group by d(·). Let Φ(G) be the Frattini subgroup of G, that is, the
intersection of (proper) maximal open subgroups of G. By [DDMS, Proposition 1.9],
d(G) = d(G/N) whenever N ⊆ Φ(G). On the other hand, since G is pro-p, we have

Φ(G) = [G,G]Gp by [DDMS, Proposition 1.13]. Therefore, d(G) = d(G/[G,G]). But

G/[G,G] is an abelian group with finite NCC, so it is clearly finitely generated and hence
G is also finitely generated.

Suppose now that G has a non-trivial closed normal subgroup H such that G/H is
infinite. Note that G/H is also finitely generated. By the positive solution to the general
Burnside problem for pro-p groups [Ze], a finitely generated torsion pro-p group is finite.
Thus, G/H must contain an element x of infinite order. Then x and H trivially satisfy the
hypotheses of Lemma 2.6 and hence G has infinite NCC, contrary to our assumption. �

2.3. Other lower bounds on NCC. In this subsection we collect some additional results
which provide either a lower bound on NCC of a group or a restriction on the structure
of a group with finite NCC.

We start by relating NCC to the set of orders of elements. The following definition will
only be introduced for discrete groups. The corresponding notion in the profinite case
requires extra care, but also will not be needed; in fact, here the case of finite groups will
be sufficient for our purposes.

Definition. Let G be a non-trivial discrete group.

(a) An integer k > 1 will be called a primitive element order of G if G has a maximal
cyclic subgroup of order k.

(b) An integer k > 1 will be called a maximal element order of G if G has an element
of order k, but has no element whose order is a proper (finite) multiple of k.

We will denote the set of all primitive (resp. maximal) element orders of G by PEO(G)
(resp. MEO(G)).

Lemma 2.8. Let G be a discrete group. Then MEO(G) is a subset of PEO(G). More-
over, |PEO(G)| ≤ CC(G,Φ) for any Φ.

Proof. The first assertion is clear. If {Ci} is any cyclic Φ-cover of G, then for any max-
imal cyclic subgroup C of G, the Φ-orbit of C must contain one of the subgroups Ci,
so MC(G,Φ) ≤ CC(G,Φ) where MC(G,Φ) is the number of Φ-orbits of maximal cyclic
subgroups. On the other hand, if C and C ′ are maximal cyclic subgroups of different
orders, they must be in different orbits. Thus, |PEO(G)| ≤MC(G,Φ), which proves the
second assertion. �

The next result can be used, in particular, to show that if G is a group with finite
NCC, then a normal subgroup of G cannot decompose as a direct product of too many
non-abelian simple groups.

Lemma 2.9. Let H be a discrete or profinite group and Φ a group acting on H by auto-
morphisms. Suppose that there exists an integer e > 1 and elements h1, . . . , hk of H with
the following properties:

(i) Each hi has order e.
(ii) For any ϕ ∈ Φ and i 6= j the subgroups ϕ(〈hi〉) and 〈hj〉 have trivial intersection.

Then CC(H,Φ) ≥ k.
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Proof. Suppose that CC(H,Φ) < k. Then there exist distinct indices i 6= j, integers a, b
and an element h ∈ H such that hi ∼ ha and hj ∼ hb where this time u ∼ v means that u
and v are in the same Φ-orbit. Without loss of generality we can assume that a and b are
coprime (if not, replace h by hgcd(a,b)). Then hbi ∼ hab ∼ haj . Condition (ii) implies that

hbi = haj = 1, so by condition (i) a and b must both be divisible by e, a contradiction. �

Corollary 2.10. Let H = S1×· · ·×Sk where Si are non-abelian finite simple groups (not
necessarily distinct). Then CC(H,Φ) ≥ k for any group Φ acting on H by automorphisms.

Proof. We will only use the fact that each Si is a finite group of even order and has trivial
center.

Choose elements si ∈ Si of order 2, and for each 1 ≤ i ≤ k let hi = (s1, s2, . . . , si, 1, . . . , 1).
Since each si is non-central in Si, the sequence of centralizers C(h1) ⊃ C(h2) ⊃ · · · ⊃ C(hk)
is strictly decreasing. Hence the elements {hi} lie in different Φ-orbits. Since {hi}
have prime order (namely order 2), they satisfy the hypotheses of Lemma 2.9 and hence
CC(H,Φ) ≥ k. �

Before stating our last result of this section, we introduce one more definition.

Definition. Let G be a discrete or profinite group. We will say that G has property
(FMHFG) 5 if for any finite group F there are only finitely many homomorphisms from
G to F .

Clearly finitely generated groups have (FMHFG). A simple example of an infinitely
generated group with (FMHFG) is the direct sum or product of an infinite collection of
finite groups of pairwise coprime orders.

Lemma 2.11. Let G be a discrete or profinite group with finite NCC. Then G has
(FMHFG).

Remark. We will eventually prove that profinite and discrete residually finite groups with
finite NCC are finitely generated. However, Lemma 2.11 will be needed as an auxiliary
tool in order to establish finite generation.

Proof. Fix a finite group F , and let K be the intersection of the kernels of all homomor-
phisms from G to F . Then any homomorphism from G to F factors through G/K, so it
suffices to prove that G/K is finite.

Clearly G/K embeds into a direct power H =
∏
i∈I

F for some index set I. Since H

and hence G/K is torsion, all cyclic subgroups of H are closed, so there is no need to
distinguish between the discrete and profinite cases. For any element h ∈ H and i ∈ I we
denote by hi the ith coordinate of h.

Take any h ∈ H, let e = ord(h), and let I(h) be any finite subset of I such that
LCM({ord(hi) : i ∈ I(h)}) = e. Then if some x ∈ H lies in a conjugate of 〈h〉 and xi = 1
for all i ∈ I(h), we must have x = 1. Since G/K has finite NCC, it lies in the union of

conjugacy classes of finitely many cyclic subgroups 〈h1〉, . . . , 〈hk〉. If J =
k⋃
i=1

I(hk), then

any g ∈ G/K such that gj = 1 for all j ∈ J must be trivial. But this means that G/K
embeds into the finite group

∏
j∈J

F , as desired. �

5(FMHFG) stands for ‘finitely many homomorphisms to a finite group’
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2.4. NCC of a profinite group and its finite quotients. In this last short subsection
we will prove the following result:

Lemma 2.12. Let G = lim←−
i∈I

Pi where {Pi}i∈I is an inverse system of finite groups in which

all the maps Pi → Pj are surjective. Then

NCC(G) = sup NCC(Pi).

In particular, for any profinite group G we have NCC(G) = sup NCC(P ) where P ranges
over all finite quotients of G.

Proof. By [DDMS, Proposition 1.4], the inverse limit of a system of compact (in particular,
finite) sets Pi is always non-empty. Moreover, the proof shows that if all the maps Pi → Pj
are surjective, then so is the induced map lim←−

i∈I
Pi → Pj . Thus, in our setting NCC(G) ≥

NCC(Pi) for each i, and so NCC(G) ≥ sup NCC(Pi).
To prove the reverse inequality NCC(G) ≤ sup NCC(Pi) we just need to show that if

k ∈ N is such that NCC(Pi) ≤ k for all i, then NCC(G) ≤ k. Take any such k, and for
each i ∈ I let Si be the set of all sequences (gi(1), . . . , gi(k)) ∈ P ki such that the conjugacy
classes of the cyclic subgroups 〈gi(1)〉, . . . , 〈gi(k)〉 cover Pi. By the choice of k each Si is
non-empty. Moreover, the sets {Si} form an inverse system with the maps Si → Sj defined
componentwise. By [DDMS, Proposition 1.4], the inverse limit S = lim←−

i∈I
Si is non-empty;

on the other hand, we can naturally identify S with a subset of Gk. Let (g(1), . . . , g(k))

be any element of S, and let T =
k⋃
i=1
〈g(i)〉G (where A is the topological closure of A

and AG is the normal closure of A in G). Then T is a closed subset of G = lim←−
i∈I

Pi which

projects onto each Pi, and from this it is easy to deduce that T = G. Thus NCC(G) ≤ k,
as desired. �

3. Reduction to the residually solvable case

Throughout the paper by a residually solvable (resp. residually nilpotent, prosolvable,
pronilpotent) group we will always mean a residually-(finite solvable) (resp. residually-
(finite nilpotent), pro-(finite solvable), pro-(finite nilpotent)) group.

The goal of this section is to establish the first of the three parts in the proof of Theo-
rem 1.5 (recall that the three parts were introduced in § 1.5).

Theorem 3.1. Let G be a profinite (resp. a discrete residually finite) group, and assume
that NCC(G) <∞. Then G is virtually prosolvable (resp. virtually residually solvable).

Theorem 3.1 in the discrete case immediately follows from its profinite analogue. Indeed,
let G be a discrete residually finite group with finite NCC. Then its profinite completion

Ĝ is a profinite group with finite NCC. By the profinite part of Theorem 3.1, Ĝ has an
open prosolvable subgroup U , and so G ∩ U is a finite index residually solvable subgroup
of G.

Thus, it suffices to prove Theorem 3.1 for a profinite group G. This will be done by
analyzing the action of G on the factors of its chief series defined as follows.

Definition. Let G be a profinite group. A descending chain of open normal subgroups
G = G1 ⊇ G2 ⊇ · · · will be called a chief series of G if the following hold:
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(i) {Gi} is a base of neighborhoods for the topology on G. Since G is profinite, this
is equivalent to requiring that ∩Gi = {1}.

(ii) G does not have any normal subgroups lying strictly between Gi and Gi+1.

Note that a profinite group G has a series satisfying (i) if and only if it is countably
based. Moreover, if we start with any series {Gi} satisfying (i), then (ii) can always be
achieved by refining the series (since each Gi/Gi+1 is finite and hence has a chief series in
the usual sense). Recall that at the end of the previous section we introduced property
(FMHFG) which generalizes finite generation and must hold for all groups with finite
NCC. We will now show that property (FMHFG) guarantees that the group is countably
based.

Lemma 3.2. Let G be a profinite group with (FMHFG). Then G is countably based and
hence has a chief series.

Proof. For each i ∈ N, let Gi be the intersection of the kernels of all (continuous) homo-
morphisms from G to a finite group of order ≤ i. Since there are finitely many isomorphism
classes of finite groups of a given finite order and G has (FMHFG), Gi is the intersection
of finitely many open subgroups and thus itself is open. It is also clear that G1 ⊇ G2 ⊇ · · ·
and every open normal subgroup of index i contains Gi, so {Gi} satisfies (i) as desired. �

Observation 3.3. Let G be a countably based profinite group. The following hold:

(a) G is pronilpotent if and only if it admits a chief series {Gi} such that G acts
trivially on each quotient Gi/Gi+1.

(b) G is prosolvable if and only if it admits a chief series {Gi} such that each quotient
Gi/Gi+1 is abelian.

For the rest of this section we fix a profinite group G with (FMHFG) and also fix a
chief series {Gi} of G. For each i let Qi = Gi/Gi+1. We know that Qi ∼= Snii for some
finite simple group Si and ni ∈ N.

Lemma 3.4. Whenever Si is non-abelian we have ni ≤ NCC(G).

Proof. By Corollary 2.10 we have CC(Qi, G) ≥ ni (where CC is with respect to the
conjugation action of G on Qi), and by Lemma 2.1(i)(ii) CC(Qi, G) ≤ NCC(G). �

Lemma 3.5. For any non-abelian simple group S there are only finitely many i such that
Si = S.

Proof. Fix S. Since G has (FMHFG), there are only finitely many homomorphisms from

G to the finite group Aut(SNCC(G)). Let H be the intersection of the kernels of these
homomorphisms. Then H is an open subgroup of G. By Lemma 3.4, for any i with
Si = S, the group Aut(Qi) embeds into Aut(SNCC(G)), whence H acts trivially on Qi
and thus cannot contain Gi for any such i (since Gi acts non-trivially on Qi as Si is non-
abelian). On the other hand, since H is open, it must contain Gj for some j, so we can
only have Si = S for i < j. �

We are now ready to prove Theorem 3.1. In view of Observation 3.3(b), the result can
be reformulated as follows.

Proposition 3.6. Assume that NCC(G) <∞. Then Si is abelian for all sufficiently large
i and therefore G is virtually prosolvable.
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Proof. Let I be the set of all i such that Si is non-abelian. Our goal is to show that I is
finite. First we want to reduce the problem to the case where ni = 1 for all i ∈ I.

For each i the conjugation action of G on Qi = Snii induces a homomorphism πi : G→
Sym(ni). Since ni ≤ NCC(G) by Lemma 3.4 and G has (FMHFG) by Lemma 2.11, there
are only finitely many such homomorphisms. If H is the intersection of the kernels of these
homomorphisms, then H is an open subgroup of G which preserves each direct factor of
each Qi. Thus, H has a chief series (obtained by a refinement of the series {H ∩ Gi})
where all non-abelian chief factors are simple.

Thus, replacing G by H (which also has finite NCC) we can assume that ni = 1 for i ∈ I,
as desired. Now under this extra assumption, for each i ∈ I we have a homomorphism
πi : G → Aut(Si). For any finite simple group S, the outer automorphism group Out(S)
is solvable of derived length at most 3 (this follows from the classification of finite simple

groups). Thus, if K = G(3) is the third (closed) derived subgroup of G, then πi(K) ⊆
Inn(Si) for all i ∈ I. In fact, we have πi(K) = Inn(Si) for all i ∈ I. Indeed, πi(G) contains

πi(Si) = Inn(Si) and hence πi(K) contains Inn(S
(3)
i ) = Inn(Si) (since Si is perfect).

Let Ki = K ∩ Gi and let Q̃i = Ki/Ki+1 which can be identified with a subgroup

of Qi. A straightforward computation shows that Q̃i = Qi = Si for i ∈ I (again only

using the fact that Si is perfect). Thus if π̃i is the natural map from K to Aut(Q̃i),
we have π̃i(K) = Inn(Si). This implies that K/Ki+1 must decompose as Ri × Si where
Ri = Ker π̃i/Ki+1 and thus Ri ∼= K/Ki.

Now let L = Kimin where imin is the smallest element of I. We claim that for each
i ∈ I the quotient L/Ki+1 maps (homomorphically) onto Pi :=

∏
j∈I,j≤i

Sj . If we prove this,

Corollary 2.10 would imply that |{j ∈ I : j ≤ i}| ≤ CC(L/Ki+1, G) ≤ NCC(G) <∞ and
hence I is finite, which would finish the proof.

We prove the claim by induction on i. If i = imin is the smallest element of I, then by
construction L/Ki+1 = Si, so there is nothing to prove.

Now suppose we already proved that L/Ki+1 maps onto Pi for some i ∈ I and let m be
the smallest element of I larger then i (if such m exists). Then L/Km+1 decomposes as
Rm × Sm where Rm ∼= L/Km. Since L/Km maps onto L/Ki+1 which in turn maps onto
Pi, we conclude that L/Km+1 maps onto Pi × Sm = Pm, as desired. �

4. Reduction to the residually nilpotent case

Notation: Given a discrete group G we will denote by {G(i)}∞i=0 its derived series, that

is, define the subgroups G(i) inductively by G(0) = G and G(i) = [G(i−1), G(i−1)] for i ≥ 1.

If G is profinite, {G(i)} will denote the closed derived series, that is, G(i) = [G(i−1), G(i−1)]
for i ≥ 1.

In this section we will complete the second part of the proof of Theorem 1.5 by estab-
lishing the following result.

Theorem 4.1. Let G be a prosolvable (resp. a discrete residually solvable) group, and

assume that NCC(G) < ∞. Then there exists k ∈ N such that G(k) is pronilpotent (resp.
residually nilpotent).

Similarly to Theorem 3.1, it suffices to prove Theorem 4.1 for prosolvable groups.
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The third and final part of the proof of Theorem 1.5 is fairly long and will be postponed
till § 10. However, Theorems 3.1 and 4.1 and Lemma 2.4 are sufficient to deduce the
counterpart of Theorem 1.5 for finitely generated discrete residually finite groups:

Corollary 4.2. Let G be a finitely generated discrete residually finite group with finite
NCC. Then G is virtually residually nilpotent.

Proof. By Theorems 3.1 and 4.1, G has a finite index subgroup U such that U (k) is
residually nilpotent for some k. If G is virtually cyclic, there is nothing to prove. If G is
not virtually cyclic, applying Lemma 2.4 k times we deduce that U (k) has finite index in
G, which finishes the proof. �

We now begin the proof of Theorem 4.1. For the rest of the section we fix a prosolvable
group G with finite NCC. By Observation 3.3(b), G admits a chief series {Gi} such that
all the quotients Qi = Gi/Gi+1 are abelian. We will also fix such a chief series. For each
i we have Qi ∼= Fnipi for some prime pi and ni ∈ N.

We start by reducing Theorem 4.1 to a certain result on solvable subgroups of linear
groups over finite fields (see Proposition 4.3 below).

For each i we can think of Qi as a finite-dimensional vector space over Fpi . To emphasize
this point of view we will write GL(Qi) instead of Aut(Qi). Let Ti denote the image of G
in GL(Qi). Note that each Ti must be solvable. To prove Theorem 4.1 it suffices to show
that the derived lengths of the groups Ti are bounded by some k ∈ N (in fact, we will

explicitly bound k in terms of NCC(G)). Indeed, if this is true, then G(k) acts trivially on

all chief factors Qi = Gi/Gi+1 and hence also on their subgroups (Gi∩G(k))/(Gi+1∩G(k))

as well as on the chief factors of any chief series of G(k) refining {Gi ∩ G(k)}∞i=1. Hence

G(k) must be pronilpotent by Observation 3.3(a).
For each i we have NCC(Ti) ≤ NCC(G). On the other hand, if C is the conjugacy class

of a cyclic subgroup of G/Gi+1, then the intersection of C with Qi is either trivial or is
the orbit of a 1-dimensional subspace of Qi under the action of Ti. Thus the action of Ti
on the set of 1-dimensional subspaces of Qi has at most NCC(G) orbits.

Let T ′i be the subgroup of GL(Qi) generated by Ti and the scalar matrices. Then
T ′i is also solvable of the same derived length as Ti, and the action of T ′i on the set of
nonzero elements of Qi has the same number of orbits as the action of Ti on 1-dimensional
subspaces. Thus, if we bound the derived length of T ′i in terms of the number of orbits of
its action on Qi \ {0}, we will be done. More precisely, we are now reduced to proving the
following result:

Proposition 4.3. Let H be a solvable subgroup of GLn(Fp) for some prime p. Consider
H as an abstract group acting on Fnp , and let r be the number of orbits of this action. Then
the derived length of H is bounded above by f(r) for some absolute function f (independent
of p and n).

We need some preparations before proving Proposition 4.3.

Definition. Let P be a permutation group acting on a set X.

(i) Define r(P ) to be the number of orbits of P on X.
(ii) The rank of P , denoted rk (P ), is the number of orbits of the induced action of P

on X ×X.
(iii) The degree of P is the cardinality of X.

The following result is well known, but for completeness we provide a sketch of proof.
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Lemma 4.4. Let H be a subgroup of GL(V ) for some vector space V , and let AH be the
group generated by H and all translations x 7→ x+ v with v ∈ V (so AH is a subgroup of
the affine group AGL(V )). The following hold:

(a) r(H) = rk (AH).
(b) Assume that H contains all (nonzero) scalar operators. Then H is irreducible as

a linear group (that is, V has no non-trivial H-invariant subspaces) if and only if
AH is primitive as a permutation group.

Sketch of proof. (a) holds since AH acts transitively on V and H is a point stabilizer in
AH (namely the stabilizer of 0).

(b) If V contains a non-trivial H-invariant subspace W then cosets of W form a non-
trivial AH-invariant partition of V , so AH is not primitive.

Suppose now that AH is not primitive, and let Ω be a non-trivial AH-invariant partition
of V . Let W be the block of Ω containing 0. Then W is H-invariant since H fixes 0. And
since AH contains all maps of the form x 7→ λx+a with λ ∈ F×, a ∈ V , it is easy to show
that W must be a subspace of V , so H is not irreducible. �

Proof of Proposition 4.3. We first consider the case where H is an irreducible subgroup
of GLn(Fp). In this case Proposition 4.3 easily follows from a theorem of Seager [Sea,
Theorem 1] whose simplified version is stated below:

Theorem 4.5 ([Sea]). Let P be a solvable primitive permutation group of rank r and
degree d. Then one of the following holds:

(i) d ≤ f1(r) for some absolute function f1.
(ii) There exist a prime p and integers m and k with k ≤ f2(r) for some absolute

function f2 such that d = pmk and P embeds into the permutation wreath product
S(pm) wrSk. Here Sk is the symmetric group on k letters, S(pm) is the group
of all maps Fpm → Fpm of the form x 7→ aσ(x) + b with a, b ∈ Fpm, a 6= 0 and
σ ∈ Aut(Fpm), and the wreath product is taken with respect to the natural action
of Sk on {1, 2, . . . , k}.

Since H is solvable, the group AH (defined as in Lemma 4.4) is also solvable. Since H
is irreducible, AH is primitive, so we can apply Theorem 4.5 to P = AH. If (i) holds,
then the order of P (and hence also its derived length) is bounded by a function of r,
so we are done. Suppose now that (ii) holds. If Q is the projection of P to Sk, then P
embeds into S(pm) wrQ, and since P is solvable, so is Q. It is straightforward to check
that S(pm) is solvable of derived length ≤ 3, whence the derived length of the wreath
product S(pm) wrQ (and hence also the derived length of P ) is bounded by a function of
k and hence also by a function of r, as desired. Thus we proved Proposition 4.3 when H
is irreducible.

Now consider the general case. Let V = Fnp , and let {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V be
a maximal chain of H-invariant subspaces. Note that t < r = r(H) since vectors lying in
Vi \ Vi−1 and Vj \ Vj−1 for i 6= j cannot lie in the same orbit of H.

Let Hi be the canonical image of H in GL(Vi/Vi−1). Then each Hi is an irreducible
solvable linear group with r(Hi) ≤ r and hence by Proposition 4.3 in the irreducible
case, its derived length `(Hi) is bounded above by firr(r) for some absolute function firr.

On the other hand, the kernel K of the natural projection H →
t∏
i=1

Hi is a nilpotent
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group of class ≤ t − 1 (see the proof below). Hence `(K) ≤ log 2(t − 1), and therefore
`(H) ≤ `(K) + `(

∏
Hi) ≤ log 2(t− 1) + max `(Hi) < log 2(r) + firr(r), as desired.

To prove that K is nilpotent of class ≤ t − 1 notice that K ⊆ 1 + I where I is the set
of all f ∈ End(V ) such that f(Vj) ⊆ Vj−1 for all 1 ≤ j ≤ t. Clearly I is a ring (without 1)
and It = 0, whence 1 + I is a group. By direct computation [1 + Ij , 1 + I] ⊆ 1 + Ij+1 for
all j. Hence γtK ⊆ γt(1 + I) = {1}, as desired. �

5. Proof of Theorem 1.1

In this section we will prove Theorem 1.1, assuming the other main results of this paper
that will be proved later. We will start by proving Theorem 1.1 for finitely generated
groups. The proof in this special case is simpler and will have 3 ingredients:

(1) Corollary 4.2.
(2) Theorem 6.1 which asserts that pro-p groups with finite NCC are p-adic analytic

(this will be proved in the next section)
(3) Theorem 5.1 below which describes finitely generated discrete linear groups with

finite NCC.

The following theorem was proved by von Puttkamer and Wu in [vPW1]:

Theorem 5.1. Let G be a finitely generated discrete linear group with finite NCC. Then
G is infinite cyclic, infinite dihedral or finite.

Proof of Theorem 1.1 for finitely generated groups. Let G be an infinite finitely generated
residually finite discrete group with finite NCC. By Corollary 4.2, G has a finite index
subgroup H which is residually nilpotent. Then H embeds in its pronilpotent completion

Ĥnilp which is a pronilpotent group and thus is a direct product of its Sylow pro-p sub-

groups Ĥp. Note that each Ĥp is the pro-p completion of H. Thus each Ĥp also has finite
NCC.

By Theorem 6.1 each Ĥp is p-adic analytic and therefore linear. Let Hp denote the

image of H in Ĥp. Then Hp is a discrete finitely generated linear group with finite NCC
and hence by Theorem 5.1 must be finite, infinite cyclic or infinite dihedral, where the last
case may only occur for p = 2 (since Hp is residually-p and thus cannot have q-torsion
for q 6= p). If Hp is finite, it must be a finite p-group. If in addition Hp is non-cyclic, its
abelianization is also non-cyclic and hence NCC(Hp) ≥ p+1. Since NCC(Hp) ≤ NCC(H),
there are only finitely many p for which Hp is finite non-abelian. It follows that Hp is
abelian for almost all p and virtually abelian for all p. Since H embeds into

∏
Hp, it must

be virtually abelian. Since H is finitely generated, it is trivially linear, and we are done
by applying Theorem 5.1 again. �

We now prove Theorem 1.1 in the general case.

Proof of Theorem 1.1. We start similarly to the finitely generated case except that this
time we need to use the full power of Theorem 1.5 instead of Corollary 4.2.

So let G be a discrete residually finite group with finite NCC. Its profinite completion

Ĝ also has finite NCC and hence by Theorem 1.5 has an open pronilpotent subgroup U
(which has finite NCC as well by Lemma 2.2). Then H = G ∩ U is a residually nilpotent
finite index subgroup of G (also with finite NCC).

Let p be any prime. As in the finitely generated case, we deduce that the pro-p com-

pletion Ĥp has finite NCC and thus is p-adic analytic and in particular linear over Qp.
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Again let Hp be the image of H in Ĥp, and let Λp be the set of eigenvalues of elements

of Hp (with respect to a fixed embedding of Ĥp into GLn(Qp) for some n ∈ N). Since Hp

has finite NCC, Λp is a union of finitely many cyclic subgroups of Qp
×

(where Qp is the

algebraic closure of Qp). In particular, Λp lies in a finitely generated subfield of Qp. The
main result of [Be] asserts the following:

Theorem 5.2. Let A be a linear semigroup in characteristic zero such that the eigenvalues
of all elements of A lie in some finitely generated subfield. Then the subgroup generated
by A must be virtually solvable.

Thus, Hp is virtually solvable and therefore (again using that Hp has finite NCC), Hp

is virtually cyclic by the aforementioned result of Groves and Wilson [GW]. The latter
in particular implies that Hp is finitely generated, and we can finish the proof as in the
finitely generated case.

�

6. Further reductions in the pro-p case

In this short section we will obtain several important restrictions on the structure of
pro-p groups with finite NCC. Our first result here which has already been applied in the
proof of Theorem 1.1 above asserts that pro-p groups with finite NCC are p-adic analytic:

Theorem 6.1. Any pro-p group with finite NCC is p-adic analytic.

Proof. Given a group G, let {Dn}∞n=1 be the dimension series of G in characteristic p. It
is defined by Dn = Dn(G) = {g ∈ G : g ≡ 1 mod In}, where I is the augmentation ideal
of the group algebra Fp[G], and has the following properties:

(a) [Dn, Dm] ⊆ Dn+m for all n,m ∈ N.
(b) Dp

n ⊆ Dnp for all n ∈ N.
(c) G is residually-p if and only if

⋂
n∈N

Dn = {1}.

In fact, {Dn} is the fastest descending chain of subgroups satisfying (a) and (b), but this
will not be important for our purposes. We will use the well-known characterization of
p-adic analytic pro-p groups in terms of their dimension series (see, e.g. [DDMS, § 11]):

Theorem 6.2. A pro-p group G is p-adic analytic if and only if Dn(G) = Dn+1(G) for
some n ∈ N.

Let us now fix a pro-p group G. For any 1 6= x ∈ G define deg (x) to be the unique
integer n such that x ∈ Dn \ Dn+1 (such n exists by (c) above). Also set deg (1) = ∞.
The following 3 properties of degree are straightforward:

(i) Conjugate elements have the same degree (this holds by (a) above with m = 1).
(ii) deg (xp) ≥ pdeg (x) for all x ∈ G (this holds by (b)).
(iii) If λ ∈ Z×p is a unit of Zp, then deg (x) = deg (xλ) for all x ∈ G (since in this case

x and xλ generate the same procyclic subgroup).

Let us now assume that G has finite NCC, so there exists a finite subset {x1, . . . , xk}
of G such that every element of G is conjugate to xλi for some 1 ≤ i ≤ k and λ ∈ Zp. Let
di = deg (xi) (without loss of generality we can assume that xi 6= 1, so di <∞), and more

generally let di,j = deg (xp
j

i ).
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Property (iii) above implies that for each λ ∈ Zp we have deg (xλi ) = di,j for some j and
hence by (i) (and the choice of {x1, . . . , xk}), the degree of any nonzero element of G is
equal to di,j for some i and j.

On the other hand, di,j ≥ pjdi by (ii), so for each N ∈ N there are at most k(blog p(N)c+
1) possible degrees of elements of G which are ≤ N . Since k(blog p(N)c+ 1) < N for large
enough N , there exists n ∈ N which is not the degree of any element of G. But this means
precisely that Dn(G) = Dn+1(G) and hence G is p-adic analytic by Theorem 6.2. �

It is well known that every p-adic analytic pro-p group contains an open subgroup which
is uniform, that is, powerful and torsion-free (see [DDMS, §§ 2-4] for the definition of a
powerful pro-p group and the proof of this result). Our next lemma shows that in the
case of uniform pro-p groups, NCC can be expressed directly in terms of the associated
Lie algebra:

Lemma 6.3. Let G be a uniform p-adic analytic pro-p group and let L = L(G) the
associated Zp-Lie algebra. Then G has finite NCC if and only if L can be written as a
union of G-orbits of finitely many cyclic Zp-submodules (with respect to the natural action
of G on L).

Proof. Since G is uniform, there is a well-defined exponential map u 7→ exp(u) which
establishes a bijection between L andG. Lemma 6.3 is a direct consequence of the following
two basic properties of exp:

(i) exp(λu) = exp(u)λ for all u ∈ L and λ ∈ Zp.
(ii) g−1 exp(u)g = exp(ug) for all u ∈ L, g ∈ G where ug denotes the action of g on u.

�

Our last result in this section informally asserts that if G is a uniform pro-p group with
finite NCC, then generic elements of its Lie algebra L(G) must have trivial (that is, one-
dimensional) centralizers. This result will be used to rule out the majority of semisimple
uniform pro-p groups as candidates for having finite NCC.

Lemma 6.4. Let G be a uniform pro-p group with finite NCC and let L = L(G). Then for
any x ∈ L \ pL there exists y ∈ L s.t. the centralizer of x+ py in L is equal to Zp(x+ py).

Proof. Fix x ∈ L\pL. Since G has finite NCC, by Lemma 6.3, L is covered by the G-orbits
of finitely many cyclic Zp-submodules. Since G acts trivially on L/pL, the coset x + pL

must lie in a finite union ∪ki=1ZpxGi where xi = x+ pyi for some y1, . . . , yk ∈ L.
For each m ∈ N let us estimate the size of the image of ZpxGi in L/pmL. Since L is

torsion-free, |L/pmL| = pdm where d = dim(L) (one can define dim(L) simply as the rank
of L as a Zp-module). The following key claim will be proved below, but first we will use
it to finish the proof of Lemma 6.4.

Claim 6.5. Let Ci = C(xi) be the centralizer of xi in L and ci = dim(Ci). Then the

image of xGi in L/pmL has cardinality at most p(d−ci)m.

Claim 6.5 immediately implies that the size of the image of ZpxGi in L/pmL is bounded

above by p(d−ci+1)m. Since the image of x + pL in L/pmL has size pd(m−1), we have

pd(m−1) ≤
k∑
i=1

p(d−ci+1)m or, equivalently, 1 ≤
k∑
i=1

p(1−ci)m+d whence ci = 1 for some i.
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Since dim(Ci) = 1, we have Ci = Zpui for some ui ∈ L. Since xi ∈ Ci, we have xi = λiui
for some λi ∈ Zp. But x (and hence xi) does not lie in pL by assumption, whence λi ∈ Z×p .
Therefore, Ci = Zpxi, as desired. �

Proof of Claim 6.5. To simplify the notations below we set t = ci. Since L is a finite rank
free module over a PID, there exists a basis {bj}dj=1 of L and λ1, . . . , λt ∈ Zp such that

{λjbj}tj=1 is a basis of Ci = C(xi). Since L is torsion-free and λjbj commutes with xi, bj
also commutes with xi, whence {bj}tj=1 is a basis of Ci.

Now let gj = exp(bj) and fix g ∈ G. A standard application of the Baker-Campbell-
Hausdorff formula (see, e.g. [DDMS, § 6.5]) shows that g can be uniquely written as

g = exp(z)
d∏
j=1

g
ej
j where z ∈ pmL and 0 ≤ ej ≤ pm − 1 for all j.

On the other hand, consider the well-known identity vexp(u) = (exp(ad (u)))(v) where

ad (u) = [·, u] and exp(ad (u)) =
∞∑
j=0

ad (u)j

j! for all u, v ∈ L. It implies that gj acts trivially

on xi for j ≤ t (since bj ∈ Ci in this case), and it is easy to check that x
exp(z)
i ≡ xi

mod pmL. It follows that xgi ≡ xhi mod pmL where h =
d∏

j=t+1
g
ej
j which immediately

implies the claim (recall that t = ci and 0 ≤ ej ≤ pm − 1). �

7. Covering numbers for the multiplicative groups of division algebras
and some of their subgroups

We start with a brief outline of this section. Given a finite-dimensional central division
algebra D over a field F , we set GL1(D) = D× and PGL1(D) = D×/F×. According
to Theorem 1.3, if F = Qp, D has degree 2 and G is an open torsion-free subgroup of
PGL1(D), then G has finite NCC, and in the introduction we already explained how this
result follows from [Ja] or [BJL]. In this section we will give a slightly different proof of
finiteness of NCC for these groups which will allow us to determine the exact value of
NCC in some cases.

Instead of computing NCC for these groups directly, we will study a related quantity
denoted by NAC and then show that NAC(G) = NCC(G) for G as above.

Definition. Let G be a group (discrete or profinite). We define NAC(G) to be the smallest
k such that G can be covered by the conjugacy classes of k abelian subgroups.

While it may be interesting to study NAC in general, the main reason we introduce it
here is that it is very easy to understand in the case of multiplicative groups of division
algebras. As we will explain in § 7.1, if D is a finite-dimensional central division algebra
over a field F and G is a subgroup of GL1(D) or PGL1(D), then under a natural extra
condition, NAC(G) is equal to the number of orbits of the natural conjugation action of G
on the setMF(D) of maximal subfields of D (see Lemma 7.2). This extra condition holds,
e.g., if F is a p-adic field (that is, a finite extension of Qp) and G is an open subgroup
of GL1(D) or PGL1(D). The Skolem-Noether theorem now immediately implies that if
G = GL1(D) or PGL1(D), then NAC(G) is bounded above by the number of isomorphism
classes of degree d extensions of F where d = deg (D), and it is well known that this
number is finite when F is a p-adic field – see Lemma 7.5(a) below.
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On the other hand, in § 7.2 we will prove that if F = Qp and d = 2 (that is, D is the
quaternion division algebra over Qp) and G is an arbitrary open subgroup of PGL1(D)
for p > 3 or a torsion-free open subgroup of PGL1(D) for p = 2, 3, then NCC(G) =
NAC(G) < ∞ (see Corollary 7.14). Finally, in § 7.3 we will precisely compute NCC for
several groups, including PGL1(D) and its first congruence subgroup PGL1

1(OD) when
p > 3 (see Theorem 7.15).

Local Fields. Throughout the paper by a local field we will always mean a locally compact
non-Archimedean local field, that is, either a finite extension of Qp (such fields will be called
p-adic) or the field of Laurent series with coefficients in a finite field.

7.1. Division algebras over arbitrary fields. In this subsection F is an arbitrary field
and D is a fixed finite-dimensional central division algebra over F . The following two facts
are well known (see Corollary 2.16 and Corollary 3.5 in [Mil]):

Lemma 7.1. The following hold:

(a) The dimension of D is always a perfect square. The integer d =
√

dim(D) is called
the degree of D and denoted by deg (D).

(b) If d = deg (D), then every maximal subfield of D has degree d over F .

Let MF(D) denote the set of maximal subfields of D, and consider the natural (con-
jugation) action of GL1(D) on MF(D). Clearly this action factors through PGL1(D).

Lemma 7.2. Let F and D be as above, let G be a subgroup of GL1(D) or PGL1(D), and let
m(G) denote the number of orbits of the action of G onMF(D). Then NAC(G) ≤ m(G).
Moreover, NAC(G) = m(G) in each of the following two cases:

(*) G ⊆ GL1(D) and every W ∈MF(D) can be written as W = F (g) for some g ∈ G.
(**) G ⊆ PGL1(D) and every W ∈ MF(D) can be written as W = F (gd!) for some

g ∈ G̃ where G̃ is the preimage of G in GL1(D) and d = deg (D).

Remark. In (**) we must have F (g) = W since F (g) is a subfield containing W and W
is maximal.

Before proving Lemma 7.2 we will establish another auxiliary result (Lemma 7.3) and
then derive an important consequence of Lemmas 7.2 and 7.3 (Corollary 7.4 below).

Lemma 7.3. Let F be a p-adic field, and let D be as above. If G is an open subgroup
of GL1(D) (resp. PGL1(D)), then G satisfies (*) (resp. (**)) in Lemma 7.2 and thus
NAC(G) is equal to the number of orbits of the action of G on MF(D).

Proof. Since W/F is a finite extension in characteristic 0, it has finitely many intermediate
subfields. Any proper subfield of W containing F is a closed subset of W with empty
interior, whence the union of these subfields, call it Ω, also has empty interior. If G is
an open subgroup of GL1(D), then W ∩ G is an open subset of W and hence cannot be
contained in Ω. On the other hand, F (g) = W for any g ∈W \ Ω, so G satisfies (*).

Now assume that G is an open subgroup of PGL1(D), and let G̃ be its preimage in

GL1(D). The group G̃ is p-adic analytic. If L(G̃) denotes its Qp-Lie algebra, there exists

an open compact Lie subring LH of L(G̃) such that the exponential map exp is defined

on LH and maps LH homeomorphically onto an open compact subgroup H of G̃; in fact,
H is profinite. Now let m = d!. The set mLH is an open subset of LH containing 0
and exp(mLH) = {hm : h ∈ H}. Hence {hm : h ∈ H} is an open subset of GL1(D)
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containing 1, and since H is profinite, it contains an open subgroup H1. By the first part
of Lemma 7.3, any W ∈ MF(D) can be written as W = F (h) for some h ∈ H1. Since

H1 ⊆ {gm : g ∈ G̃}, the proof is complete. �

Corollary 7.4. Let F be a p-adic field, and let D be as above. The following hold:

(i) If G is an open subgroup of PGL1(D) and G̃ is the preimage of G in GL1(D), then

NAC(G̃) = NAC(G).
(ii) Let H ⊆ G be open subgroups of GL1(D) or PGL1(D). Then NAC(H) ≥ NAC(G).

Proof. (i) follows from Lemmas 7.2 and 7.3 since G and G̃ have the same orbits onMF(D).
Similarly, (ii) follows from Lemma 7.2 and 7.3 since for any action of a group G on a set,
the number of G-orbits cannot exceed the number of H-orbits for any subgroup H of
G. �

Proof of Lemma 7.2. To prove the inequality NAC(G) ≤ m(G), it suffices to consider
the case where G is a subgroup of GL1(D). Indeed, if G is a subgroup of PGL1(D)

and G̃ is its preimage in GL1(D), then G and G̃ have the same orbits on MF(D), and

NAC(G) ≤ NAC(G̃) since G is a quotient of G̃.

So let us assume that G is a subgroup of GL1(D), and let {Wi}i∈I ⊆ MF(D) be a
set of representatives of the orbits of the action of G on MF(D). Since every element of
D lies in some maximal subfield, G is covered by the G-conjugacy classes of the abelian
subgroups W×i ∩G, whence NAC(G) ≤ |I| = m(G).

Let us now prove the reverse inequality m(G) ≤ NAC(G) assuming that G satisfies (*)
or (**). Let k = NAC(G), and assume that k < ∞. Thus there exist abelian subgroups
A1, . . . , Ak of G whose conjugacy classes cover G.

Case 1: G satisfies (*). Recall that in this case G ⊆ GL1(D). Since each Ai is
commutative, it lies inside some Wi ∈MF(D).

Now take any W ∈ MF(D). By our hypotheses W = F (g) for some g ∈ G, and
g = hah−1 for some h ∈ G and a ∈ Ai for some i. Then h−1Wh = F (a) and F (a) ⊆ Wi.
Since both W and Wi are maximal subfields, we must have h−1Wh = Wi, so the action
of G on MF(D) has at most k orbits, as desired.

Case 2: G satisfies (**). Recall that in this case G ⊆ PGL1(D) and G̃ is the preimage
of G in GL1(D).

Let Ãi be the preimage of Ai in GL1(D). Note that the G̃-conjugates of Ãi cover G̃.

For each 1 ≤ i ≤ k choose xi ∈ Ãi such that Vi = F (xi) has maximal possible dimension.

We claim that Ãi lies in Stab(Vi), the stabilizer of Vi in G̃. Indeed, for any g ∈ Ãi, the
elements [xi] and [g] (the images of xi and g in G) commute, so g−1xig = xif for some
f ∈ F . Hence Vi = F (g−1xig), so gVig

−1 = F (xi) = Vi, as desired.

We will now show that any W ∈ MF(D) is G̃-conjugate to Vi for some i. While not
every Vi must be maximal, this would imply that the collection {Vi}ki=1 intersects every
orbit of the action of G on MF(D), and therefore, k ≥ m(G), which would finish the
proof.

So take any W ∈ MF(D). By (**) and the remark after Lemma 7.2 we can write

W = F (g) = F (gd!) for some g ∈ G̃. We know that g lies in a G̃-conjugate of Ãi for some

i, and replacing g and W by conjugates, we can assume that g ∈ Ãi.
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Recall that Ãi ⊆ Stab(Vi), so the conjugation by g induces an element of the Galois
group Gal (Vi/F ). Since |Gal (Vi/F )| divides d!, the element gd! commutes with Vi, and
therefore W = F (gd!) commutes with Vi. Since W is a maximal subfield, Vi ⊆ W . On

the other hand, g ∈ Ãi, so by the choice of Vi we must have dimW = dimF (g) ≤ dimVi.
Therefore, Vi = W , as desired. �

Given d ∈ N, let us denote by Ed(F ) the set of (isomorphism classes of) field extensions of
F of degree d. Thus, by Lemma 7.1(b), every maximal subfield of D belongs to Edeg (D)(F ).
If F is a local field (which is our main case of interest), the following stronger statement
holds.

Lemma 7.5. The following hold:

(a) Let F be a p-adic field. Then Ed(F ) is finite for every d.
(b) Let F be an arbitrary local field, and let D be a central division algebra of degree

d over F . Then every field from Ed(F ) is embeddable in D.

Proof. See [Lang, II.Proposition 14] for a proof of (a) and [Mil, Remark 4.4(c)] for (b). �

By the Skolem-Noether Theorem [Mil, Theorem 2.10], any two isomorphic subfields of
D containing F are conjugate by an element of D×. Combining this result with Lemma 7.5
and Lemma 7.2, we obtain the following corollary:

Corollary 7.6. Assume that F is a p-adic field and let d = deg (D). Then

NAC(GL1(D)) = NAC(PGL1(D)) = |Ed(F )| <∞.

Remark. The inequality NAC(GL1(D)) ≤ |Ed(F )| (which implies NAC(PGL1(D)) ≤
|Ed(F )|) was previously established in [Ja] and [BJL] (using the same argument).

If G is an open subgroup of GL1(D) or PGL1(D), we can still compute NAC(G) using
Lemma 7.2 if we understand how the GL1(D)-orbits onMF(D) decompose into G-orbits.
The following simple observation addresses the latter question:

Observation 7.7. Let H ⊆ G be subgroups of GL1(D) or PGL1(D). Suppose that the
action of G on MF(D) has finitely many orbits. Let K1, . . . ,Kt be representatives of
these orbits, and for each 1 ≤ i ≤ t let Si = StabG(Ki) be the stabilizer of Ki in G. For
each i let mi be the number of orbits of the left-multiplication action of H on G/Si. Then
the G-orbit containing Ki decomposes into mi orbits of H, and hence the total number of

orbits of H on MF(D) is
k∑
i=1

mi.

Remark. Note that mi defined in Observation 7.7 is equal to the number of (H,Si)-
double cosets in G and also to the number of orbits of the left-multiplication action of Si
on G/H. If H is normal in G, then mi = [G : HSi].

7.2. Division algebras over local fields. In this subsection we will review some basic
facts about division algebras over local fields as well as multiplicative groups of p-adic
fields. For more details on division algebras over local fields see Riehm’s paper [Ri].

Let D be a finite-dimensional central division algebra over a local field (in particular,
D could be a local field itself). Then D admits a discrete valuation, that is, a surjective
map ν : D× → Z ∪ {∞} such that

(i) ν(a) =∞ if and only if a = 0.
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(ii) ν(ab) = ν(a) + ν(b) for all a, b ∈ D.
(iii) ν(a+ b) ≥ min{ν(a), ν(b)} for all a, b ∈ D.

The ring of integers of D is OD = {a ∈ D : ν(a) ≥ 0}. It is a local ring with maximal
ideal mD = {a ∈ D : ν(a) > 0}. Elements of valuation 1 are precisely the generators of
mD; such elements are called uniformizers of D.

Let us now fix a local field F and its uniformizer τ . Let D be a finite-dimensional
central division algebra over F , and let d be its degree. Let W be the unique unramified
extension of F of degree d. By Lemma 7.5, W can be embedded in D; for the rest of the
section we fix such a copy in D. One can prove that

(7.1) D has a uniformizer π such that πd = τ and πWπ−1 = W .

It is easy to show that

(7.2) D =
d−1⊕
i=0

πiW and OD =
d−1⊕
i=0

πiOW .

Property (7.1) implies that there exists σ ∈ Gal (W/F ) such that πwπ−1 = σ(w) for
all w ∈ W ; in fact, σ generates Gal (W/F ) ∼= Z/dZ (for otherwise W would not be a
maximal subfield). It is known that the map D 7→ σ is a well-defined bijection between
the isomorphism classes of degree d central division algebras over F and generators of
Gal (W/F ). Thus, the number of such isomorphism classes is equal ϕ(d) (where ϕ is the
Euler function) [Mil, Remark 4.4(b)]. In particular, there exists a unique degree 2 central
division algebra over F , called the quaternion division algebra over F .

Let F = OF /τOF and W = OW /τOW be the residue fields of F and W , respectively.
The second decomposition in (7.2) easily implies that the inclusion map OW → OD induces
a ring isomorphism ι : W → OD/πOD. More generally, for each i ∈ Z≥0 we have

(7.3) πiOD/π
i+1OD ∼= W

as F -vector spaces via (the inverse of) the map x 7→ πi · ι(x).

Given a subset L of D and i ∈ N, let ρi(L) ⊆W be the image of (L∩πiOD)/(L∩πi+1OD)
(considered as a subset of πiOD/π

i+1OD) under the isomorphism (7.3). If L is a vector
space over F , it is easy to check that ρi(L) is a vector space over F , and we define
ri(L) = dimF ρi(L).

Lemma 7.8. Let L be a subfield of D containing F , let a be the residue degree of the
extension L/F , that is, a = [L : F ], and let b be the ramification degree of L/F (so that
ab = [L : F ]). Then ri(L) = a if d

b | i and ri(L) = 0 otherwise. In particular,

(1) if L is maximal and L/F is unramified, then ri(L) = d if d | i and ri(L) = 0
otherwise;

(2) if L is maximal and L/F is totally ramified, ri(L) = 1 for all i.

Proof. Let e = d
b , and let τL be a uniformizer of L. Then ν(τL) = ν(τ)

b = ν(πd)
b = d

b = e.

Hence for all i ∈ Z we have L ∩ πiOD = {x ∈ L : ν(x) ≥ i} = τ
d i
e
e

L OL where d·e is the
ceiling function.

Thus if e - i, we have L ∩ πiOD = L ∩ πi+1OD, so ρi(L) = 0, and if i = ej for some

j ∈ Z≥0, then ρi(L) ∼= τ jLOL/τ
j+1
L OL ∼= OL/τLOL = L, as desired. �

Let us now consider the following groups:
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• GL1(OD) = O×D. Note that GL1(OD) = {g ∈ D : ν(g) = 0}.
• For each i ∈ N let GLi1(OD) = 1 + πiOD, the ith congruence subgroup of GL1(D).

Equivalently, GLi1(OD) = {g ∈ G : ν(g − 1) ≥ i}.
• We already defined PGL1(D) = GL1(D)/Z(GL1(D)) = D×/F×. More generally,

for any subgroup H of GL1(D) we will denote by PH its canonical image in
PGL1(D).

Lemma 7.9. The following hold:

(a) GL1(D) = 〈π〉n GL1(OD).
(b) PGL1(D)/PGL1(OD) is cyclic of order d, generated by the image of π.

(c) Let ζ ∈ W be a root of unity of order |W×| = |W | − 1 (such ζ exists by Hensel’s
lemma). Then

GL1(OD) = 〈ζ〉n GL1
1(OD).

(d) PGL1(OD)/PGL1
1(OD) is cyclic of order |W

×|
|F×|

, generated by the image of ζ.

(e) GLi1(OD)/GLi+1
1 (OD) ∼= (W,+) for all i ∈ N.

(f) PGL1(D) is a profinite group and PGL1
1(OD) is a pro-p group (with respect to the

topology induced from D). Moreover, if p - d, then PGL1
1(OD) is the unique Sylow

pro-p subgroup of PGL1(D) and thus contains every pro-p subgroup of PGL1(D).
(g) Let e be the ramification index of F (that is, the ramification degree of F/Qp).

Then GLi1(OD) is torsion-free for i > de
p−1 .

Proof. (a) holds since the valuation map ν : GL1(D)→ (Z,+) is a group homomorphism
with kernel GL1(OD) and sends π to a generator of (Z,+).

(b) We claim that F× ·GL1(OD) = 〈τ〉 ×GL1(OD). Indeed, the product on the right-
hand side is direct by (a) and the fact that τ = πd is central in GL1(D). The containment
“⊇” is obvious, and “⊆” holds since F× = 〈τ〉 × O×F and O×F ⊆ GL1(OD). Hence using

(a) we get PGL1(D)/PGL1(OD) ∼= GL1(D)/(F× ·GL1(OD)) ∼= 〈π〉/〈πd〉, as desired.

(c) and (d) Recall that OD/πOD ∼= W , so there is a surjective ring epimorphism ϕ :
OD → W with Kerϕ = πOD. The restriction of ϕ to GL1(D) is a group epimorphism

onto W
×

with kernel 1 +πOD = GL1
1(OD) which maps 〈ζ〉 isomorphically onto W

×
. This

implies (c), and (d) can be deduced from (c) similarly to how (b) follows from (a).
(e) is a combination of the obvious isomorphism GLi1(OD)/GLi+1

1 (OD) = (1+πiOD)/(1+
πi+1OD) ∼= (πiOD/π

i+1OD,+) and (7.3).

(f) From the definition of GLi1(OD) in terms of valuations, it is clear that GLi1(OD)
is normal in GL1(D), and hence PGLi1(OD) is normal in PGL1(D). By (b),(d) and (e),
each quotient PGL1(D)/PGLi1(OD) is finite and each quotient PGL1

1(OD)/PGLi1(OD) is a
finite p-group. Since the groups {PGLi1(OD)} form a base of neighborhoods of 1 for both
PGL1(D) and PGL1

1(OD), it follows that PGL1(D) is profinite and PGL1
1(OD) is pro-p.

If p - d, the order of PGL1(D)/PGL1
1(OD) is coprime to p by (b) and (d), so PGL1

1(OD)
is a Sylow pro-p subgroup of PGL1(D), and being normal, it is the unique Sylow pro-p
subgroup.

Finally, for a proof of (g) see, e.g. [Er, Proposition 4.3(c)] (the result there is stated for
SLi1(OD), but the proof applies to GLi1(OD) without any changes). �

Reduced norm and trace. Let Nred (resp. Tred ) denote the reduced norm (resp. re-
duced trace) map from D to F . One way to characterize Nred and Tred is as follows.
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Choose any maximal subfield K of D. Then for any a ∈ D its reduced norm Nred (a)
(resp. reduced trace Tred (a)) is equal to the determinant (resp. trace) of the endomor-
phism of the left K-vector space D given by x 7→ xa.

One can show that the restriction of Nred (resp. Tred ) to K coincides with the norm
(resp. trace) map of the extension K/F (in the case K = W this easily follows from (7.1)
and (7.2)). Since every element of D lies in some maximal subfield, both Nred and Tred

take values in F , and moreover are surjective as maps from D to F .
The following two facts will be frequently used. (7.5) holds by definition, and (7.4)

follows immediately from (7.1) and (7.2).

Nred (π) = (−1)d−1τ(7.4)

Nred (α) = αd for all α ∈ F.(7.5)

Let SL1(D) ⊂ GL1(D) be the subgroup of elements of reduced norm 1. For each i ∈ N
we set SLi1(OD) = GLi1(OD) ∩ SL1(D), the ith congruence subgroup of SL1(D).

Lemma 7.10. The following hold:

(a) SL1(D) ⊂ GL1(OD).
(b) The kernel of the projection SL1(D) → PSL1(D) is equal to µd(F ), the group of

dth roots of unity in F .
(c) PGL1(D)/PSL1(D) ∼= F×/(F×)d ∼= O×F /(O

×
F )d × (Z/dZ).

(d) If d is not divisible by p, then for each i ∈ N the canonical maps SLi1(OD) →
PSLi1(OD)→ PGLi1(OD) are both isomorphisms.

Proof. (a) Take any g ∈ SL1(D) and write g = πix with i ∈ Z and x ∈ GL1(OD). It is
easy to check that Nred (x) ∈ O×W . On the other hand, Nred (πi) = ±τ i by (7.4), so since
Nred (g) = 1, we must have i = 0 whence g = x ∈ GL1(OD).

(b) is immediate from definitions and (7.5). Since Nred : GL1(D) → F× is surjective
with kernel SL1(D) and Nred (F×) = (F×)d, we have

PGL1(D)/PSL1(D) ∼= GL1(D)/(F× · SL1(D))

∼= (GL1(D)/SL1(D))/((F× · SL1(D)/SL1(D)) ∼= F×/(F×)d

which proves the first isomorphism in (c). The second isomorphism in (c) is simply a
consequence of the decomposition F× = O×F × 〈τ〉.

(d) The map SLi1(OD)→ PSLi1(OD) is surjective, and by (b) its kernel is a finite group
of order dividing d. Since p - d and SLi1(OD) is a pro-p group, the kernel must be trivial,
so the first map in (d) is an isomorphism. The second map in (d) is injective by definition.
We can prove its surjectivity similarly to how we established injectivity of the first map
using (c) and the fact that PGLi1(OD) is a pro-p group. �

Corollary 7.11. Let D be the quaternion division algebra over Qp. Then GL1
1(OD) and

PGL1
1(OD) are torsion-free for p > 3 and GL2

1(OD) and PGL2
1(OD) are torsion-free for

p > 2.

Proof. The result for GL1
1(OD) and GL2

1(OD) holds by Lemma 7.9(g) (in our case d = 2 and
e = 1). On the other hand, PGLi1(OD) embeds into GLi1(OD) for p > 2 by Lemma 7.10. �

The next result collects some basic properties of the multiplicative groups of p-adic
fields.
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Lemma 7.12. Let K/F be an extension of p-adic fields, n = [K : Qp] and m = [F : Qp].

Let K (resp. F ) be the residue field of K (resp. F ), and let a and b be the residue degrees
of F and K (that is, a = log p|F | and b = log p|K|). Let e be the ramification degree of
the extension K/F , and let eK be the ramification index of K. The following hold:

(a) K×/F× ∼= Z/eZ×
(
K
×
/F
×
)
× (1 + mK)/(1 + mF ).

(b) mK/mF (the quotient of additive groups) is isomorphic to Zn−mp .
(c) The groups (1 + mK)/(1 + mF ) and mK/mF are commensurable (that is, have

isomorphic open subgroups).
(d) Assume in addition that eK < p − 1. Then (1 + mK)/(1 + mF ) ∼= mK/mF and

hence by (a) and (b)

K×/F× ∼= Z/eZ× Z/( p
b−1
pa−1)Z× Zn−mp .

Proof. (a) follows from the fact that for any p-adic field L the group L× has decompositions
L× = 〈τL〉×O×L = 〈τL〉×µL× (1+mL) where τL is a uniformizer of L and µL is the group

of roots of unity of order coprime to p in L which is isomorphic to L
×

.

(b) For any p-adic field L we have OL ∼= Zp[L:Qp] as additive groups. Moreover, OK is
a free OF -module and admits a basis containing 1, so OK/OF ∼= Zn−mp . Finally, since mK

is an open subgroup of OK and mF = mK ∩OF , the quotient mK/mF = mK/mK ∩OF ∼=
(mK +OF )/OF is open in OK/OF and thus is also isomorphic to Zn−mp .

(c) The power series exp(x) =
∑∞

i=0
xi

i! and log (1+x) = x− x2

2 + x3

3 −· · · converge on mn
K

for sufficiently large n and thereby establish mutually inverse group isomorphisms between
1 + mn

K and mn
K . If x ∈ mF , we have log (1 + x) ∈ mF and exp(x) ∈ 1 + mF (whenever

exp(x) converges). It follows that log maps 1 + mn
K ∩ mF isomorphically onto mn

K ∩ mF .
Thus, (1 +mn

K)/(1 +mn
K ∩mF ) which is an open subgroup of (1 +mK)/(1 +mK ∩mF ) =

(1+mK)/(1+mF ) is isomorphic to mn
K/(m

n
K ∩mF ) which is an open subgroup of mK/mF ,

as desired.
(d) The hypothesis eK < p−1 ensures that both series in (c) converge already for n = 1,

so (d) follows from the above argument for (c). �

Corollary 7.13. Let F = Qp and K a quadratic extension of F . Then the group K×/F×

is virtually Zp. If p > 3, then K×/F× is procyclic.

Proof. In the notations of Lemma 7.12 we have n = 2 and m = 1, so mK/mF
∼= Zp by

Lemma 7.12(b), and hence the first assertion of Corollary 7.13 follows from Lemma 7.12(a)(c).
Assume now that p > 3. Since eK = e ≤ 2, we have eK < p − 1, so Lemma 7.12(d) is

applicable. Again using the notations of Lemma 7.12 we have a = 1, and either (b, e) =
(2, 1) (if K/F is unramified) or (b, e) = (1, 2). In either case one of the two groups Z/eZ
and Z/( p

b−1
pa−1)Z is trivial and the other has order coprime to p (since p > 2). Thus, by

Lemma 7.12(d), the group K×/F× is a direct sum of Zp and a cyclic group of order
coprime to p, whence K×/F× is procyclic. �

Corollary 7.14. Let F = Qp and D the quaternion division algebra over F . Let G be an
open subgroup of PGL1(D), and if p = 2 or 3, assume in addition that G is torsion-free.
The following hold:

(a) NCC(G) = NAC(G).
(b) NCC(G) <∞.
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Proof. (a) Let G̃ be the preimage of G in GL1(D). Since NAC(G) = NAC(G̃) by Corol-

lary 7.4(i), it suffices to show that NCC(G) = NAC(G̃).
If {Ci} is a collection of procyclic subgroups of G whose conjugates cover G, then their

preimages are abelian (since the kernel of the map G̃→ G is central) and their conjugates

cover G̃. Therefore, NAC(G̃) ≤ NCC(G).

To prove the reverse inequality NCC(G) ≤ NAC(G̃), it suffices to show that for any

abelian subgroup A of G̃, its image in G is procyclic. So let A be an abelian subgroup
of G, and choose a maximal subfield W of D containing A. By Corollary 7.13, W×/F×

is procyclic if p > 3 and virtually procyclic if p = 2 or 3. But in the latter case we
are assuming that G is torsion-free, so (W×/F×) ∩ G is virtually procyclic, torsion-free
and abelian and hence obviously procyclic. Since the image of A in G is contained in
(W×/F×) ∩G, it is also procyclic, as desired.

(b) follows from (a), the fact that PGL1(D) has finite NAC (Corollary 7.6) and the
fact that finiteness of NAC is inherited by open subgroups (this is proved exactly as
Lemma 2.2). �

7.3. Explicit NCC computations. We are now ready to compute NCC for several
groups introduced earlier in this section.

Theorem 7.15. Let D be the quaternion division algebra over Qp, and assume that p > 2.
The following hold:

(1) NAC(PGL1(D)) = NAC(PGL1(OD)) = 3.
(2) NAC(PGL1

1(OD)) = p+ 2.
(recall that PGL1

1(OD) ∼= PSL1
1(OD) ∼= SL1

1(OD) by Lemma 7.10(d)).
(3) Let H be an index p subgroup of PGL1

1(OD) (any such subgroup lies strictly between
PGL1

1(OD) and the second congruence subgroup PGL2
1(OD)). Then NAC(H) = 3p.

If p = 3, there exists such a subgroup H which is torsion-free (recall that if p > 3,
already the subgroup PGL1

1(OD) is torsion-free).

Remark. Recall that by Corollary 7.14 we have NAC(G) = NCC(G) for any group G
appearing in the statement of Theorem 7.15 if p > 3 as well as for any torsion-free G if
p = 3.

Proof. Throughout the proof, for any element x ∈ GL1(D) the image of x in PGL1(D)
will be denoted by [x].

(1a) We start by proving that NAC(PGL1(D)) = 3. By Lemma 7.6, we just need to
show that

|E2(Qp)| = 3.

For any field F of characteristic 6= 2, the quadratic extensions all have the form F (
√
a)

where a ranges over non-trivial cosets of F× mod (F×)2; morever distinct cosets yield non-
isomorphic fields. In the case F = Qp and p > 2 we have F×/(F×)2 ∼= (Z/2Z)× (Z/2Z),
so there are 3 quadratic extensions of Qp, as desired.

For the remainder of the proof we will need to use specific embeddings of these extensions
into D, described below.

Recall that W is the chosen unramified quadratic extension of Qp inside D. Its residue
field has order p2 and hence contains a primitive root of unity of order p2−1. By Hensel’s
Lemma, W must also contain a primitive root of unity of order p2 − 1, call it ζ. In the
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notations of (7.1), we can set τ = p (recall that τ is the chosen uniformizer of F ), so π is
a uniformizer of D which satisfies π2 = p and normalizes W . Define

• K1 = W .
• K2 = Qp(π).
• K3 = Qp(ζπ).

We need to explain why the fields Ki are pairwise non-isomorphic. It is clear that K2 and
K3 are ramified while K1 is unramified, so K1 6∼= K2,K3. Recall that π2 = p, and by (7.6)
below we have πζπ−1 = ζp whence (ζπ)2 = ζ(πζπ−1)π2 = p · ζp+1. By construction, ζp+1

is a primitive root of unity of order p− 1, so it lies in Q×p , but not in (Q×p )2. Thus, π2 and

(ζπ)2 lie in different cosets of Q×p /(Q×p )2 whence the fields K2 and K3 are non-isomorphic
as explained at the beginning of the proof.

(1b) Next we want to show that NAC(PGL1(OD)) = NAC(PGL1(D)). Since the fields
K1,K2,K3 are representatives of the orbits of PGL1(D) on MF(D), by Observation 7.7
we just need to prove that for each 1 ≤ i ≤ 3 we have PGL1(D) = [Si] · PGL1(OD)
where Si is the stabilizer of Ki in GL1(D). Equivalently, we need to show that each of the
subfields K1,K2 and K3 is invariant under some transversal of PGL1(OD) in PGL1(D).

By Lemma 7.9(b), PGL1(D)/PGL1(OD) ∼= Z/2Z and the set {1, [π]} is a transversal
for PGL1(OD) in PGL1(D). Since ζ ∈ GL1(OD), the set {1, [ζπ]} is also a transversal.

Since π ∈ K2, the transversal {1, [π]} clearly normalizes K2 and similarly {1, [ζπ]}
normalizes K3. Finally, recall that K1 = W is normalized by π, so K1 is also invariant
under {1, [π]}.

(2) We now turn to proving that NAC(PGL1
1(OD)) = p + 2. Recall that Si is the

stabilizer of Ki in GL1(D). We claim that S1 = W×〈π〉 and Si = K×i 〈ζ
p+1
2 〉 for i = 2, 3.

First note that since Ki is a maximal subfield of D, its centralizer in GL1(D) is K×i .

On the other hand, the quotient Stab(Ki)/C(Ki) = Si/K
×
i embeds into the Galois group

Gal (Ki/F ) which has order 2. Thus to prove the above formulas for Si it suffices to show
that

(i) π normalizes W and π 6∈W .

(ii) α = ζ
p+1
2 normalizes Ki and α 6∈ Ki (equivalently, the conjugation by α induces a

non-trivial automorphism of Ki) for i = 2, 3.

Condition (i) holds by the choice of π. Since K2 = Qp(π) and K3 = Qp(ζπ), to prove (ii),
it suffices to determine the image of π under the conjugation by α.

Recall that πwπ−1 = σ(w) for all w ∈W where σ is the generator of Gal (W/Qp). The
projection O×W → F×

p2
restricts to an isomorphism 〈ζ〉 → F×

p2
which is equivariant with

respect to the action of σ on the left and the Frobenius map on the right, so σ(ζ) = ζp.
Hence

(7.6) πζπ−1 = ζp,

so ζ−1πζ = ζp−1π and more generally

(7.7) ζ−jπζj = ζ(p−1)jπ for all j.

In particular, setting j = p+1
2 , we get α−1πα = ζ

p2−1
2 π = −π (recall that ζ is a root of

unity of order p2 − 1 and α = ζ
p+1
2 ), which immediately implies (ii).
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We proceed with the proof of (2). We will apply Observation 7.7 with G = PGL1(OD)
and H = PGL1

1(OD). Our goal is to show that (in the notations of Observation 7.7)

m1 = 1 and m2 = m3 = p+1
2 , whence the number of H-orbits on MF(D) is equal to

1 + 2 · p+1
2 = p+ 2, as desired.

By Lemma 7.9(d), G/H = PGL1(OD)/PGL1
1(OD) is isomorphic to F×

p2
/F×p (so in par-

ticular is cyclic of order p + 1) and is generated by the image of ζ. Hence the projection

of [α] = [ζ
p+1
2 ] to G/H has order 2, so [H〈[α]〉 : H] = 2.

Since ζ ∈ K1 ∩ G ⊂ [S1] ∩ G, we have G = H〈[ζ]〉 = H([S1] ∩ G), and therefore m1 =
[G : H([S1] ∩G)] = 1. If i = 2 or 3, by Claim 7.16 below we have H([Si] ∩G) = H〈[α]〉,
whence mi = [G : H([Si] ∩G)] = [G:H]

[H〈[α]〉:H] = p+1
2 . This finishes the proof of (2).

Claim 7.16. Let i = 2 or 3. Then H([Si] ∩G) = H〈[α]〉.

Proof. The inclusion H〈[α]〉 ⊆ H([Si]∩G) is clear since α ∈ Si∩GL1(OD). For the reverse
inclusion, it suffices to prove the corresponding inclusion for the preimages in GL1(D), that
is, Q×p ·GL1

1(OD)(Si ∩GL1(OD)) ⊆ Q×p ·GL1
1(OD) ·A where A = 〈α〉.

Since Si = K×i A as proved above and A ⊆ GL1(OD), we have

GL1
1(OD)(Si ∩GL1(OD)) = GL1

1(OD)·(K×i A∩GL1(OD)) = GL1
1(OD)·(K×i ∩GL1(OD))·A.

Since Ki is ramified, it is easy to see that K×i ∩ GL1(OD) ⊆ Q×p · GL1
1(OD) and hence

Q×p ·GL1
1(OD)(Si ∩GL1(OD)) ⊆ Q×p ·GL1

1(OD) ·A, as desired. �

(3) We will again apply Observation 7.7, this time with G = PGL1
1(OD) and H as in

Theorem 7.15(3). The proof of (2) shows that G has p+ 2 orbits onMF(D), with repre-
sentatives K1,K2, . . . ,Kp+2 (with K1,K2 and K3 defined as before) where K2, . . . ,Kp+2

are all ramified. We will show that m1 = mi = p for unique 2 ≤ i ≤ p+ 2 (depending on
H) and mj = 1 for j 6= 1, i. This would imply that NAC(H) =

∑
mi = p+ p+ p · 1 = 3p,

as desired.
The quotient Q = PGL1

1(OD)/PGL2
1(OD) is a 2-dimensional vector space over Fp. This

follows from Lemma 7.9(e) and the fact that r1(Qp) = 0 in the notations of Lemma 7.8.
For a subfield K ∈ MF(D) we set O1

K = K ∩GL1
1(OD), and let Q(K) be the projection

of O1
K to Q. We claim that

(i) if K is unramified, then Q(K) = {0};
(ii) if K is ramified, then |Q(K)| = p (so Q(K) is a 1-dimensional subspace of Q);
(iii) the map ι : K 7→ Q(K) is a bijection between the G-orbits of ramified subfields

K ∈MF(D) and 1-dimensional spaces of Q.

Indeed, it is straightforward to check that |Q(K)| = pr1(K)−r1(Qp) in the notations of
Lemma 7.8. According to that lemma, r1(Qp) = 0, and for K ∈MF(D) we have r1(K) =
0 if K is unramified and r1(K) = 1 if K is ramified. This yields (i) and (ii).

Let us now prove (iii). If K,L ∈ MF(D) lie in the same G-orbit, we must have
Q(K) = Q(L) since G = PGL1

1(OD) acts trivially on Q. Thus, ι is well defined. Since
every element of D lies in a maximal subfield, every 1-dimensional subspace V of Q is
contained in Q(K) for some K ∈ MF(D), and by (i) and (ii) V = Q(K) and K must
be ramified. Thus ι is surjective. Finally, Q has p + 1 one-dimensional subspaces (since
dim(Q) = 2) and we already observed that there are p + 1 G-orbits of ramified maximal
subfields. Thus, ι is bijective.
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The computation of the subfield stabilizers in (2) shows that StabG(K) = [K×]∩G for
every K ∈MF(D). Hence mi = [G : H · ([K×]∩G)] is equal to [Q : Q(H) +Q(K)] where
Q(H) is the projection of H onto Q. Since |Q(H)| = p, we have mi = p if either Q(Ki) =
{0} or Q(Ki) = Q(H) and mi = 1 otherwise. By (i) we have Q(K1) = Q(W ) = {0}, and
by (iii) there exists a unique 2 ≤ i ≤ p + 2 such that Q(Ki) = Q(H), which yields the
above assertion about the mi’s and proves that NAC(H) = 3p.

It remains to show that for p = 3, the group G = PGL1
1(OD) contains a torsion-free

subgroup of index p = 3. It will be convenient to replace PGL1
1(OD) by SL1

1(OD) (which is
isomorphic to PGL1

1(OD) by Lemma 7.10(d)), so that G becomes a subgroup of GL1(D).
There exists a unique (up to isomorphism) quadratic extension of Q3 containing a

primitive 3rd root of unity, which will be denoted below by 3
√

1 (this is because 3
√

1 has
degree 2 over Q3), and it is straightforward to check that such an extension is ramified
(a detailed computation shows that K3, not K2, contains 3

√
1, but this fact will be of no

importance for us). Morever, if K ∈ MF(D) contains a 3rd root of unity ζ, then ζ has
non-trivial projection in Q.

Choose any ramified L ∈MF(D) which does not contain 3
√

1 and let H be the unique
index 3 subgroup of G such that Q(H) = Q(L). Suppose that H contains an element ω of
order 3, and let M = Q3(ω). Then M 6∼= L (since M contains a primitive 3rd root of unity
while L does not), whence Q(M) 6= Q(L) by (iii) above, and therefore, Q(M)∩Q(L) = {0}.
The latter is impossible since the image of ω lies in both Q(M) and Q(H) = Q(L). Thus,
we proved that H has no elements of order 3. Since H is a pro-3 group, it follows that H
is torsion-free, as desired. �

8. On values of NCC for infinite pro-p groups and families of finite
p-groups

In this section we will prove the results stated in § 1.4 including Theorems 1.6, 1.7 and 1.8.
We will start with the proof of Theorem 1.6:

Theorem 1.6. For any prime p and integer k there are only finitely many infinite pro-p
groups G with NCC(G) = k.

We first establish an auxiliary result.

Lemma 8.1. Let D be the quaternion division algebra over Qp. Let G be an open subgroup
of PGL3

1(OD), and let H be an open subgroup of index p in G (note that H must be normal
in G). Then NCC(H) > NCC(G).

Remark. The group PGL3
1(OD) is torsion-free for all p, so G and H must be torsion-free.

Proof. By Lemma 7.3 and Corollary 7.14, if U is any open torsion-free subgroup of
PGL1(D), then NCC(U) is equal to the number of orbits of the action of U on MF(D).
Thus, we just need to show that at least one of the G-orbits decomposes into several
H-orbits. By Observation 7.7 and the remark after it, this is equivalent to the existence
of K ∈MF(D) such that G 6= H · StabG(K).

Claim 8.2. For any K ∈MF(D) we have StabG(K) = (K×/Q×p ) ∩G.

Proof. As observed before, StabG(K)/((K×/Q×p ) ∩ G) embeds into Gal (K/Qp), so the

index [StabG(K) : (K×/Q×p )∩G] is at most 2. Since G is pro-p (and hence so is StabG(K)),
the index is 1 if p > 2, and we are done in this case. Now consider the case p = 2 and write
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K = Qp(α) with α2 ∈ Qp. Suppose that there exists g ∈ StabG(K) \ ((K×/F×) ∩ G).
Then for any lift g̃ of g, the conjugation by g̃ induces a non-trivial automorphism of
K/Qp, whence g̃−1αg̃ = −α or, equivalently, [α, g̃] = −1. Since G ⊆ PGL3

1(OD), we
can assume that g̃ ∈ GL3

1(OD), and since GL3
1(OD) is normal in GL1(D), it follows that

−1 = [α, g̃] ∈ GL3
1(OD), a contradiction. �

We proceed with the proof of Lemma 8.1. Since G is not procyclic and H has index
p in G, there exists x ∈ H \ Φ(G). Let K = F (x̃) where x̃ ∈ D is any lift of x. Since
G is torsion-free, the group C = (K×/F×) ∩ G is procyclic as shown in the proof of
Corollary 7.14. Since C is also pro-p and x ∈ C \ Φ(G) ⊆ C \ Φ(C), it follows that

C = 〈x〉. Hence using Claim 8.2 we get H · StabG(K) = H · 〈x〉 = H 6= G, as desired. �

Proof of Theorem 1.6. By Theorem 1.3 we can assume that G is an open torsion-free
subgroup of PGL1(D) where D is the quaternion division algebra over Qp. Let U =
G ∩ PGL3

1(OD). Then [PGL3
1(OD) : U ] = pm for some m ∈ Z≥0, and we can find a

descending chain PGL3
1(OD) = H0 ⊇ H1 ⊇ · · · ⊇ Hm = U with [Hi : Hi+1] = p for all i.

By Claim 8.1, NCC(U) ≥ NCC(PGL3
1(OD)) +m > m.

On the other hand, if we set a = [PGL1(D) : PGL3
1(OD)], then by Lemma 2.2,

NCC(U) ≤ [G : U ] · NCC(G) ≤ a · NCC(G), whence NCC(G) ≥ NCC(U)
a > m

a . Since
we also have [PGL1(D) : G] ≤ [PGL1(D) : U ] ≤ a · pm, it follows that

NCC(G) >
log p[PGL1(D) : G]− log pa

a
.

Since PGL1(D) is finitely generated, it has finitely many subgroups of a given finite index,
and therefore there are only finitely many G with a given value of NCC. �

Let us now recall the definition of the sets NCCI(p) and NCCII(p):

(i) Let NCCI(p) be the set of all k > 1 for which there exists an infinite pro-p group
G with NCC(G) = k.

(ii) Let NCCII(p) be the set of all k > 1 for which there exists an infinite family of
finite p-groups {Pi} with NCC(Pi) = k for all i.

We already explained why NCCI(p) ⊆ NCCII(p). The following claim implies that
NCCI(p) and NCCII(p) have the same minimal element.

Claim 8.3. Suppose that for some k there exists an infinite sequence of noncyclic finite
p-groups {Pi} with NCC(Pi) ≤ k for all i. Then there exists an infinite non-procyclic
pro-p group G with NCC(G) ≤ k. Moreover, if d(Pi) = d for all i, we can assume that
d(G) = d.

Proof. First observe that if P is a finite p-group and d = d(G), then P/Φ(P ) ∼= (Z/pZ)d

whence NCC(P ) ≥ NCC((Z/pZ)d) = pd−1
p−1 . Hence for any family of finite p-groups with

bounded NCC, the sequence {d(Pi)} is also bounded. Thus, it suffices to prove Claim 8.3
assuming that there exists d ∈ N such that d(Pi) = d for all i.

Consider the following oriented graph Γk,d(p). The vertices of Γk,d(p) are (isomorphism
classes of) finite p-groups P with d(P ) = d and NCC(P ) ≤ k (thus by our hypothesis
Γk,d(p) is infinite). There is an oriented edge from P to Q if and only if Q ∼= P/Z where
|Z| = p and Z ⊆ Φ(P ).

Any finite p-group P with d(P ) = d and P 6∼= (Z/pZ)d has a central subgroup Z of
order p lying in Φ(P ). Therefore, for any such P there is a directed path from P to



GROUPS COVERED BY CONJUGATES OF FINITELY MANY (PRO)CYCLIC SUBGROUPS 35

(Z/pZ)d in Γk,d(p). In particular Γk,d(p) is connected and thus contains an infinite path
Q1 ← Q2 ← Q3 ← · · · . Let G = lim←−Qi. Since d(Qi) = d for all i, we have d(G) = d. Also

by Lemma 2.12, NCC(G) = sup{NCC(Qi)}, so NCC(G) ≤ k, as desired. �

Recall that the common minimal element of NCCI(p) and NCCII(p) is denoted by
NCCmin(p). We are now ready to prove Theorem 1.7 giving the formula for NCCmin(p):

Theorem 1.7.

NCCmin(p) =

 3 if p = 2
9 if p = 3
p+ 2 if p > 3.

Proof. Case 1: p = 2. The infinite prodihedral group is a non-procyclic pro-2 group
with NCC equal to 3. On the other hand, every nonprocyclic pro-p group maps onto
Z/pZ× Z/pZ whose NCC is p+ 1. Thus, NCCmin(2) = 3.

Case 2: p > 3. Let D be the quaternion division algebra over Qp and G = PGL1
1(OD).

By Theorem 7.15(2) and the remark after it we have NAC(G) = NCC(G) = p + 2, so
NCCmin(p) ≤ p+ 2. On the other hand,

• every infinite non-procyclic pro-p group H with finite NCC is an open subgroup
of G by Theorem 1.3 and the remark after it,
• NCC(H) = NAC(H) for any such H by Corollary 7.14, and
• NAC(H) ≥ NAC(G) for any such H by Corollary 7.4(ii).

This proves the reverse inequality NCCmin(p) ≥ p+ 2.
Case 3: p = 3. Let D and G be as in Case 2. This time G is not torsion-free and hence

has infinite NCC by Proposition 9.2 (which will be proved without relying on any results
from § 8). However, by Theorem 7.15(3) G has an index 3 torsion-free subgroup H with
NCC(H) = 9. Since G is a pro-3 group, every proper open subgroup of G is contained
in an index 3 subgroup, and NAC(U) = 9 for any index 3 subgroup U of G (again by
Theorem 7.15(3)). Thus arguing as in Case 2, we deduce that NCCmin(3) = 9. �

We now turn to the proof of Theorem 1.8. Part (a) of Theorem 1.8 is an immediate
consequence of Lemma 2.12 and Claim 8.3. Part (b) of Theorem 1.8 can be reformulated
as follows:

Theorem 8.4. Fix a prime p. The following hold:

(1) For any integer 1 ≤ d ≤ 3 there exists an infinite pro-p group H with d(H) = d
and NCC(H) <∞.

(2) Conversely, let H be any infinite pro-p group with NCC(H) <∞. Then d(H) ≤ 3
if p > 3, d(H) ≤ 4 if p = 3 and d(H) ≤ 6 if p = 2.

Proof. In both parts of the proof D will denote the quaternion division algebra over Qp.

We also set G = PGL1(D) and Gk = PGLk1(OD) for k ∈ N.

(1) The assertion is trivial for d = 1. For all sufficiently large k, the group Gk is torsion-
free and thus has finite NCC; moreover, it is a uniform pro-p group whence d(Gk) =
dim(Gk) = 3. Thus we proved (1) for d = 3. Finally, Gk is non-abelian and any two
non-commuting elements of Gk generate an open subgroup (e.g. since sl1(D), the Qp-Lie
algebra of PGL1(D), has no subalgebras of dimension 2). This proves (1) for d = 2.

(2) Infinite procyclic pro-p groups and the infinite prodihedral pro-2 group trivially
satisfy (2). Thus by Theorem 1.3 we can assume that H is an open torsion-free pro-p
subgroup of G = PGL1(D).
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Case 1: p > 2. In this case H ⊆ G1 by Lemma 7.9(f). Also, G1
∼= SL1

1(OD) by
Lemma 7.10(d), so we can apply [Er, Proposition 4.3] which collects various standard
results about commutators and pth powers in congruence subgroups of SL1(D).

Let H2 = H ∩ G2. The group G2 is uniform by [Er, Proposition 4.3(b)(c)] whence
d(H2) ≤ d(G2) = dim(G2) = 3 where the inequality holds by [DDMS, Theorem 3.8].
Therefore, d(H) ≤ d(H2) + d(H/H2) = 3 + d(H/H2). The quotient H/H2 embeds into
G1/G2

∼= (Z/pZ)2. If H = H2, we are done. If |H/H2| = p2, then H projects onto
G1/G2. Since G2 = [G1, G1] by [Er, Proposition 4.3(b)], it follows that H = G1 whence
d(H) = d(G1) = d(G1/G2) = 2.

It remains to consider the case |H/H2| = p. In this case we already know that d(H) ≤ 4,
so we proved Theorem 1.8(2) for p = 3, and we can assume now that p > 3. Fix any h ∈
H \H2, so that H = 〈h〉H2. Since p > 3 and h ∈ G1 \G2, [Er, Proposition 4.3(c)] implies
that hp ∈ G3 \G4. Moreover, Φ(H2) = [H2, H2]Hp

2 is contained in G4, so hp ∈ H2 \Φ(H2),
and therefore H2 contains a minimal generating set S (with |S| ≤ 3 as already proved)
containing hp. But then (S \ {hp})∪ {h} is a generating set for H of the same cardinality
as S, so d(H) ≤ 3, as desired.

Case 2: p = 2. In this case G3 is uniform. Thus, if H3 = H ∩G3, as in Case 1 we have
d(H) ≤ 3 + d(H/H3). By Lemma 7.9, G/G3 is a group of order 48, and it is easy to check
that its 2-Sylow is non-abelian. Hence H/H3 embeds into a non-abelian group of order 16
whence d(H/H3) ≤ 3 and thus d(H) ≤ 6, as desired. �

We finish this section by connecting Problem 4 (formulated at the end of § 1.4) to the
structure of the graph Γk,d(p) from the proof of Claim 8.3. To make the relation more
transparent we will work not with Γk,d(p) itself, but with a chosen spanning tree Tk,d(p)
(in fact, we could replace Γk,d(p) by Tk,d(p) already in the proof of Claim 8.3). Note that

Tk,d(p) is naturally a rooted tree where the root group is (Z/pZ)d. The edges (as defined
in the proof of Claim 8.3) always point from a child to its parent. We will assume that
Tk,d(p) is drawn upside down, with the root at the top.

The infinite downward paths in Tk,d(p) correspond bijectively to infinite pro-p groups
G with d(G) = d and NCC(G) ≤ k, so by Theorem 1.6 there are finitely many such paths.
To answer the stronger question in Problem 4 in the affirmative it suffices to prove that
there is a uniform bound on the sizes of finite branches in Tk,d(p). A priori it is not even
clear whether finite branches exist arbitrarily low in the tree, but there is one case where
such branches do exist and can be described explicitly.

Consider the tree Tk,2(2) for some k ≥ 3. One of the infinite paths in this tree cor-
responds to the infinite prodihderal pro-2 group D2∞ (in fact, if k = 3, this is the only
infinite path). Given n ≥ 3, let Q2n be the generalized quaternion group of order 2n, and
given n ≥ 4, let SD2n be the semidihedral group or order 2n. It is easy to show that
NCC(Q2n) = NCC(SD2n) = 3. Neither Q2n nor SD2n (with the above restrictions on n)
lie on the D2∞ path, but both can be mapped onto D2n−1 , so they are at distance one from
that path. The next result shows that whenever n > 2k, the finite branches corresponding
to Q2n and SD2n have length 1 and there are no other finite branches below the 2kth level
connected to the D2∞ path.

Lemma 8.5. Fix an integer k ≥ 3. Let P be a group of order 2n with n ≥ 2k, and let
Q be a group of order 2n+1 such that Q/Z ∼= P for some subgroup Z of Q of order 2 and
NCC(Q) ≤ k. The following hold:

(a) If P = D2n, then Q is isomorphic to D2n+1, Q2n+1 or SD2n+1.
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(b) P is not isomorphic to Q2n or SD2n.

Proof. We will prove (a) and (b) simultaneously, so assume that P = D2n , Q2n or SD2n .
In each case P has a cyclic subgroup of index 2, and let H be the preimage of this subgroup
in Q. Then H is either cyclic or isomorphic to Z/2n−1Z × Z/2Z. But in the latter case

NCC(H) = n+ 1 whence NCC(Q) ≥ NCC(H)
2 > k, a contradiction.

Thus, Q is a non-abelian group of order 2n+1 with a cyclic subgroup of index 2. It
is known that there are only 4 such groups up to isomorphism, including D2n+1 , Q2n+1

and SD2n+1 . The only other group on this list will be denoted by M2n+1 . From the
standard presentations of these groups, it is clear that for D2n+1 , Q2n+1 and SD2n+1 the
only quotient of order 2n is isomorphic to D2n , and the only quotient of M2n+1 of order
2n is isomorphic to Z/2n−1Z× Z/2Z. This proves both (a) and (b). �

Remark. The trees Tk,d(p) also make it easier to explain why the inclusion NCCI(p) ⊆
NCCII(p) discussed earlier in this subsection may (potentially) be proper. Indeed, sup-
pose that for some k > 1 there is an infinite family of finite p-groups {Pn} with d(Pn) = d
and NCC(Pn) = k which all lie on the branches of Tk,d(p). Then the infinite pro-p group
G with d(G) = d and NCC(G) ≤ k constructed in the proof of Claim 8.3 is not guaranteed
to map onto any Pn, so it is possible that NCC(G) < k (in which case G could have been
constructed by applying the proof of Claim 8.3 already to Γk−1,d(p)).

9. Proof of Theorem 1.3

Throughout this section p will be a fixed prime and D will denote the quaternion
division algebra over Qp. The goal of this section is to prove Theorem 1.3. The proof will
be divided into three parts.

• Part 1: Prove that any pro-p group with finite NCC must be finite, infinite pro-
cyclic, infinite pro-dihedral (with p = 2) or isomorphic to an open subgroup of
PGL1(D). This will be proved in § 9.1.

• Part 2: Prove that all groups listed in the previous paragraph do have finite NCC.
This has already been established. Indeed, the result is obvious for finite, infinite
procyclic and infinite pro-dihedral groups and holds by Corollary 7.14(b) for open
torsion-free subgroups of PGL1(D).

• Part 3: Prove that open pro-p subgroups of PGL1(D) with torsion (such groups
only exist for p = 2 and p = 3) have infinite NCC. This will be proved in § 9.2.

9.1. Proof of Theorem 1.3, part 1. In this subsection we will complete the first part
of the proof of Theorem 1.3 by establishing the following result:

Proposition 9.1. Let G be a pro-p group with finite NCC. Then G is finite, infinite
procyclic, infinite prodihedral (with p = 2) or isomorphic to an open subgroup of PGL1(D).

Proof. First of all, by Theorem 6.1 G must be p-adic analytic. Let H be an open uniform
subgroup of G. By Lemma 2.2, H also has finite NCC and hence is just-infinite by
Corollary 2.7. This easily implies that the Qp-Lie algebra LQp = Qp ⊗Zp L(H) has no
proper nonzero ideals, that is, LQp is either simple (non-abelian) or one-dimensional (and
thus isomorphic to Qp).

Case 1: LQp
∼= Qp. In this case G must be virtually Zp. Let Z be an open normal

subgroup of G isomorphic to Zp, and let ϕ : G → Aut(Z) be the map induced by conju-
gation. Since Z is abelian, ϕ is not injective, and since G is just-infinite, Imϕ must be
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finite; in fact, a finite p-group. It is clear that Aut(Zp) ∼= Z×p , and it is well known that

Z×p ∼= Zp × Z/(p − 1)Z for p > 2 and Z×2 ∼= Z2 × Z/2Z (see, e.g. [Go, Corollary 5.8.2]).
Thus, if p > 2, then Aut(Z) has no non-trivial finite p-subgroups, so ϕ must be trivial,
and if p = 2, then Aut(Z) has a unique non-trivial finite subgroup which has order 2.
It follows that CG(Z), the centralizer of Z in G (which coincides with Kerϕ) equals the
entire G if p > 2 and has index at most 2 in G if p = 2.

If CG(Z) contains a (non-trivial) torsion element g, then 〈g〉 × Z is an open subgroup
of G which is not just-infinite and hence has infinite NCC, contrary to Lemma 2.2. Thus,
CG(Z) is torsion-free. A well-known theorem of Serre [Ser] asserts that a finitely generated
pro-p group which is virtually free and torsion-free must be free. Thus, CG(Z) ∼= Zp. Recall
that CG(Z) = G if p > 2, so we are done in the case. If p = 2, we know that G contains
a subgroup U of index ≤ 2 isomorphic to Z2. Thus, G ∼= Z2 as well or G contains a
torsion element (necessarily of order 2) which acts on U by inversion, in which case G is
the infinite prodihedral group.

Case 2: LQp is simple.
Let r be the rank of LQp . By one of the definitions of the rank, dimCLQp (x) ≥ r for all

x ∈ LQp where CLQp (x) is the centralizer of x in LQp .

Since H has finite NCC, by Lemma 6.4 we must have r = 1. There are only two simple
Lie algebras of rank 1 over Qp: sl2(Qp) and sl1(D).

First we rule out the possibility LQp = sl2(Qp). In this case, after passing to a subgroup
of finite index if needed, we can assume that H = SLm2 (Zp) = {g ∈ SL2(Zp) : g ≡ I
mod pmZp} for some m and hence L(H) = pmsl2(Zp) (the action of H on L(H) is by
conjugation in the matrix algebra). We will obtain a contradiction similarly to Lemma 2.6.

For each i ∈ N let xi = pme + pmif ∈ pmsl2(Zp) where e =

(
0 1
0 0

)
and f =

(
0 0
1 0

)
.

Since H has finite NCC, by Lemma 6.3, there exist i < j, x ∈ L, h, h′ ∈ H and λ, µ ∈ Zp
such that xi = λxh and xj = µxh

′
. Since xi and xj both have degree m with respect to

the congruence filtration {pjsl2(Zp)}∞j=1 and the H-action does not change the degree with
respect to this filtration, we deduce that λ and µ must have the same p-adic valuation.

On the other hand, taking the determinants of both sides in xi = λxh and xj = µxh
′

and using the fact that the action of H on L preserves the determinants, we get

−pm(i+1) = λ2 det(x) and − pm(j+1) = µ2 det(x).

Since i < j, µ and λ must have different p-adic valuations, a contradiction.

Before considering the case where LQp = sl1(D) we recall the notion of the commensu-
rator of a profinite group which will play a key role in the remainder of the argument.

Definition. Let P be a profinite group. The commensurator of P , denoted Comm(P ),
is the group of equivalence classes of isomorphisms ϕ : U → V where U and V are open
subgroups of P . Here two isomorphisms ϕ : U → V and ϕ′ : U ′ → V ′ are equivalent if
they coincide on an open subgroup of U ∩ U ′.

For any profinite group P the conjugation action of P on itself induces a canonical
homomorphism P → Comm(P ). On the other hand, if Q is another profinite group
which is commensurable to P (that is, Q and P have isomorphic open subgroups), then
Comm(Q) ∼= Comm(P ), and thus we obtain a homomorphism ϕ : P → Comm(Q).
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We proceed with the proof of Proposition 9.1. Recall that the only remaining case is
LQp = sl1(D). In this case G is commensurable with SL1(D), so as we just explained,
there is a natural homomorphism ϕ : G → Comm(SL1(D)). The image of ϕ must be
infinite (for otherwise, G is virtually abelian, which is clearly a contradiction) and hence
by Corollary 2.7, the kernel of ϕ must be trivial, so G embeds into Comm(SL1(D)).

We claim that Comm(SL1(D)) ∼= PGL1(D). Indeed, by [BEW, Theorem 3.12], if H is
any compact p-adic analytic group, then Comm(H) is isomorphic to AutQp(LQp(H)), so
Comm(SL1(D)) ∼= AutQp(sl1(D)). By [JT, Proposition 8.1], AutQp(sl1(D)) is isomorphic

to AutQp(D), the group of automorphisms of D considered as an associative Qp-algebra.6

Finally, AutQp(D) ∼= PGL1(D) by the Skolem-Noether theorem.

Thus, we proved that G is isomorphic to a (closed) subgroup of PGL1(D), and since
G is commmesurable with PGL1(D), this subgroup must be open (e.g. since PGL1(D) is
compact p-adic analytic, so its closed non-open subgroups have strictly smaller dimension).
This completes the proof of Proposition 9.1. �

9.2. Proof of Theorem 1.3, part 3. In this subsection we will prove the following result
which completes the proof of Theorem 1.3.

Proposition 9.2. Let G be an open pro-p subgroup of PGL1(D) with torsion. Then G
has infinite NCC.

Proof. Since G is a pro-p group with torsion, it must contain an element g0 of order p
(such an element will be fixed for the rest of the proof). We will prove that G has infinite
NCC by once again exploiting the idea from the proof of Lemma 2.6.

Claim 9.3. For any open subgroup U of G there exists h ∈ U such that (g0h)p 6= 1.

Claim 9.3 can be proved by direct computation, but it also follows from a theorem of
Breuillard and Gelander [BG, Proposition 1.9] which asserts that a non-virtually solvable
p-adic analytic group cannot satisfy a coset identity (that is, an identity which holds for
all elements in a given coset of an open subgroup).

For the rest of the proof, given g ∈ G we will denote by deg (g) the degree of g with
respect to the congruence filtration, that is, deg (1) = ∞, and if 1 6= g, deg (g) is the
unique k ≥ 0 such that g− 1 ∈ πkOD \ πk+1OD (recall that π is a uniformizer of D). The
following are clear:

(i) Conjugate elements have the same degree.
(ii) Let 1 6= g ∈ G and α ∈ Zp. If α 6∈ pZp, then deg (gα) = deg (g), and if α ∈ pZp,

then deg (gα) > deg (g).
(iii) deg (gh) ≥ min{deg (g), deg (h)}, and equality holds whenever deg (g) 6= deg (h).

By Claim 9.3 we can construct an infinite sequence {hk ∈ G}∞k=1 such that deg (hk) >
deg (g0) for all k, deg (hk) → ∞ and (g0hk)

p 6= 1 for all k. Moreover, since gp0 = 1,
the element (g0hk)

p lies in the normal subgroup generated by hk, so we can ensure that
the sequence {deg ((g0hk)

p)}∞k=1 is strictly increasing simply by choosing hk of sufficiently
large degree (once all the previous elements have been chosen).

Let gk = g0hk, and suppose that G has finite NCC. Then there exist i 6= j such that
gi and gj lie in conjugates of the same procyclic subgroup 〈g〉. Thus there exist a, b ∈ G
and α, β ∈ Zp such that gai = gα and gbj = gβ. At least one of the p-adic numbers

6The result in [JT] is stated only for p = 2, but the proof works for all p.
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α
β and β

α lies in Zp, and without loss of generality we can assume that α
β ∈ Zp. Then

gai = gα = (gβ)
α
β = (gbj)

α
β . Hence gci = gγj for some c ∈ G and γ ∈ Zp, namely c = ab−1

and γ = α
β .

If γ ∈ pZp, we get an immediate contradiction since in this case deg (gγj ) > deg (gj) by

property (ii) above, while using (i), (ii) and (iii) we have deg (gj) = deg (g0) = deg (gi) =
deg (gci ). Thus, γ ∈ Zp \ pZp = Z×p . But then raising both sides of the equality gci = gγj to

the pth power, we get (gpi )
c = (gpj )

γ , whence using (i) and (ii) again deg (gpi ) = deg ((gpi )
c) =

deg ((gpj )
γ) = deg (gpj ). This contradicts our original hypothesis that the sequence deg (gpk)

is strictly increasing. �

10. Profinite groups with finite NCC

In this section we complete the proof of Theorem 1.5 by establishing the following result.

Theorem 10.1. Let G be a prosolvable group with finite NCC, and suppose that G(i) is
pronilpotent for some i. Then G is virtually pronilpotent.

Theorem 10.1 is a fairly easy consequence of the following proposition:

Proposition 10.2. Let G be a metabelian profinite group with finite NCC, and write G as
an extension 1→ A→ G→ C → 1 where both A and C are abelian. Let π : C → Aut(A)
be the map induced by the conjugation action of G on A. Then π(C) is finite.

We will first prove Theorem 10.1 assuming Proposition 10.2 and then prove Proposi-
tion 10.2.

Proof of Theorem 10.1. Let us consider the set of all pairs (H, k) where H is an open

subgroup of G and k ∈ Z≥0 is such that H(k) is pronilpotent (by hypotheses this set is
non-empty). Among all such pairs (H, k) choose one where k is minimal. Theorem 10.1
is equivalent to the assertion that k = 0.

First we assume that k ≥ 2 and consider the metabelian group Q = H/H(2). We claim
that Q is virtually procyclic. Indeed, Q has finite NCC (since H does), and hence by
Proposition 10.2 (applied with A = [Q,Q] and C = Q/[Q,Q]), Q has an open subgroup V
such that [V, [Q,Q]] = {1}. Thus, V is nilpotent of class ≤ 2. The fact that V (and hence
Q) is virtually procyclic can be proved by an easy direct argument, but it also follows
from the classification of groups with finite NCC in the pronilpotent case (Corollary 1.4)
which is already completed at this stage. Indeed, since open subgroups of groups of the
form SL1(D) are never nilpotent, in the notations of Corollary 1.4 applied to G = V , each
subgroup Hi must be finite or the prodihedral pro-2 group, so V is a product of finitely
many virtually procyclic groups of pairwise corime orders and hence V itself is vritually
procyclic.

Thus H has an open subgroup M whose image in Q is procyclic and in particular
abelian. Then [M,M ] ⊆ H(2), whence M (k−1) = [M,M ](k−2) ⊆ (H(2))(k−2) = H(k),

and so M (k−1) is pronilpotent. Since M is open in H and hence in G, this contradicts
minimality of k. Thus we proved that k ≤ 1.

Since k ≤ 1, the group K = [H,H] is pronilpotent. We will now use this fact to
prove directly that H (and hence G) is virtually pronilpotent. By Proposition 10.2 (ap-

plied exactly as earlier in the proof), Q = H/H(2) has an open subgroup V such that
[V, [Q,Q]] = {1}. Replacing V by V [Q,Q] (which does not affect the latter condition), we
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can assume that V ⊇ [Q,Q]. If U is the preimage of V in H, then U is an open subgroup

of H containing K = [H,H] such that [U, [H,H]] ⊆ H(2), that is, [U,K] ⊆ [K,K]. Then
γ3(U) = [U, [U,U ]] ⊆ [U,K] ⊆ [K,K].

A well-known theorem of P. Hall asserts that if X is a group which has a normal
nilpotent subgroup Y such that X/[Y, Y ] is nilpotent, then X itself is nilpotent (see, e.g.
[Ro, 5.2.10]). It is straightforward to extend this theorem to pronilpotent groups. We
know that K is pronilpotent, and we just showed that U/[K,K] is nilpotent of class ≤ 2.
Hence by Hall’s theorem U is pronilpotent. Since U is open in G, the proof is complete. �

Before proving Proposition 10.2, we need two more auxiliary results. The first one is
a theorem of Schur and Zassenhaus which is classical in the case of finite groups and
routinely extends to profinite groups.

Lemma 10.3 (Schur-Zassenhaus). Let P and Q be profinite groups of coprime orders.
Then any extension 1→ Q→ G→ P → 1 splits.

The next result must also be well known, but we include the proof for completeness.

Lemma 10.4. Let p and q be distinct primes. Let G = Qo C where C is a cyclic group
of order pn and Q is a (non-trivial) elementary abelian q-group. Suppose that the image

of C in Aut(Q) has order pk and Cp
k−1

acts on Q without (nonzero) fixed points. Then
G has no element of order pn−k+1q.

Proof. Suppose that xy ∈ G has order pn−k+1q where x ∈ Q and y ∈ C. Then y = cp
k−1

for some generator c of C. Let ϕ ∈ Aut(Q) be the conjugation by y. Then for any

m ∈ N we have (xy)m = ψm(x)ym where ψm(x) =
∏m−1
i=0 ϕi(x) (the order in the product

does not matter since Q is abelian). By our hypotheses ϕp = idQ while ϕ has no fixed
points on Q. The first condition implies that ψp(x) is fixed by ϕ, and hence the second

condition implies that ψp(x) = 1. Thus, (xy)p = yp = cp
k
, whence (xy)p

n−k+1
= cp

n
= 1,

a contradiction. �

We are finally ready to prove Proposition 10.2. For the convenience of the reader we
repeat the statement.

Proposition 10.2. Let G be a metabelian profinite group with finite NCC, and write G as
an extension 1→ A→ G→ C → 1 where both A and C are abelian. Let π : C → Aut(A)
be the map induced by the conjugation action of G on A. Then π(C) is finite.

Proof. First note that C is an abelian profinite group with finite NCC and hence virtually
procyclic. Replacing C by an open subgroup, we can assume from now on that C itself
is procyclic. Thus, C is a direct product of procyclic pro-p subgroups Cp. Each Cp is
either a cyclic group of order pnp for some np ∈ Z≥0 or isomorphic to Zp, in which case
we set np = ∞. Likewise A is a direct product of its Sylow pro-p subgroups Ap. Let
πp : C → Aut(Ap) be the map induced by the conjugation action of C on Ap.

We will prove that π(C) is finite in 3 steps. In Step 1 we will show that πp(C) is finite
for each p. Then in Step 2 we will show that π(Cp) is finite for each p. After establishing
two more auxiliary results (Claims 10.7 and 10.8) we will finally prove that π(C) is finite
in Step 3.

Before proceeding, we introduce some additional notations and make some simple ob-
servations.
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• Let dp = d(Ap) be the minimal number of generators of Ap. We will show that each
dp is finite (see Claim 10.5 below). Hence Vp = Ap/A

p
p is a vector space over Fp of

dimension dp. Let ρp : C → GL(Vp) be the composition of πp : C → Aut(Ap) with
the canonical map Aut(Ap) → GL(Vp), and let Kp be the kernel of the natural
projection πp(C)→ ρp(C).
• If P is any set of primes, define CP (resp. AP ) to be the subgroup of C (resp. A)

generated by all Cp (resp. Ap) with p ∈ P . Let FP be the full preimage of CP
under the natural projection G → C. Note that FP is always a normal subgroup
of G.
• Given two sets of primes P and Q, let GQ,P = FP /AQ′ where Q′ is the set of all

primes not in Q. Note that GQ,P can be written as an extension

1→ AQ → GQ,P → CP → 1

where for any p ∈ P, q ∈ Q the conjugation action of Cp on Aq coincides with the
corresponding action in G. Note that by Lemma 10.3, GQ,P = AQoCP whenever
P and Q are disjoint. Finally, by Lemma 2.1(i)(ii) we have

CC(GQ,P , G) ≤ CC(G,G) = NCC(G)

(the action of G on GQ,P is induced from the conjugation action of G on FP ).

Claim 10.5. Each dp is finite.

Proof. Fix a prime p, and let {Gi}∞i=1 be any descending chain of open normal subgroups
of G which form a base of neighborhoods of identity. Recall that Vp = Ap/A

p
p, and let

{Vp,i}i∈N be the filtration of Vp induced by {Gi}. Since Gi are open and normal in G, the
subspaces Vp,i are C-invariant and have finite codimension in Vp.

Suppose now that dp = ∞. Then we can find an infinite sequence i1 < i2 < · · · such
that the subspaces Vp,ik are all distinct. Choose vk ∈ Vp,ik \ Vp,ik+1

. Then the subspaces
Fpvi and Fpvj cannot be in the same C-orbit for i 6= j, so C acts on the set of 1-dimensional
subspaces of Vp with infinitely many orbits. On the other hand, the number of such orbits
is exactly CC(Vp, C), and by Lemma 2.1(i)(ii) CC(Vp, C) ≤ NCC(G). Since NCC(G) <∞,
we reached a contradiction. �

Claim 10.6. For each p, the group Kp is pro-p. Moreover, πp(C) is virtually pro-p and
|πp(Cq)| = |ρp(Cq)| for any prime q 6= p.

Proof. It will be convenient to write Ap additively (just in this proof). We first clarify the
definition of topology on Aut(Ap). It is well known that whenever H is a finitely gener-
ated profinite group, its automorphism group Aut(H) is also profinite (see, e.g. [DDMS,
Corollary 5.3]). Moreover, if {Un} is any chain of open characteristic subgroups of H
which form a base of neighborhoods of 1 (such {Un} exists since H is finitely generated),
the groups

Aut(H;Un) = {g ∈ Aut(H) : g(x) ≡ x mod Un for all x ∈ H}
form a base of neighborhoods of 1 in Aut(H). In our case H = Ap is an abelian pro-p
group which is finitely generated by Claim 10.5, so we can simply take Un = pnAp.

Recall that Kp is the kernel of the projection πp(C) → ρp(C), πp(C) ⊆ Aut(Ap)
and ρp(C) is the image of πp(C) in Aut(Ap/pAp). Thus in the above notations Kp ⊆
Aut(Ap; pAp), and so every element g ∈ Kp can be written as g = 1 + v where v is a
homomorphism from Ap to pAp. Then for every n ∈ N we have gp

n
= 1 + vn where vn
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maps Ap to pnAp. Based on the above description of the topology on Aut(Ap), this means
that gp

n → 1 as n → ∞. Therefore every finite quotient of Kp is a p-group. Since Kp is
profinite (being a closed subgroup of the profinite group Aut(Ap)), we can conclude that
Kp is pro-p.

Since dp is finite, ρp(C) is also finite and hence πp(C) is virtually pro-p. Finally, if q
is a prime different from p, the intersection πp(Cq) ∩Kp must be trivial since πp(Cq) is a
pro-q group. Therefore, |πp(Cq)| = |ρp(Cq)|. �

We proceed with the rest of the proof in several steps.

Step 1: Each πp(C) is finite. Suppose that πp(C) is infinite. Since πp(C) is virtually
pro-p, πp(Cp) must be infinite. Then Cp ∼= Zp (since Cp is procyclic). Also note that Ap is
infinite (in particular, non-trivial) since πp(C) ⊆ Aut(Ap). Thus we reach a contradiction
applying Lemma 2.6 with H = A.

Step 2: Each π(Cp) is finite. Once again, we will argue by contradiction, but this step is
more involved. After initial preparations we will apply Lemma 10.4 and then Lemma 2.8
to derive a contradiction.

Suppose that π(Cp) is infinite for some p. By Step 1, πq(Cp) is finite for all q. Since π(Cp)
embeds into the product

∏
q
πq(Cp), we must have an infinite sequence of primes q1, q2, . . .

such that |πqi(Cp)| → ∞ as i→∞ (otherwise, π(Cp) has finite exponent and therefore is
finite since by our initial assumption C and hence also Cp is procyclic). Without loss of
generality we can assume that p 6∈ {qi}. Also if we write |πqi(Cp)| = pmi , we can assume
that mi > 0 for all i and the sequence {mi} is strictly increasing.

Recall that |ρq(Cp)| = |πq(Cp)| for all q 6= p by Claim 10.6. Thus |ρqi(Cp)| = pmi for all

i. Let Wqi be the set of elements of Vqi fixed by Cp
mi−1

p . Note that Wqi is Cp-invariant.
Since qi 6= p, the representation of Cp on Vqi is completely reducible by Maschke’s theorem,
so we can decompose Vqi = Uqi ⊕Wqi where Uqi is Cp-invariant. Note that Uqi 6= 0 by
definition of mi. Moreover, if λqi(Cp) is the projection of ρqi(Cp) ⊆ GL(Vq) to GL(Uqi),
then |λqi(Cp)| = |ρqi(Cp)| = pmi .

Let us now fix k ∈ N, choose any M ≥ mk, and consider the group GQk,{p} where Qk =
{q1, q2, . . . , qk}. By Lemma 10.3, GQk,{p}

∼= (Aq1 × · · · × Aqk) o Cp and therefore GQk,{p}

projects onto (Vq1×· · ·×Vqk)oC̃p which, in turn, projects onto Rk = (Uq1×· · ·×Uqk)oC̃p
where C̃p = Cp/C

pM
p . The advantage of using Uqj rather than Vqj in the definition of Rk

is that Lemma 10.4 becomes applicable to the subgroup Uqj o C̃p (for any j).

Let c be a generator of C̃p. Since Cp ∼= Zp (otherwise, π(Cp) could not be infinite), c
has order pM . Define the integers e1, . . . , ek as follows:

e1 = pM−m1q1, e2 = pM−m2q1q2, . . . , ek = pM−mkq1q2 · · · qk.

All ei are orders of elements of Rk. Indeed, choose non-trivial elements yi ∈ Uqi for each
i. Then by assumption cp

mi acts trivially on Uqj for j ≤ i, so in particular commutes with

yj for j ≤ i and hence the element cp
miy1 · · · yi has order ei.

Moreover, we claim that ei is a maximal element order (see the definition in § 2.3).
Indeed, a quick verification shows that if some ei is not maximal, then Rk must contain

an element of order pM−mj+1qj for some j. Since Uqj o C̃p is a {p, qj}-Hall subgroup of
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Rk and is also normal, it contains all elements of order paqbj in Rk. Thus, Uqj o C̃p must

contain an element of order pM−mj+1qj , which contradicts Lemma 10.4.

Thus we showed that e1, . . . , ek are all maximal element orders of Rk and therefore
CC(Rk, C) ≥ k by Lemma 2.8. On the other hand, we have CC(Rk, C) ≤ NCC(G) by
Lemma 2.1(i)(ii). Since k is arbitrary, we again have a contradiction. This completes
Step 2.

Before finishing the proof, we establish two more auxiliary results. For each prime p
choose a Sylow pro-p subgroup Sp of G. Note that Sp contains Ap, and the image of Sp
in C is equal to Cp.

To avoid too much notation, for the rest of the proof the compositions of the maps
πp : C → Aut(Ap) and ρp : C → Aut(Vp) with the natural projection G → C will be
denoted by the same symbols (πp and ρp, respectively).

Claim 10.7. The following hold:

(a) Let q be a prime, 1 6= g ∈ Sq, and let J(g) be the set consisting of q and all primes
p 6= q such that g acts non-trivially on Vp. Then xg ≡ x mod AJ(g) for all x ∈ G.

(b) Let p and q be distinct primes, 1 6= g ∈ Sq and 1 6= h ∈ Sp. Then [g, h] ∈
AJ(g)∩J(h).

Proof. (a) Let I(g) be the set of all primes not in J(g), and take any p ∈ I(g). By
assumption p 6= q and ρp(g) is trivial, so πp(g) lies in Kp, the kernel of the projection
πp(G) → ρp(G). But Kp is a pro-p group while g is a pro-q element, so πp(g) must be
trivial as well.

Now let ϕ denote the conjugation by g. We just showed the following:

(*) ϕ is trivial on Ap for all p ∈ I(g).

For any x ∈ G we have ϕ(x) ≡ x mod A, so there exists some a ∈ AI(g) such that
ϕ(x) ≡ xa mod AJ(g). By (*) ϕ fixes a. Thus, applying ϕ to both sides we get

ϕ2(x) ≡ ϕ(x)a ≡ xa2 mod AJ(g),

and by routine induction ϕk(x) ≡ xak mod AJ(g) for all k ∈ N.

Now let N be any open normal subgroup of G. Since g is a pro-q element, ϕ induces

an automorphism of order qi on G/N for some i ∈ Z≥0. Thus, xaq
i ≡ x mod AJ(g)N .

Equivalently, aq
i ≡ aq mod N for some aq ∈ AJ(g). Let αq (resp. α) be the projection of

aq (resp. a) to G/N . Then αq
i

= αq. Since αq is a pro-J(g) element and α is a pro-I(g)
element, by Observation 2.5(c) we must have α = αq = 1, so a ∈ N . Since N is arbitrary,
it follows that a = 1, so ϕ(x) ≡ x mod AJ(g) as desired.

(b) follows directly from (a) since [g, h] = g−1gh = (h−1)gh. �

We will use the next claim to prove that π(C) is finite by contradiction.

Claim 10.8. Assume that π(C) is infinite. Then there exist two infinite disjoint sets of
primes Q = {q1, q2, . . .} and P = {p1, p2, . . .} such that each Cpi acts non-trivially on Aqi
and trivially on Aqj for all j 6= i.

Proof. It will be convenient to use the following terminology. A prime p will be called

• passive if Cp acts trivially on all Aq;
• isolated if Cp acts non-trivially on Ap, but trivially on Aq for all q 6= p;
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• active otherwise, that is, if Cp acts non-trivially on Aq (and hence also on Vq) for
some q 6= p.

We construct the sets Q and P inductively. Suppose that for some k ∈ Z≥0 we con-
structed distinct primes q1, q2, . . . , qk and p1, p2, . . . , pk satisfying the above conditions for
i, j ≤ k. Our goal is to add qk+1 and pk+1 preserving the same conditions (the base case
k = 0 is vacuously true).

Let U be the set containing all pi and qi for i ≤ k as well as all primes p such that
either Cp acts non-trivially on Aqi or Api for some i ≤ k or Cpi acts non-trivially on Ap
for some i ≤ k. By Steps 1 and 2, U is finite.

Since π(Cp) is finite for each p by Step 2 while π(C) is infinite, there must exist infinitely
many primes p 6∈ U such that Cp acts non-trivially on A, that is, p is active or isolated.
If at least one p 6∈ U is active, then Cp acts non-trivially on Aq for some q 6= p, and by

construction q 6∈ {pi, qi}ki=1 as well, so we can set pk+1 = p and qk+1 = q, completing the
induction step.

Thus the only remaining possibility (which we will eventually rule out) is that

(**) there are no active primes outside of U and infinitely many isolated primes r1, r2, . . .
outside of U .

By definition Cri acts non-trivially on Ari and trivially on Aq for all q 6= ri.

(***) It is possible that Cp acts non-trivially on Ari for some p 6= ri; however, any such
p must be active and hence by (**) must lie in U .

Now for each prime t set S̃t = St if t 6∈ U and S̃t = Kerπ∩St if t ∈ U and let H =
∏
t
S̃t.

Even though S̃t need not be normal, it is straightforward to check that H is a group
independent of the order in which the product is taken since H clearly contains A and

G/A is abelian. It is also clear that S̃t is a t-Sylow subgroup of H. Since π(St) is finite
for each t by Step 2 and U is finite, H is an open subgroup of G and hence NCC(H) <∞
by Lemma 2.2.

Let r 6∈ U be an isolated prime. We claim that the r-Sylow Sr = S̃r commutes with the

t-Sylow S̃t for all t 6= r and thus S̃r is a direct factor of H. Indeed, take any 1 6= g ∈ Sr
and 1 6= h ∈ S̃t, t 6= r. Then using the notations from Claim 10.7(a) we have J(g) = {r}
(since r is isolated) and r 6∈ J(h) – the latter holds by definition of S̃t if t ∈ U and by
(***) if t 6∈ U . Hence J(g) ∩ J(h) = ∅ and so [h, g] = 1 by Claim 10.7(b).

Thus, we proved that each Sri is a direct factor of H, and since Sri is an ri-Sylow

subgroup of H, the product
∞∏
i=1

Sri is also a direct factor of H. Hence by Lemma 2.3,

NCC(H) ≥
∞∏
i=1

NCC(Sri). By definition of an isolated prime each Sri is non-abelian

whence NCC(Sri) ≥ 2. This is impossible since NCC(H) <∞. Thus we proved Claim 10.8.
�

We proceed with the proof of Proposition 10.2.

Step 3: We now prove that π(C) is finite by contradiction. Suppose that π(C) is infinite,
and let Q = {q1, q2, . . .} and P = {p1, p2, . . .} be as in the conclusion of Claim 10.8.
Fix k ∈ N, let Qk = {q1, . . . , qk}, Pk = {p1, . . . , pk} and consider the group GQk,Pk =
AQk o CPk . If we view Cpi with 1 ≤ i ≤ k as a subgroup of GQk,Pk , then by construction
Cpi commutes with Aqj for i 6= j. Hence the subgroups Gpi,qi = Aqi o Cpi , 1 ≤ i ≤ k
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pairwise commute and GQk,Pk decomposes as a direct product GQk,Pk =
k∏
i=1

Gpi,qi . By

Lemma 2.1 and Lemma 2.3 we have NCC(G) ≥ CC(GQk,Pk , G) ≥
∏k
i=1 CC(Gqi,pi , G).

Since k is arbitrary, to get a contradiction it suffices to show that CC(Gqi,pi , G) ≥ 2 for
each i.

Fix i. Recall that Vqi = Aqi/A
qi
qi and ρqi(Cpi) is the image of Cpi in Aut(Vqi). Suppose

that ρqi(Cpi) has order pmii (we have mi > 0 since Cpi acts non-trivially on Vqi), and let

R = Vqi o (Cpi/C
p
mi
i
pi ). Note that R is a quotient of Gpi,qi , so it suffices to show that

C(R,G) ≥ 2. We consider 2 cases:

Case 1: C
p
mi−1
i
pi fixes a non-trivial element v ∈ Vqi . By definition of mi some w ∈ Vqi is

not fixed by C
p
mi−1
i
pi . Hence the cyclic subgroups 〈v〉 and 〈w〉 of R lie in different orbits of

G, so CC(Vqi , G) ≥ 2 and thus CC(R,G) ≥ 2 by Lemma 2.1(i).

Case 2: C
p
mi−1
i
pi does not fix any non-trivial element of Vqi . Then by Lemma 10.4 R has

no element of order pmii qi. Thus, if m is the largest integer such that R has an element of
order pmi qi (possibly m = 0), then m < mi, so pmi qi and pmii are both maximal element
orders of R. Hence CC(R,G) ≥ 2 by Lemma 2.8, which finishes the proof. �

11. Profinite groups with (BVC)

11.1. Variations of finiteness of NCC and connections with topology. The fol-
lowing terminology was introduced in [vPW2]:

Definition. A discrete or profinite group G has property (bCyc) if G has finite NCC.

In this subsection we will introduce two variations of property (bCyc) denoted (bVC)
and (BVC) and discuss how they are related to (bCyc) and to each other. We will then
explain how properties (bCyc) and (BVC) naturally arise in the study of certain classifying
spaces for families of subgroups.

We start with a very general definition.

Definition. Let G be a group and let F be a class of groups closed under isomorphisms
and subgroups. We will say that

(i) G has property (bF) if there exist finitely many subgroups of G which lie in F and
whose conjugacy classes cover G.

(ii) G has property (BF) if there exist finitely many subgroups H1, . . . ,Hk of G which
lie in F and such that every subgroup of G lying in F is conjugate to a subgroup
of Hi for some i.

When G is discrete, we will be interested in these properties primarily for the classes
Cyc of all cyclic groups and V C of all virtually cyclic groups (so the previously introduced
property (bCyc) is precisely (bF) for F = Cyc). Note that properties (bCyc) and (BCyc)
are obviously equivalent. The notation (BVC) was introduced in [GW], while properties
(bCyc) and (bVC) were formally introduced in [vPW2] (the notation for (bVC) in [vPW1]
is (bVCyc)).

We define properties (bCyc)=(BCyc), (BVC) and (bVC) for profinite groups in the
obvious way, replacing cyclic (resp. virtually cyclic) groups by procyclic (resp. virtually
procyclic) in the above definition.
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The following observation is immediate from definitions.

Observation 11.1. The following hold:

(a) If F contains all cyclic groups, then (BF) implies (bF).
(b) If F1 ⊆ F2, then (bF1) implies (bF2).
(c) If F is closed under quotients, then any quotient of a group with (bF) has (bF).

Thus either of the properties (BVC) and (BCyc)=(bCyc) implies (bVC). Somewhat
surprisingly, (BVC) is not inherited by quotients, and (bCyc) does not imply (BVC) (see
Example 1.12 and Corollary 4.22 in [vPW1]). There are plenty of groups which have
(BVC), but not (bCyc), e.g. any virtually cyclic group which is not finite, cyclic or
infinite dihedral. However, discrete torsion-free groups with (BVC) have (bCyc) since a
torsion-free virtually cyclic group must be cyclic. The latter holds, for instance, since any
infinite virtually cyclic group V has a unique maximal finite normal subgroup N such that
V/N is infinite cyclic or infinite dihedral [JPL, Proposition 4].7 Further, residually finite
groups with (BVC) are not far from having (bCyc):

Lemma 11.2. Let G be a discrete residually finite (resp. profinite) group with (BVC).
Then some finite index (resp. open) subgroup H of G has (bCyc).

Proof. Lemma 11.2 in the discrete case has already been established [vP, Lemma 5.0.2],
but for completeness we repeat the argument. So let G be a discrete residually finite group
which has (BVC) and hence also (bVC). Since virtually cyclic groups have finitely many
conjugacy classes of torsion elements (e.g. by [JPL, Proposition 4] stated above), the same
is true of G; let us denote such conjugacy classes in G by K1, . . . ,Km. Since G is residually
finite, it has a finite index normal subgroup H which intersects each Ki trivially. Then H
is a torsion-free group with (bVC), and as we already observed, for discrete torsion-free
groups (bVC), (BVC) and (bCyc) are all equivalent.

The argument in the profinite case is even easier. Suppose that G is a profinite group
with (BVC) and V1, . . . , Vn the virtually procyclic subgroups exhibiting (BVC). For each
i let Ci be an open procyclic subgroup of Vi. Since the topology on Vi is induced from G,
there exist open subgroups Hi of G such that Ci = G∩Hi. The subgroup ∩Hi is open and
hence (since G is compact) contains an open normal subgroup H. It is now straightforward
to check that H is covered by the conjugacy classes of the procyclic subgroups (Vi ∩H)t

where t ranges over some transversal of H in G, so H has (bCyc). �

In view of Lemma 11.2, Theorem 1.1 yields a complete characterization of discrete
residually finite groups with (BVC) – these are precisely virtually cyclic groups. Like-
wise Theorem 1.5 implies that any profinite group with (BVC) has an open pronilpotent
subgroup with (bCyc) (recall that such groups are completely classified by Theorem 1.3
and Corollary 1.4). We will prove that the latter property actually characterizes profinite
groups with (BVC):

Theorem 11.3. A profinite group has (BVC) if and only if it has an open pronilpotent
subgroup with (bCyc).

In view of Theorem 1.5, this implies that (bCyc) implies (BVC) for profinite groups.
Theorem 11.3 will be proved in the next subsection.

7More generally, Stallings proved that virtually free torsion-free discrete groups must be free.
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Connection with topology. Property (BF) naturally arises in the study of the classi-
fying space EF (G) defined as follows:

Definition. Let G be a discrete group and let F be as above. A classifying space EF (G) is
a G-CW complex (that is, a CW complex with a cellular action of G) such that for every
subgroup H of G, the H-fixed point space EF (G)H is empty if H 6∈ F and contractible (in
particular, non-empty) if H ∈ F .

It is known that EF (G) is unique up to G-homotopy.

A G-CW complex is said to be finite type if it has finitely many G-orbits of cells in
each dimension and finite if it is of finite type and finite-dimensional. Juan-Pineda and
Leary [JPL, Conjecture 1] conjectured that a classifying space EV C(G) cannot be finite
unless G is virtually cyclic. A similar question of Lück, Reich, Rognes and Varisco [LRRV,
Question 4.9] asks whether ECyc(G) cannot be of finite type unless G is finite, cyclic or
dihedral.

The following result establishes the basic relation between property (BF) for G and the
classifying space EF (G):

Claim 11.4. G admits EF (G) with finitely many 0-cells if and only if G has (BF).

Claim 11.4 in the case F = V C is Lemma 1.3 in [vPW1]. The proof in the general case
is identical.

Corollary 11.5. Let G be a residually finite group. Then

(a) [JPL, Conjecture 1] holds for G and
(b) [LRRV, Question 4.9] has positive answer for G.

Proof. Suppose that ECyc(G) has finite type. Then by Claim 11.4 G has (BCyc)=(bCyc),
so (b) follows directly from Theorem 1.1. To prove (a) we use the same argument in
conjunction with Lemma 11.2. �

11.2. Proof of Theorem 11.3. The forward direction in Theorem 11.3 is a direct conse-
quence of Theorem 1.5 and Lemma 11.2 (recall that by definition a group G has (bCyc) if
and only if NCC(G) <∞). To establish the backwards direction we need several auxiliary
results.

Lemma 11.6. Let D be a quaternion division algebra over F = Qp and G an open
subgroup of PGL1(D). Then G has (BVC).

Proof. Since (BVC) is inherited by open subgroups, it suffices to prove the result for
G = PGL1(D).

(i) Since G is a compact p-adic analytic group, it has finitely many conjugacy classes
of finite subgroups [DDMS, Theorem 4.23].

Thus, in the proof of (BVC) we only need to consider infinite virtually procyclic subgroups.
We claim that

(ii) If K is any maximal subfield of D, then StabG(K) (the stabilizer of K under the
natural conjugation action of G on D) is virtually procyclic. (Note that since
deg (D) = 2, any subfield of D properly containing F = Qp is maximal.)

(iii) Any infinite virtually procyclic subgroup of G is contained in StabG(K) for some
maximal subfield K.
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As we already observed in § 7, the action of G on the setMF(D) of maximal subfields
of D has finitely many orbits, so there are finitely many conjugacy classes of subgroups of
the form StabG(K), with K a maximal subfield. Therefore, (i), (ii) and (iii) would imply
that G has (BVC).

Let K be a maximal subfield. In the proof of Theorem 7.15(2), we already showed that
StabG(K) contains K×/F× as a subgroup of index 2. Since K×/F× is virtually procyclic
by Corollary 7.13, it follows that StabG(K) is also virtually procyclic. Thus we proved
(ii).

We turn to the proof of (iii). Let H be an infinite virtually procyclic subgroup of G,
and let C be a non-trivial normal procyclic subgroup of H (which is also infinite and in

particular non-trivial). Let H̃ and C̃ be the preimages of H and C in GL1(D), respectively.

Since C is non-trivial procyclic and the kernel of the map C̃ → C is central, C̃ is a
commutative subset of D not contained in F and hence generates some maximal subfield

K. Since H̃ normalizes C̃, it must be contained in Stab
G̃

(K), and hence H ⊆ StabG(K),
as desired. �

Definition. We will say that profinite groups A and B have virtually coprime orders if
they have open subgroups C and D, respectively, whose orders are coprime.

Lemma 11.7. Let G1, . . . , Gk be profinite groups whose orders are pairwise virtually co-
prime, and suppose that each Gi has (BVC). Then G = G1 × · · · ×Gk also has (BVC).

Proof. For each 1 ≤ i ≤ k let {Hi,j}nij=1 be a finite collection of virtually procyclic sub-

groups of Gi which exhibits (BVC).
Let V be any virtually procyclic subgroup of G, and let Vi be the projection of V onto

Gi. Then each Vi is procyclic and thus must be contained in Hgi
i,ji

for some 1 ≤ ji ≤ ni

and gi ∈ Gi. Then V is contained in V ′ = V1×· · ·×Vk, while V ′ is contained in H(g1,...,gk)

where H = H1,j1 × · · · ×Hk,ik . Since each Hi,ji is virtually procyclic and G1, . . . , Gk have
pairwise coprime orders, H is also virtually procyclic. Since there are only finitely many
possiblities for H, we proved that G has (BVC). �

Lemma 11.8. Let G be a profinite group and N a closed normal subgroup of G. Suppose
that G/N has (BVC), the orders of N and G/N are virtually coprime, and there exists an
open subgroup H of G such that N ∩H is procyclic and central in H. Then G has (BVC).

Proof. Let Q1, . . . , Qm be a finite collection of virtually procyclic subgroups of G/N which
exhibits (BVC), and let π : G→ G/N be the natural projection.

Now let V be any virtually procyclic subgroup of G. Then π(V ) is a virtually procyclic
subgroup of G/N . By assumption π(V ) is conjugate to a subgroup of Qi for some i,
whence V ⊆ π−1(π(V )) is conjugate to a subgroup of Gi = π−1(Qi). To finish the proof
we just need to explain why each Gi is virtually procyclic.

Since N and Gi/N have virtually coprime orders and Gi/N ∼= Qi is virtually procyclic,
after making the subgroup H in the statement of Lemma 11.8 smaller if needed, we can
assume that for each i the groups N ∩H and (Gi ∩H)/(N ∩H) have coprime orders and
(Gi ∩ H)/(N ∩ H) is procyclic. Since by assumption, N ∩ H is procyclic and central in
H, it follows that Gi ∩H is procyclic, whence Gi is virtually procyclic, as desired. �

We are now ready to prove the backwards direction of Theorem 11.3:
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Proof. Let G be a profinite group which has an open pronilpotent subgroup H with (bCyc).

By Corollary 1.4, H = C ×
∏k
i=1Hi where C is a procyclic group and there exist distinct

primes p1, . . . , pk not dividing |C| such that each Hi is a non-procyclic pro-pi group with
(bCyc). By Theorem 1.3 each Hi is

(i) finite,
(ii) infinite prodihedral (if pi = 2) or
(iii) isomorphic to an open subgroup of PGL1(Di) where Di is the quaternion division

algebra over Qpi .

Making H smaller if needed, we can assume that case (iii) occurs for all i (if an infinite
prodihedral subgroup, say Hi, is present, we can first replace it by H ′i

∼= (Z2,+) and then
replace C by C ×H ′i which will still be procyclic).

Now let U = H1 × · · · × Hk, so that H = C × U . It is straightforward to check
that U is characteristic in H, so the conjugation action of G on itself induces a map
ι : G→ Comm(U) (where as before Comm(U) is the commensurator of U).

It is routine to check that Comm(U) = Comm(H1) × · · · × Comm(Hk). As shown in
the proof of Proposition 9.1, Comm(Hi) ∼= PGL(Di) for each i. Thus, Comm(Hi) has
(BVC) by Lemma 11.6. Moreover, the isomorphisms Comm(Hi) ∼= PGL(Di) imply that

(a) the groups {Comm(Hi)} have pairwise virtually coprime orders, whence Comm(U)
has (BVC) by Lemma 11.7 and

(b) ι(G) is open in Comm(U), whence by (a) ι(G) also has (BVC).

Finally, it is clear that Ker ι∩H = C, so Ker ι∩H is procyclic and central in H and the
orders of Ker ι and ι(G) are virtually coprime. Hence G has (BVC) by Lemma 11.8. �
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