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Abstract. Let R be a finitely generated commutative ring with 1, let A be an inde-
composable 2-spherical generalized Cartan matrix of size at least 2 and M = M(A) the
largest absolute value of a non-diagonal entry of A. We prove that there exists an integer
n = n(A) such that the Kac-Moody group GA(R) has property (T ) whenever R has no
proper ideals of index less than n and all positive integers less than or equal to M are
invertible in R.

1. Introduction

Kac-Moody groups can be thought of as infinite-dimensional analogues of Chevalley
groups or algebraic groups. Over the last two decades they have attracted a lot of at-
tention from mathematicians working in many different areas. Kac-Moody groups were
shown to have a deep and interesting structure theory; at the same time they provided an
excellent source of test examples for various conjectures and helped settle open problems
in geometric group theory, Lie theory and related areas (see, e.g., [CR2, Re] and references
therein). Most of the results obtained so far deal with Kac-Moody groups over fields, with
the case of finite fields proving to be particularly interesting. At the same time, the subject
of Kac-Moody groups over rings remains a largely uncharted territory, so much so that
even the “right” definition over non-fields is yet to be agreed on.

Kac-Moody groups over rings in the sense of this paper are defined very explicitly
by generators and relations. This is the definition used, for instance, in recent papers of
Allcock [Al1, Al2]; see § 2 for a brief discussion of other possible definitions and connections
between them. Given a generalized Cartan matrix A, let Φ = Φ(A) be the associated
system of real roots. For an arbitrary commutative ring R (with 1), the corresponding
simply-connected Kac-Moody group GA(R) is the group generated by the root subgroups
{Xα}α∈Φ, each of which is isomorphic to the additive group ofR, modulo certain Steinberg-
type relations.1 In particular, if A is a matrix of finite (spherical) type and R is a field,
GA(R) is the corresponding Chevalley group with its standard Steinberg presentation.
It is easy to see that the obtained correspondence R 7→ GA(R) is functorial and for
any epimorphisms of rings R → S the corresponding map GA(R) → GA(S) is also an
epimorphism.

The main goal of this paper is to establish a sufficient condition for Kac-Moody groups
over rings to have Kazhdan’s property (T ). The first results on property (T ) for (non-
spherical and non-affine) Kac-Moody groups are due to Dymara and Januszkiewicz [DJ]
who proved that the group GA(F ) has property (T ) for any indecomposable 2-spherical
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generalized Cartan matrix A and any finite field F satisfying |F | > 1764d(A), where d(A)
denotes the size of A. In [Op1], Oppenheim obtained a quantitative improvement of this
result, replacing exponential bound in d(A) by a polynomial (in fact, quadratic) one; see
also [Op2] where a generalization of property (T) dealing with affine isometric actions on
Banach spaces is established under similar restrictions on F . It does not seem possible to
extend those proofs to groups over non-fields since both arguments make essential use of
the action of Kac-Moody groups on the associated buildings, which can only be constructed
in the case of fields.

In [EJ], an algebraic counterpart of the method from [DJ] was used to establish property
(T ) for “unipotent subgroups” of Kac-Moody groups over finite rings. The “positive
unipotent subgroup” G+

A(R) of the Kac-Moody group GA(R) is defined to be the subgroup
of GA(R) generated by positive root subgroups. In [EJ], it was shown that the group
G+
A(R) has property (T ) for any indecomposable 2-spherical d × d generalized Cartan

matrix A with simply-laced Dynkin diagram and any finite commutative ring R with 1
which has no proper ideals of index less than (d − 1)2. The abelianization of the group
G+
A(R) is isomorphic to a direct sum of several copies of (R,+), whence G+

A(R) cannot
possibly have property (T ) if R is infinite. However, it turns out that the techniques from
[EJ] can be used to prove property (T ) for the full Kac-Moody group GA(R) over an
arbitrary finitely generated commutative ring R under a similar restriction on indices of
ideals in R:

Theorem 1.1. Let A = (aij) be an indecomposable 2-spherical generalized Cartan matrix
of size d ≥ 2, let M = M(A) = max{|aij | : i 6= j} = max{−aij : i 6= j} be the largest
absolute value of a non-diagonal entry of A (the assumptions on A imply that 1 ≤M ≤ 3).
Define the integer n = n(A) as follows:

(i) n = (2d− 2)2 if M = 1 (equivalently, the Dynkin diagram of A is simply-laced)
(ii) n = 3(2d−2)4 if M = 2 (equivalently, the Dynkin diagram of A has a double edge,

but no triple edges)
(iii) n = 188(2d − 2)16 if M = 3 (equivalently, the Dynkin diagram of A has a triple

edge)

Let R be any finitely generated commutative ring with 1 which does not have proper ideals
of index less than n and such that every positive integer ≤M is invertible in R. Then the
Kac-Moody group GA(R) has Kazhdan’s property (T ).

As a simple corollary of this theorem, we deduce a uniform bound for Kazhdan con-
stants (with respect to generating sets of bounded size) for Kac-Moody groups of a fixed
indecomposable 2-spherical type over finite fields of sufficiently large characteristic:

Corollary 1.2. Let A be an indecomposable 2-spherical generalized Cartan matrix of size
d ≥ 2, and let n = n(A) be defined as in Theorem 1.1. There exist an integer k = k(A)
and a real number ε = ε(A) > 0 with the following property: for any finite field F with
char(F ) > n there exists a finite generating set S(F ) of GA(F ) with |S(F )| ≤ k such
that κ(GA(F ), S(F )) ≥ ε where κ(GA(F ), S(F )) is the Kazhdan constant of GA(F ) with
respect to S(F ).

We do not know if the above result remains true if a lower bound on characteristic of
F is replaced by a lower bound on its size, even if we assume that A is simply-laced. To
prove the corollary observe that the ring Rn = Z[ 1

n! , t] (the ring of polynomials in one

variable over Z[ 1
n! ]) has no ideals of index less than n and surjects onto any finite field

of characteristic larger than n. Therefore, for any finite field F with char(F ) > n there
exists a natural epimorphism π : GA(Rn) → GA(F ). If S is any finite generating set for
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GA(Rn) and S(F ) is its image in GA(F ), we get κ(GA(F ), S(F )) ≥ κ(GA(Rn), S), and
κ(GA(Rn), S) > 0 since GA(Rn) has property (T ) by Theorem 1.1.

Another interesting result on property (T ) for Kac-Moody groups was obtained by
Hartnick and Köhl [HK] who proved that for any local field F and any indecomposable
2-spherical d× d generalized Cartan matrix A, with d ≥ 2, the group GA(F ) has property
(T ) when considered as a topological group with the Kac-Peterson topology. We will give
an alternative proof of this theorem in § 5.

Organization: In § 2 we recall basic properties of Kac-Moody root systems and define
Kac-Moody groups over commutative rings. In § 3 we collect background information on
property (T ). In § 4 we establish some auxiliary results on orthogonality constants in
Chevalley groups of rank 2 (see § 3 for the definition of orthogonality constants). In § 5
we prove Theorem 1.1 as well as its variation dealing with “pseudo-parabolic” subgroups
and give a new proof of the theorem of Hartnick and Köhl mentioned above.

Convention: All rings considered in this paper are assumed to be unital.

Acknowledgments. We are grateful to Pierre-Emmanuel Caprace for useful feedback
and for suggesting a much simpler proof of Theorem 5.4. We would also like to thank
Zezhou Zhang for suggesting a stronger version of Theorem 5.2 and providing useful ref-
erences.

2. Preliminaries on Kac-Moody groups

In this section we recall basic properties of Kac-Moody root systems, define Kac-Moody
groups over rings and state some basic facts about them. Note that Kac-Moody groups
can be defined without an explicit reference to Kac-Moody Lie algebras even though Lie
algebras are needed to establish some key properties of Kac-Moody groups. For more
details we refer the reader to the book of Kac [Kac] and recent paper of Allcock [Al1].

2.1. Kac-Moody root systems. Let A = (aij) be a generalized Cartan matrix (abbre-
viated below as GCM), that is, a square matrix satisfying the following conditions:

(a) aij ∈ Z for all i, j (b) aii = 2 for all i

(c) aij ≤ 0 if i 6= j (d) aij = 0 ⇐⇒ aji = 0.

For the rest of the section we fix a GCM A with entries aij and let d denote its size.
Denote by ∆ = ∆(A) the root system of the complex Kac-Moody Lie algebra g = g(A)

associated to A and by Φ = Φ(A) the set of real roots in ∆. We shall not use ∆ or g in
this paper, so we will define Φ directly in terms of A.

Let Q = ⊕di=1Zαi and Q∨ = ⊕di=1Zα∨i be free abelian groups of rank d with bases
Π = {α1, . . . αd} and Π∨ = {α∨1 , . . . α∨d }. Define the bilinear pairing 〈·, ·〉 : Q∨×Q→ Z by
〈α∨i , αj〉 = aij . For each 1 ≤ i ≤ d define the map si ∈ Aut (Q) by si(x) = x− 〈α∨i , x〉αi;
in particular si(αj) = αj − aijαi.

Let W = 〈s1, . . . , sd〉 be the subgroup of Aut (Q) generated by {si}di=1, and define
Φ = W (Π) to be the union of W -orbits of Π. It is not hard to check that the group W
is a Coxeter group; it is called the Weyl group of A. The elements of Π are called simple
roots, and elements of Φ are called real roots; we will refer to real roots just as roots in this
paper since we will never deal with imaginary roots. As in the case of finite root systems,
every root is a linear combination of simple roots with all coefficients non-negative or all
coefficients non-positive; roots are called positive and negative, accordingly. The sets of
positive and negative roots will be denoted by Φ+ and Φ−, respectively.
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The Weyl group W has unique action on Q∨ such that 〈wα∨i , wαj〉 = 〈α∨i , αj〉. For each
root α ∈ Φ define α∨ ∈ Q∨ as follows: choose 1 ≤ i ≤ d and w ∈ W such that α = wαi
and define α∨ = wα∨i ; this definition does not depend on the representation of α as wαi.
Define sα ∈ Aut (Q) by sα(β) = β − 〈α∨, β〉α. It is easy to see that swα = wsαw

−1 for all
α ∈ Φ, w ∈W ; in particular this implies that each sα ∈W .

Definition 2.1. Given a subset I of {1, . . . , d}, we let AI be the |I|× |I| matrix (aij)i,j∈I .
Matrices of the form AI will be called submatrices of A.

Definition 2.2. Let A be a GCM.

(i) A is called indecomposable if there is no partition {1, . . . , d} = I t J with I, J 6= ∅
such that aij = 0 for all i ∈ I, j ∈ J .

(ii) A is called spherical (or finite) if it is positive definite.
(iii) A is called affine if A is positive semi-definite and all of its proper indecomposable

submatrices are spherical.
(iv) Given an integer 2 ≤ k ≤ d, the matrix A is called k-spherical if for every I ⊆

{1, . . . , k} with |I| = k, the submatrix AI is spherical. This is equivalent to saying
that for any such I the subgroup 〈si : i ∈ I〉 of W is finite.

It is easy to see that A = (aij) is 2-spherical if and only if aijaji ≤ 3 for all i 6= j.

Definition 2.3. A pair of roots α, β in Φ is called prenilpotent if there exist w,w′ ∈ W
such that wα,wβ ∈ Φ+ and w′α,w′β ∈ Φ−.

In the following proposition we collect some well-known properties of prenilpotent pairs
which will be used in this paper.

Proposition 2.4. Let α, β ∈ Φ with β 6= −α. The following hold:

(a) {α, β} is prenilpotent if and only if the set (Nα+ Nβ) ∩ Φ is finite.
(b) The numbers 〈α∨, β〉 and 〈β∨, α〉 are both positive, both negative or both zero.
(c) If 〈α∨, β〉 ≥ 0, then {α, β} is prenilpotent, and moreover (Nα+Nβ)∩Φ ⊆ {α+β},

that is, α+ β is the only possible root in Nα+ Nβ.
(d) Assume that 〈α∨, β〉 < 0. Then the following are equivalent:

(i) {α, β} is prenilpotent;
(ii) 〈sα, sβ〉 is finite;

(iii) 〈α∨, β〉 · 〈β∨, α〉 ≤ 3.

Proof. (a) holds by [KP2, Proposition 4.7]. Note that in [KP2] the result is proved under
the additional hypothesis that α, β ∈ Φ+; however, (a) easily follows from this special
case. Indeed, both conditions in (a) do not change if we replace {α, β} by {wα,wβ} for
some w ∈ W . Since β 6= −α, it is easy to see that there exists w ∈ W such that wα and
wβ are both positive or both negative. In the former case we are reduced to the situation
in [KP2], and in the latter case we use the obvious fact that {γ, δ} is prenilpotent if and
only if {−γ,−δ} is prenilpotent.

(b) holds, for example, by [KP1, p.139] (see the argument after Lemma 1.2).
(c) follows from (a) and [KP2, Lemma 2.1(c)(ii)] (using the same remark as in the proof

of (a)). Finally, (d) follows from the proof of [KP2, Proposition 4.7]. �

Finally, recall the notion of the Dynkin diagram of A, which we will denote by Dyn(A).
We define Dyn(A) to be a graph with vertex set Π = {α1, . . . , αd}, where αi and αj (for
i 6= j) are connected by aijaji edges. Given a subset I of {1, . . . , d}, we denote by DynI(A)
the full subgraph of Dyn(A) on the vertex set {αi : i ∈ I}. We will refer to DynI(A) as a
Dynkin subdiagram.
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2.2. Definition of Kac-Moody groups over rings. In this subsection we define Kac-
Moody groups over rings by certain presentations by generators and relators. Our defini-
tion is easily seen to be equivalent to the one in Allcock’s paper [Al1].

Let A be a GCM and R a commutative ring with 1. Define the Kac-Moody group
GA(R) to be the group with generators {xα(r) : α ∈ Φ, r ∈ R} subject to relations (R1)-
(R7) below. In those relations r, u ∈ R and α, β ∈ Φ are arbitrary unless a restriction is
explicitly imposed. The signs in the relations (R3) are not canonical and depend on the
choice of a Chevalley basis for the Kac-Moody Lie algebra associated to A (see [Ti, 3.2]
for details).

(R1) xα(r + u) = xα(r)xα(u)
(R2) If {α, β} is a prenilpotent pair, then

[xα(r), xβ(u)] =
∏
i,j≥1

xiα+jβ(Cijαβr
iuj)

where the product on the right hand side is over all pairs (i, j) ∈ N×N such that iα+jβ ∈
Φ, in some fixed order, and Cijαβ are integers independent of R (but depending on the
order). Note that the product is finite by Proposition 2.4(a).

For 1 ≤ i ≤ d and r ∈ R× set

s̃i(r) = xαi(r)x−αi(−r−1)xαi(r), s̃i = s̃i(1) and hi(r) = s̃i(r)s̃
−1
i .

The remaining relations are
(R3) s̃ixα(r)s̃−1

i = xsiα(±r)
(R4) hi(r)xα(u)hi(r)

−1 = xα(ur〈α
∨
i ,α〉) for r ∈ R×

(R5) s̃ihj(r)s̃
−1
i = hj(r)hi(r

−aji) for r ∈ R×
(R6) hi(ru) = hi(r)hi(u) for r, u ∈ R×
(R7) [hi(r), hj(u)] = 1 for r, u ∈ R×

Remark 2.5. (a) Even though it is not obvious from the above relations, one can show
that the Kac-Moody group GA(R) can be defined directly in terms of the root system Φ,
without explicit reference to A. In view of this, we will occasionally write GΦ(R) instead
of GA(R).

(b) The subgroup W̃ = 〈s̃i : 1 ≤ i ≤ d〉 of GA(F ) is usually not isomorphic to W ;

however, there is always an epimorphism W̃ → W which sends s̃i to si for each i, whose
kernel is a finite group of exponent ≤ 2.

Groups GA(R) given by the above presentation first appeared in Tits’ paper [Ti]; how-
ever, they are not called Kac-Moody groups in [Ti]. Instead Tits defines a Kac-Moody
functor (corresponding to a fixed GCM A), which we denote by GT its

A , to be a functor from
commutative rings to groups satisfying certain axioms and shows that, when restricted to
fields, such a functor is unique (up to natural equivalence), and for a field F , the group
GT its
A (F ) is isomorphic to the group GA(F ) given by the above presentation. If R is a

ring which is not a field, it is not known whether the group GT its
A (R) is uniquely deter-

mined up to isomorphism by the functor axioms or whether the group GA(R) satisfies
these axioms. What is known (and already established in [Ti]) is that there is a natural
homomorphism from GA(R) to GT its

A (R) mapping root subgroups onto root subgroups.
Another possible definition of Kac-Moody groups over rings, which uses highest weight
modules, is discussed in [Al2] and [CW] and generalizes the analogous definition in the
case of fields [CG]. Yet another candidate is the subgroup of the Mathieu-Rousseau com-
plete Kac-Moody group Gma

A (R) generated by real root subgroups (see [Ro, §3]). It can



6 MIKHAIL ERSHOV AND ASHLEY RALL

be shown that there are natural homomorphisms from the groups GA(R) to Gma
A (R) and

to representation-theoretic Kac-Moody groups.
Since property (T ) is preserved by homomorphic images, in view of the above remarks,

the statement of Theorem 1.1 remains true if the groups GA(R) are replaced by groups
generated by the (real) root subgroups in any of the Kac-Moody groups mentioned in the
previous paragraph (with the same restrictions on A and R).

Before proceeding, we define several Steinberg-type groups which project onto GA(R).

Let St
(2)
A (R) be the group generated by the same set of symbols {xα(r) : α ∈ Φ, r ∈ R}

but only subject to relations (R1) and (R2) and by St
(3)
A (R) the group with the same

generating set and relations (R1), (R2) and (R3), so that we have natural epimorphisms

St
(2)
A (R)→ St

(3)
A (R)→ GA(R).

The group St
(2)
A (R) is called the Steinberg group (corresponding to the pair (A,R))

in [Ti]. The group St
(3)
A (R) does not seem to have a specific name in the literature; we

point it out since it is the largest quotient of St
(2)
A (R) for which we will be able to prove

property (T ) in the setting of our main theorem (thus, relations (R4)-(R7) will not be
important for us). Finally, [MR] and [Al1] use a different notion of Steinberg group –

in their terminology Steinberg group is certain quotient of St
(3)
A (R) which projects onto

GA(R). We refer the reader to [Al1] for the precise definition and detailed discussion about
the relationship between different Steinberg-type groups.

2.3. Some examples and facts about Kac-Moody groups. For every root α ∈ Φ
and every subset S of R we will set Xα(S) = {xα(s) : s ∈ S} (considered as a subset of
GA(R)). If S is a subgroup of (R,+), then Xα(S) is a subgroup isomorphic to S. We will
write Xα = Xα(R) whenever R is clear from the context.

The groups {Xα} are called the root subgroups of GA(R). Define G+
A(R) = 〈Xα : α ∈

Φ+〉 to be the subgroup of GA(R) generated by all positive root subgroups.
We proceed with two basic examples of Kac-Moody groups.

Example 1. Let A be a GCM of spherical type (that is, A is a Cartan matrix) and
Φ = Φ(A).

Given a commutative ring R, let EΦ(R) denote the elementary subgroup of the simply-
connected Chevalley group of type Φ over R. Then there exists a natural epimorphism
GA(R) = GΦ(R)→ EΦ(R), which is an isomorphism whenever R is a field.

Example 2. Let d ≥ 2 be an integer and define the d × d matrix A = (aij) by aij = −1
if i− j ≡ ±1 mod d, aij = 2 if i = j and aij = 0 otherwise. Then Φ = Φ(A) is an affine

root system of type Ãd.

Given a commutative ring R, there exists an epimorphism π : GA(R)→ ELd(R[t, t−1])
given by

π(xαi(r)) = Ei,i+1(r) for 1 ≤ i ≤ d− 1, π(xαd(r)) = Ed,1(rt),

π(x−αi(r)) = Ei+1,i(r) for 1 ≤ i ≤ d− 1, π(x−αd(r)) = E1,d(rt
−1).

As in Example 1, π is an isomorphism if R is a field. The group π(G+
A(R)) coincides with

the subgroup of ELd(R[t]) consisting of matrices which have upper-unitriangular image
under the projection ELd(R[t])→ ELd(R) which sends t to 0.

We now return to the general case.
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Theorem 2.6. Let A be a 2-spherical GCM of size d and M = max{−aij : i 6= j} (thus,
M ≤ 3). Let R be a commutative ring which does not have proper ideals of index ≤ M .
Then G+

A(R) is generated by {Xαi}di=1, the root subgroups corresponding to simple roots.

Proof. If d = 2, Theorem 2.6 is part of the assertion of [Al1, Lemma 11.1]. In the general
case let H denote the subgroup of G+

A(R) generated by {Xαi}di=1. It is easy to show that
Xα ⊆ H for every α ∈ Φ+ by induction on the height of α using the result in the case
d = 2 and [CER, Lemma 6.2]. �

The proof of [Al1, Lemma 11.1] mentioned above uses the precise commutation relations
between positive root subgroups in the rank 2 case. Below we list those relations since
most of them will be explicitly used later in the paper. In all four cases below we denote
the simple roots of Φ by α and β with α being the long root. We shall only list non-trivial
commutator relations, that is, relations between root subgroups which do not commute.

Case 1: A =

(
2 0
0 2

)
, Φ = A1 ×A1, Φ+ = {α, β}. In this case Xα and Xβ commute.

Case 2: A =

(
2 −1
−1 2

)
, Φ = A2, Φ+ = {α, β, α+ β}. In this case

[xα(r), xβ(s)] = xα+β(rs)

(for a suitable choice of Chevalley basis).

Case 3: A =

(
2 −2
−1 2

)
, Φ = B2, Φ+ = {α, β, α+β, α+ 2β}. In this case we have the

following relations:

[xα(r), xβ(s)] = xα+β(rs)xα+2β(rs2)

[xα+β(r), xβ(s)] = xα+2β(2rs).

Case 4: A =

(
2 −3
−1 2

)
, Φ = G2, Φ+ = {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β}. In this

case we have the following relations:

[xα(r), xβ(s)] = xα+β(rs)xα+2β(rs2)xα+3β(rs3)x2α+3β(r2s3),

[xα+β(r), xβ(s)] = xα+2β(2rs)xα+3β(3rs2)x2α+3β(3r2s),

[xα+2β(r), xβ(s)] = xα+3β(3rs),

[xα+2β(r), xα+β(s)] = x2α+3β(3rs),

[xα+3β(r), xα(s)] = x2α+3β(−rs).

3. Property (T )

We start by recalling the definition of property (T ) as well as the definition of relative
property (T ) in the sense of [Co]. In the definitions below we allow G to be an arbitrary
topological group; however, we will deal primarily with discrete groups, with Theorem 5.4
being the only exception. For a general introduction to property (T ) we refer the reader
to [BHV].

Definition 3.1. Let G be a group and S a subset of G.

(a) Let V be a unitary representation of G and ε > 0. A vector v ∈ V is called
(S, ε)-invariant if ‖sv − v‖ < ε‖v‖ for all s ∈ S

(b) The Kazhdan constant κ(G,S) is the largest ε ≥ 0 such that if V is any unitary
representation of G which contains an (S, ε)-invariant vector, then V contains a
nonzero G-invariant vector.
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(c) S is called a Kazhdan subset of G if κ(G,S) > 0.
(d) G has property (T ) if it has a compact Kazhdan subset.

Definition 3.2. Let G be a group and B a subset of G. The pair (G,B) is said to have
relative property (T ) if there exist a compact subset S of G and a function f : R>0 → R>0

such that if V is any unitary representation of G and v ∈ V satisfies ‖sv − v‖ ≤ f(ε)‖v‖
for every s ∈ S, then ‖bv − v‖ ≤ ε‖v‖ for every b ∈ B.

In the case when B is a normal subgroup, the above definition is equivalent to the
following one (which is the original definition of relative property (T )):

Definition 3.3. Let B be a normal subgroup of G. The pair (G,B) has relative property
(T ) if there exists a compact subset S of G such that whenever a unitary representation V
of G contains an (S, ε)-invariant vector, it must also contain a nonzero B-invariant vector.

The only result about relative property (T ) which we will explicitly use in the proof of
Theorem 1.1 is the following straightforward lemma.

Lemma 3.4. Let G be a group and K a subgroup of G with property (T ). Then for any
subset H of K, the pair (G,H) has relative property (T ).

Proof. Since K has (T ), it is clear from the second definition of relative property (T )
that the pair (K,K) has relative (T ). And it is clear from the first definition that if a
pair (A,B) has relative (T ), then for any overgroup A′ ⊇ A and subset B′ ⊆ B, the pair
(A′, B′) has relative (T ). In particular, (G,H) has relative (T ). �

In order to prove our main theorem we will use the “almost orthogonality” criterion
for property (T ) based on the notion of orthogonality constant between subgroups of the
same group. This method was originally introduced by Dymara and Januskieiwcz in [DJ]
and developed further in [EJ, EJK, Ka2, Op2].

Definition 3.5. Let H and K be subgroups of the same group, and let G = 〈H,K〉 be
the group generated by them.

(i) Given a unitary representation V of G, let V H and V K denote the subspaces
of H-invariant (resp. K-invariant) vectors in V . The orthogonality constant
orth(H,K;V ) is defined by

orth(H,K;V ) = sup{|〈v, w〉| : v ∈ V H , w ∈ V K , ‖v‖ = ‖w‖ = 1}.

(ii) The orthogonality constant orth(H,K) is the supremum of the quantities orth(H,K;V )
where V ranges over all unitary representations of G without invariant vectors.

We will use the following form of the almost orthogonality criterion.

Theorem 3.6. ([EJ, Theorem 1.2]) Let G be a discrete group and H1, . . . ,Hd subgroups
of G. Suppose that orth(Hi, Hj) <

1
d−1 for any i 6= j and the pair (G,Hi) has relative

property (T ) for each i. Then G has property (T ).

The following lemma collects two important cases where the orthogonality constant is
small.

Lemma 3.7. The following hold:

(a) (see [EJ, Lemma 3.4]) If H and K are subgroups of the same group, and one of
them normalizes the other (e.g., if they commute), then orth(H,K) = 0.
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(b) (special case of [EJ, Corollary 4.7]) Let R be a countable associative ring and m(R)
the smallest index of a proper left ideal of R. Let G = Heis(R) be the Heisenberg
group over R, that is, the group of 3× 3 upper-unitriangular matrices over R, let
H = E12(R) and K = E23(R). Then orth(H,K) ≤ 1√

m(R)
.

Here are two basic examples where property (T ) follows immediately from Theorem 3.6
and Lemma 3.7:

Example 3. Let A be a 2-spherical d× d GCM with simply-laced Dynkin diagram and R
any finite commutative ring which has no proper ideals of index at most (d − 1)2. Then
the positive unipotent subgroup G+

A(R) has property (T ).

Here we let {H1, . . . ,Hd} be the simple root subgroups of G = G+
A(R). The groups

Hi are finite since R is finite, so the assumption that (G,Hi) has relative property (T )
holds trivially. Since Dyn(A) is simply-laced, for any i 6= j either Hi and Hj commute (if
aij = 0) or there is an isomorphism 〈Hi, Hj〉 → Heis(R) which sends Hi to E12(R) and
Hj to E23(R) (if aij = −1). Hence orth(Hi, Hj) <

1
d−1 by Lemma 3.7.

Example 4. Now let d ≥ 3 be any integer and R any finitely generated associative ring
with no proper ideals of index at most (d− 1)2. Let G = ELd(R), the subgroup of GLd(R)
generated by elementary matrices. Then G has property (T ).

As proved in [EJ], the group ELd(R) actually has property (T ) without any restrictions
on indices of ideals in R, but this result requires a much more general version of the
almost orthogonality method. To deduce the result stated in Example 4 directly from
Theorem 3.6 and Lemma 3.7 we set Hi = Ei,i+1(R) for 1 ≤ i ≤ d− 1 and Hd = Ed,1(R).

Then orth(Hi, Hj) <
1
d−1 as in Example 3. The fact that the pairs (G,Hi) have relative

property (T ) follows from Kassabov’s theorem [Ka1, Theorem 1.2].
Note that the argument in Example 4 remains valid if we replace ELd(R) by the Stein-

berg group Std(R). Thus it also proves that the Kac-Moody group GAd−1
(R) has property

(T ) since GAd−1
(R) is a quotient of Std(R) as observed in § 2. As we will see in § 5, our

general argument for property (T ) for Kac-Moody groups over rings will in some sense
generalize Example 4 even though the collection of subgroups {Hi} to which Theorem 3.6
will be applied in the case of groups of type Ad−1 is different from the one in Example 4.

4. Orthogonality constants in Chevalley groups of rank 2

Notation: Let G be a group generated by subgroups X and Y and let H be another
subgroup of G. Let m(H,X, Y ) ∈ N ∪ {∞} be the minimal dimension of an irreducible
representation V of G such that H acts non-trivially on V and the subspaces V X and V Y

are both nonzero.
The following result is a variation of [EJK, Theorem 10.8] and is proved by essentially

the same argument.

Theorem 4.1. Let G be a countable group generated by subgroups X and Y . Let H be a
subgroup of Z(G), denote by X ′ and Y ′ the images of X and Y in G/H, respectively, and

let m = m(H,X, Y ). Then orth(X,Y ) ≤
√

orth(X ′, Y ′) + 1
m .

Proof. Let ε = orth(X ′, Y ′). By [EJK, Claim 10.7] is suffices to prove that orth(V X , V Y ) ≤√
ε+ 1

m for every non-trivial irreducible representation V of G.

Let us fix such a representation V . We can assume that V X and V Y are both nonzero
(otherwise the result is trivial). If H acts trivially on V , then V is a representation of
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G/H, so there is nothing to prove. Thus, we can assume that H acts non-trivially, and
therefore dim(V ) ≥ m by assumption.

Let HS(V ) denote the set of all Hilbert-Schmidt operators on V , that is, linear operators
A : V → V such that

∑
i ‖A(ei)‖2 is finite where {ei} is an orthonormal basis of V . Then

HS(V ) is a Hilbert space with the inner product given by

〈A,B〉 =
∑
i

〈A(ei), B(ei)〉.

It is easy to see that the set HS(V ) and the inner product do not depend on the choice
of {ei}.

The representation of G on V yields the corresponding representation of G on HS(V ),
where an element g ∈ G acts on A ∈ HS(V ) by (gA)(v) = gA(g−1v). Since H ⊆ Z(G)
and V is an irreducible representation of G, by Schur’s lemma H acts by scalars on V and
hence trivially on HS(V ). Thus, HS(V ) becomes a representation of G/H.

For a nonzero vector v ∈ V let Pv ∈ HS(V ) denote the (orthogonal) projection onto
Cv. For a subspace W of HS(V ) let πW : HS(V ) → HS(V ) denote the projection onto
W . The following results are proved in [EJK]:

(a) [EJK, Lemma 10.1]) 〈Pu, Pw〉 = |〈u,w〉|2 for any unit vectors u,w ∈ V ;
(b) [EJK, Lemma 10.3]) ‖πHS(V )G(Pv)|2 = 1

dim(V ) for any unit vector v ∈ V .

The assertion of Theorem 4.1 follows easily from these two results. Indeed, take any unit
vectors u ∈ V X and w ∈ V Y . Then by (a)

|〈u,w〉|2 = 〈Pu, Pw〉 = 〈πHS(V )G(Pu), πHS(V )G(Pw)〉+ 〈π(HS(V )G)⊥(Pu), π(HS(V )G)⊥(Pw)〉.

By (b) we have

|〈πHS(V )G(Pu), πHS(V )G(Pw)〉| ≤ ‖πHS(V )G(Pu)‖ · ‖πHS(V )G(Pw)‖ =
1

dim(V )
≤ 1

m
.

On the other hand, (HS(V )G)
⊥

is a representation of G/H without invariant vectors, so
|〈π(HS(V )G)⊥(Pu), π

(HS(V )G)⊥
(Pw)〉| ≤ ε‖π(HS(V )G)⊥(Pu)‖ · ‖π(HS(V )G)⊥(Pw)‖ ≤ ε, which

finishes the proof. �

Lemma 4.2. Let R be a countable commutative ring and m(R) the smallest index of a
proper ideal of R. Let Φ be an irreducible finite root system of rank 2, and let {α, β} be a
base of Φ, with α a long root.

Define the group G and its subgroups X,Y and H by one of the following:

(a) Φ = A2, G = G+
Φ(R), X = Xα, Y = Xβ and H = Xα+β

(b) Φ = B2, G = G+
Φ(R), X = Xα, Y = Xβ and H = Xα+2β.

(c) Φ = G2, G = G+
Φ(R), X = Xα, Y = Xβ and H = Xα+3βX2α+3β

In case (b) assume that 2 is invertible in R, and in case (c) assume that 3 is invertible in
R. Then (in each case) m(H,X, Y ) ≥ m(R)

Remark 4.3. Case (a) of Lemma 4.2 has already been established in [EJ]; however, we
have chosen to reproduce the proof as the arguments in other cases are similar, with
additional technicalities involved.

Proof. In each case we start with an arbitrary irreducible representation V of G with
V X 6= {0} and V Y 6= {0} on which H acts non-trivially. Our goal is to show that
dim(V ) ≥ m(R). Since H ⊆ Z(G) by assumption, there exists a non-trivial character
λ : H → S1 such that each h ∈ H acts on V as the scalar λ(h).
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(a) For brevity we set λ(r) = λ(xα+β(r)) for r ∈ R. By assumption there exists nonzero

v ∈ V X . The commutator relation [xα(r), xβ(s)] = xα+β(rs) (with r, s ∈ R arbitrary)
implies that

xα(r)xβ(s)v = xβ(s)xα(r)[xα(r), xβ(s)]v = λ(rs)xβ(s)xα(r)v = λ(rs)xβ(s)v.

Thus, for every s ∈ R, the vector xβ(s)v is an eigenvector forX with character λs : X → S1

given by λs(xα(r)) = λ(rs). Let I = {s ∈ R : λ(rs) = 0 for all r ∈ R}. Then it is clear
that I is an ideal of R; moreover, I 6= R since λ is non-trivial, and therefore, |R/I| ≥ m(R).
On the other hand, λs = λt if and only if s ≡ t mod I, and therefore the number of distinct
characters of the form λs is at least m(R). Since eigenvectors corresponding to distinct
characters must be linearly independent, we conclude that dim(V ) ≥ m(R) as desired.

(b) This time we set λ(r) = λ(xα+2β(r)) for r ∈ R. Again choose any nonzero v ∈ V X .
Since 2 is invertible in R, the set {s ∈ R : λ(2rs) = 0 for all r ∈ R} is a proper ideal of
R, and arguing as in (a), this time using the relations [xα+β(r), xβ(s)] = xα+2β(2rs), we
conclude that dim(V ) ≥ m(R).

(c) First assume that X2α+3β acts non-trivially on V . Then the result follows directly
from (a) since there is an isomorphism between 〈Xα, Xα+3β, X2α+3β〉 and StA+

2
(R) which

sends X2α+3β to Xα+β.
Assume now that X2α+3β acts trivially on V . Then by assumption Xα+3β must act non-

trivially, and moreover V is a representation of G′ = G/X2α+3β. The following relation
holds in G′:

[xα+2β(r), xβ(s)] = xα+3β(3rs).

Since 3 is invertible in R and Xα+3β is a central subgroup of G′ which acts non-trivially,
arguing as in (a), we conclude that dim(V ) ≥ m(R). �

Combining Theorem 4.1 and Lemma 4.2, we can now estimate orthogonality constants
between simple root subgroups in Chevalley groups of rank 2.

Given a positive real number m, define the sequence s0(m), s1(m), . . . by s0(m) = 0 and

si(m) =
√
si−1(m) + 1

m for all i ≥ 1.

Corollary 4.4. Let R be a countable commutative ring and m = m(R) the smallest index
of a proper ideal of R. Let Φ be a finite root system of rank 2, and let {α, β} be a base of
Φ, with α a long root. Let G = G+

Φ(R), X = Xα(R) and Y = Xβ(R). The following hold:

(a) If Φ = A1 ×A1, then orth(X,Y ) = 0
(b) If Φ = A2, then orth(X,Y ) ≤ s1(m) = 1√

m

(c) If Φ = B2 and 2 is invertible in R, then orth(X,Y ) ≤ s2(m) < 4

√
3
m

(d) If Φ = G2 and 2 and 3 are invertible in R, then orth(X,Y ) ≤ s4(m) < 16

√
188
m

Proof. In case (a) X and Y commute, so we are done by Lemma 3.7(a). Each of the sub-
sequent cases follows from the previous one using Theorem 4.1, Lemma 4.2 and the follow-
ing isomorphisms which send simple root groups to simple root groups: G+

A2
(R)/Xα+β

∼=
G+
A1×A1

(R), G+
B2

(R)/Xα+2β
∼= G+

A2
(R), G+

G2
(R)/〈Xα+3β, X2α+3β〉 ∼= G+

B2
(R) (for the re-

duction of G2 to B2 we need to apply Theorem 4.1 twice). �

5. Proof of the main theorem and some variations

In this section we will establish Theorem 1.1 and discuss some of its variations. Theo-
rem 1.1 will be obtained as an easy consequence of Corollary 4.4 and the following theorem:
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Theorem 5.1. Let A be a 2-spherical d×d GCM whose indecomposable components have
size at least two (equivalently, the Dynkin diagram of A has no isolated vertices). Let R
be a commutative ring and m(R) the minimal index of a proper ideal of R, and assume
that m(R) > max{−aij : i 6= j}. Let G = GA(R) and Φ = Φ(A) the associated real root
system. Then there exists a subset Σ of Φ with |Σ| < 2d such that

(a) γ + δ 6= 0 for any γ, δ ∈ Σ;
(b) for any γ, δ ∈ Σ either Xγ and Xδ commute or there exist αi, αj ∈ Π and w ∈ W

such that wγ,wδ ∈ Zαi + Zαj.
(c) the set ∪γ∈ΣXγ generates G = GA(R).

We will first prove Theorem 1.1 assuming Theorem 5.1 and then prove Theorem 5.1.

Proof of Theorem 1.1. We will prove that G has property (T ) by applying Theorem 3.6
to the collection of subgroups {Hγ}γ∈Σ, where Σ satisfies the conclusion of Theorem 5.1.

First we show that the pair (G,Xα) has relative property (T ) for every α ∈ Σ. By
relations (R3) in the definition of GA(R), replacing Xα by a conjugate, we can assume
that α = αi is a simple root. Since A is indecomposable, there exists j 6= i such that

aij 6= 0. Let K = 〈X±αi , X±αj 〉 ⊆ G. Let Φi,j = Φ(A{i,j}) (where A{i,j} =

(
2 aij
aji 2

)
).

Since A is 2-spherical and aij 6= 0, Φi,j is a root system of type A2, B2 or G2, and it is
clear from the defining relations that K is a quotient of the Steinberg group StΦi,j (R).
The group StΦi,j (R) has property (T ) by [EJK], whence (G,Xα) has relative property (T )
by Lemma 3.4.

It remains to check the required upper bounds on orthogonality constants. Take any
γ, δ ∈ Σ. By Theorem 5.1 either Xγ and Xδ commute, in which case orth(Xγ , Xδ) = 0,
or there exist αi, αj ∈ Π and w ∈ W such that wγ,wδ ∈ Zαi + Zαj . In the latter case,
after conjugation in G, we can assume that w = 1. Since γ + δ 6= 0, an easy case-by-
case verification using commutator relations in Chevalley groups shows that there exists
a finite root system Ψ of rank 2 and an epimorphism G+

Ψ(R) → 〈Xαi , Xαj 〉 which sends

simple root subgroups of G+
Ψ(R) to Xαi and Xαj ; moreover, Ψ 6= B2 if aijaji ≤ 1 and

Ψ 6= G2 if aijaji ≤ 2. Applying Corollary 4.4 (and recalling the assumption on R in the
Theorem 1.1), we deduce that orth(Xαi , Xαj ) <

1
2d−2 ≤

1
|Σ|−1 . �

Proof of Theorem 5.1. Recall that Π = {α1, . . . , αd} denotes the set of simple roots and
Dyn(A) is the Dynkin diagram of A. Let Π1 be a maximal subset of Π with the property
that no two roots in Π1 are connected to each other in Dyn(A). Let Π2 = Π\Π1, k = |Π1|
and l = |Π2| = d − k. Without loss of generality we can assume that Π1 = {α1, . . . , αk}.
For brevity set βi = αk+i for 1 ≤ i ≤ l, so that Π2 = {β1, . . . , βl}.

Let w0 = sα1 . . . sαk , set γi = w0(−βi) for 1 ≤ i ≤ l, and let Σ = Π t {γi}li=1. Clearly
|Σ| < 2d and Σ has property (a). We will now prove that Σ also satisfies (b) and (c).

(b) Let γ, δ ∈ Σ. If γ, δ ∈ Π or if γ, δ ∈ {γi}, there is nothing to prove. Thus,
after possibly swapping γ and δ, we can assume that δ = αi for some 1 ≤ i ≤ d and
γ = γj = w0(−βj) for some 1 ≤ j ≤ l

Case 1: αi 6= βj (that is, i 6= j+k). In this case any element of Nγ+Nδ clearly has both
positive and negative coefficients (when expressed as a linear combination of simple roots),
hence cannot be a root. Therefore, the pair {γ, δ} is prenilpotent by Proposition 2.4(a),
and Xγ and Xδ commute by relations (R2).

Case 2: αi = βj . We have γj = −βj −
∑k

t=1 ntαt where each nt ≥ 0; moreover nt > 0
if and only if αt is connected to βj in Dyn(A). Thus, 〈γ, δ∨〉 = 〈γj , β∨j 〉 ≥ −2 +m where
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m is the number of roots in Π1 connected to βj (by assumption m ≥ 1). If m = 1, then
γ, δ ∈ Zαt⊕Zβj where αt is the unique root in Π1 which is connected to βj . Assume now
that m ≥ 2. Then 〈γ, δ∨〉 ≥ 0, whence by Proposition 2.4(c), {γ, δ} is prenilpotent and
the intersection (Nγ+Nδ)∩Φ is either empty or equals {γ+ δ}. In the former case we are

done as in case 1, and the latter case is actually impossible. Indeed γ + δ = −
∑k

t=1 ntαt
with at least two coefficients nt positive, whence γ+δ is not a root since the roots {αt}kt=1

are pairwise disconnected.

(c) Let H be the subgroup generated by ∪γ∈ΣXγ . We need prove that H = G, for
which it is sufficient to check that H contains X−ω for every simple root ω. We will argue
by induction on d.

Base case d = 2. In this case Φ = A2, B2 or G2 and, following our earlier convention,
we denote the elements of Π by α and β, with α being a long root.

Note that if {γ, δ} is any base of Φ, then {γ, δ} (considered as an unordered pair) is
conjugate to Π; hence by Theorem 2.6 and our assumption on R, for any root ε ∈ Nγ+Nδ
the root subgroup Xε lies in 〈Xγ , Xδ〉.

Subcase 1: Φ = A2, α1 = α, β1 = β. In this case γ1 = sα(−β) = −(α + β). Since
{γ1, β} is a base of Φ and −α = γ1 + β, we have X−α ⊆ H.

Once we know that H contains Xα and X−α, we conclude that s̃α ∈ H, whence X−β =
Xsα(γ1) = s̃−1

α Xγ1 s̃α ⊆ H, and we are done.
Subcase 2: Φ = B2, α1 = α, β1 = β. In this case γ1 = −(α+ β).
Since {γ1, α} is a base and −(α + 2β) = 2γ1 + α, the subgroup H contains X−(α+2β).

Since {−(α + 2β), β} is a base and −α = −(α + 2β) + 2β, we conclude that H contains
s̃α, and we can finish the proof as in subcase 1.

Subcase 3: Φ = B2, α1 = β, β1 = α. In this case γ1 = sβ(−α) = −(α+ 2β).
Since {−(α+ 2β), β} is a base and −(α+ β) = −(α+ 2β) + β, we have X−(α+β) ⊆ H,

hence we are done by subcase 2.
Subcase 4: Φ = G2, α1 = α, β1 = β. In this case γ1 = −(α + β), and the argument is

analogous to subcase 2 with −(α+ 2β) replaced by −(α+ 3β).
Subcase 5: Φ = G2, α1 = β, β1 = α. In this case γ1 = −(α+ 3β), and the argument is

analogous to subcase 3, again with −(α+ 2β) replaced by −(α+ 3β).

We proceed with the induction step. Let d > 2, and assume (c) has been established
for all matrices of size less than d. If Dyn(A) is disconnected, the induction step is trivial,
so we can assume that Dyn(A) is connected.

Case 1: Each simple root in Π1 is connected to a root of Π2 different from β1. In
this case the Dynkin subdiagram with vertex set Π \ {β1} has no isolated vertices and Π1

is a maximal subset of pairwise disconnected vertices in Π \ {β1}. Hence, by induction
hypothesis H contains X−γ for every γ ∈ Π except possibly γ = β1. In particular,
X−αi ⊆ H for all 1 ≤ i ≤ k. Since −β1 = sα1 . . . sαk(γ1) and Xγ1 ⊆ H, arguing as in
subcase 1 of the base step, we conclude that X−β1 ⊆ H, and we are done.

Case 2: There exists a simple root in Π1 which is only connected to β1. Without loss
of generality assume that α1 is the root with this property. Since we assume that Dyn(A)
is connected, β1 must be connected to a simple root other than α1. Hence the Dynkin
subdiagram with vertex set Π\{α1} has no isolated vertices, and it is clear that Π1 \{α1}
is a maximal subset of pairwise disconnected vertices in Π \ {α1}.

Since α1 is only connected to β1, we have sα1 . . . sαk(−βj) = sα2 . . . sαk(−βj) for all
j 6= 1. Hence, by induction hypothesis H contains X−γ for every γ ∈ Π except possibly
γ = β1 and γ = α1.
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In particular, H contains X±αi for all 2 ≤ i ≤ k. Since Xγ1 ⊆ H and sα2 . . . sαk(γ1) =
sα1(−β1), it follows that that H contains Xsα1 (−β1). Applying the result in the base case

to the Dynkin subdiagram with vertex set {α1, β1}, we conclude that H contains X−α1

and X−β1 . The proof is complete. �

5.1. Some variations. As we already saw in Example 3, if R is a finite commutative
ring and A is a 2-spherical GCM with simply-laced Dynkin diagram, then the positive
subgroup G+

A(R) of the Kac-Moody group GA(R) has property (T ) whenever R has no
proper ideals of small index. The proof of Theorem 1.1 shows that the result remains true
without the assumption that A is simply-laced. As already mentioned in the introduction,
if R is infinite, the group G+

A(R) has infinite abelianization and thus cannot have property
(T ); however, as we will prove below, one can still construct many subgroups with property
(T ) which lie between G+

A(R) and GA(R), at least when the Dynkin diagram of A has no
triple edges.

Let A be a GCM of size d and I a subset of {1, 2, . . . , d}. Given a commutative
ring R, define PA,I(R) to the subgroup of GA(R) generated by all simple root sub-
groups Xαi(R), 1 ≤ i ≤ d as well as the negative root subgroups X−αi(R), i ∈ I (thus,
GA(R) = PA,I(R) for I = {1, 2, . . . , d} and G+

A(R) = PA,∅(R) provided the hypotheses
of Theorem 2.6 hold). We will call the groups PA,I(R) the pseudo-parabolic subgroups of
GA(R) (the parabolic subgroups, which we will not consider, are defined in the same way
except that they must also contain the standard torus).

Theorem 5.2. Let A = (aij) be an indecomposable 2-spherical GCM of size d ≥ 2, assume
that Dyn(A) has no triple edges, and define n(A) as in Theorem 1.1. Let I be a subset of
{1, 2, . . . , d} such that for every 1 ≤ i ≤ d there exists j ∈ I such that j 6= i and aij 6= 0.
If R is any finitely generated commutative ring which does not have proper ideals of index
less than n(A), then the pseudo-parabolic subgroup PA,I(R) has property (T ).

Remark 5.3.
1. We believe that Theorem 5.2 remains valid even if Dyn(A) has a triple edge; however,

a proof of such theorem would require results on relative property (T ) which do not seem
to be known at the moment.

2. If R surjects onto Z, it is easy to show that the condition on I in the statement of
Theorem 5.2 is necessary for PA,I(R) to have property (T ). We do not know if there are
any infinite rings for which PA,I(R) has property (T ) without the above condition on I.

Proof. The proof of Theorem 5.2 is essentially the same as that of Theorem 1.1, requiring
just small modifications. Let I1 be a maximal subset of I with the property that any two
simple roots αi, αj with i, j ∈ I1, are not connected. Let I2 = I \ I1, I3 = {1, . . . , d} \ I
and Πk = {αi : i ∈ Ik} for k = 1, 2, 3.

Let w =
∏
i∈I1 sαi , let Λ = w(−Π2) = {−w(αj) : j ∈ I2} and Σ = Π ∪ Λ. We claim

that Σ satisfies conditions (a) and (b) of Theorem 5.1 and the set {Xγ : γ ∈ Σ} generates
PA,I(R). Condition (a) is obvious. Next we check (b) – it is clear if γ, δ ∈ Π or γ, δ ∈ Λ
and holds by the proof of Theorem 5.1 if γ ∈ Π1 ∪Π2 and δ ∈ Λ (or vice versa). If γ ∈ Π3

and δ ∈ Λ (or vice versa), then no simple root appears in the expansion of both γ and δ;
since γ and δ have opposite signs, Xγ and Xδ commute by the argument from Case 1 of
the proof of Theorem 5.1(b). Finally, applying the proof of Theorem 5.1 to the Dynkin
subdiagram DynI(A), we conclude that the subgroup 〈Xγ : γ ∈ Π1 ∪ Π2 ∪ Λ〉 is equal to
〈Xγ : γ ∈ ±(Π1 ∪Π2)〉, whence {Xγ : γ ∈ Σ} must generate PA,I(R).

To finish the proof it remains to show that the pair (PA,I(R), Xγ) has relative property
(T ) for every γ ∈ Σ (once this is done, we simply repeat the argument in the proof
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of Theorem 1.1), and this is where our hypothesis on I comes into play. First of all,
by assumption the subdiagram DynI(A) has no isolated vertices, hence we can apply
Theorem 1.1 to the submatrix AI to conclude that the group 〈Xγ : γ ∈ Π1 ∪ Π2 ∪ Λ〉
has property (T ). In particular, this implies that (PA,I(R), Xγ) has relative (T ) for γ ∈
Π1 ∪Π2 ∪ Λ.

If γ ∈ Π3, we choose δ ∈ Π1 ∪Π2 which is connected to γ (such δ exists by assumption
on I). Let Ψ = (Zγ ⊕ Zδ) ∩ Φ. By assumption Ψ is a root subsystem of type A2 or B2.
Consider the subgroup H = 〈Xγ , Xδ, X−δ〉. It is easy to see that H = 〈Xδ, X−δ〉N where
N = 〈Xλ : λ ∈ Ψ+ \ {δ}〉 and N is normal in H. Since H ⊆ PA,I(R) and Xγ ⊆ N , to
finish the proof it suffices to show that (H,N) has relative (T ). We consider three cases.

Case 1: Ψ is of type A2. Then there exists an epimorphism St2(R) n R2 → H which
sends St2(R) to 〈Xδ, X−δ〉 and R2 to N = XγXγ+δ. Since the pair (St2(R) n R2, R2)
has relative property (T ) by [EJK, Appendix A], it follows that (H,XγXγ+δ) has relative
property (T ).

Case 2: Ψ is of type B2 and γ is a short root. In this case (H,N) has relative property
(T ) by [EJK, Corollary 7.11].

Case 3: Ψ is of type B2 and γ is a long root. In this case N ∼= (S2(R2),+), where S2

denotes the second symmetric power, and the action of 〈Xδ, X−δ〉 on N factors through
the corresponding action of EL2(R) on S2(R2). The pair (EL2(R)nS2(R2), S2(R2)) has
relative property (T ) by [Ne, Theorem 3.3], and since N is abelian, [CT, Corollary 2]
implies that (H,N) has relative property (T ) as well. �

If R is a ring which is not finitely generated, Kac-Moody groups over R cannot possibly
have property (T ) as discrete groups; however, they may still have property (T ) when en-
dowed with suitable topology. In particular, the following theorem was proved by Hartnick
and Köhl in [HK]:2

Theorem 5.4. Let A be an indecomposable 2-spherical d × d GCM, with d ≥ 2, and F
a local field. Then the Kac-Moody group GA(F ) endowed with the Kac-Peterson topology
has property (T ).

We finish the paper by providing a new proof of this theorem. We refer the reader to
[HKM, HK] for the definition of the Kac-Peterson topology.

Proof. The following proof which substantially simplifies our original argument was sug-
gested by Pierre-Emmanuel Caprace. First, it is clear from the definition of property (T )
that if G is a topological group, Γ a dense subgroup of G and Γ has property (T ) when
considered as a discrete group, then G has property (T ).

For a subring R of F , denote by GA(R,F ) the subgroup of GA(F ) generated by
∪α∈Φ(A)Xα(R). It is clear from the defining relations that GA(R,F ) is a homomorphic
image of GA(R). On the other hand, it is clear from the definition of the Kac-Peterson
topology that if R is a dense subring of F , then GA(R,F ) is dense in GA(F ).

Thus, to prove that GA(F ) with the Kac-Peterson topology has property (T ), it suffices
to find a dense subring R of F such that GA(R) has property (T ) as a discrete group. In
view of Theorem 1.1, it is enough to show that for any n ∈ N there exists a dense finitely
generated subring R of F with no proper ideals of index at most n. If F = R, we set
R = Z[ 1

n! ]. If F = C, we set R = Z[i, 1
n! ]. If F is a finite extension of Qp, choose α ∈ F

such that F = Qp[α] and set R = Z[α, 1
p·n! ]. Finally, if F = k((t)), with k a finite field, we

2The theorem proved in [HK] is slightly more general as it deals with almost split Kac-Moody groups
while we only consider split Kac-Moody groups
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set R = k[t, 1
t·fn ] where fn is the product of all irreducible polynomials in k[t] of degree at

most log |k|(n). Clearly, in each case R has the required property. �
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301–333.

[CT] Yves de Cornulier and Romain Tessera, A characterization of relative Kazhdan property T for
semidirect products with abelian groups. Ergodic Theory Dynam. Systems 31 (2011), no. 3, 793-
805.

[DJ] Jan Dymara and Tadeusz Januszkiewicz, Cohomology of buildings and their automorphism groups,
Invent. Math. 150 (2002), no. 3, 579–627.

[EJ] Mikhail Ershov and Andrei Jaikin-Zapirain, Property (T ) for noncommutative universal lattices,
Invent. Math. 179 (2010), no. 2, 303–347.

[EJK] Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov, Property (T ) for groups graded by
root systems, arXiv:1102.0031.v2, accepted by Mem. Amer. Math. Soc.
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