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Abstract. We construct Golod-Shafarevich groups with property (T )
and thus provide counterexamples to a conjecture stated in a recent pa-
per of Zelmanov [Ze2]. Explicit examples of such groups are given by
lattices in certain topological Kac-Moody groups over finite fields. We
provide several applications of this result including examples of residu-
ally finite torsion non-amenable groups.

1. Introduction

In 1964, Golod and Shafarevich [GS] found a sufficient condition for a
group given by generators and relators to be infinite. A slightly improved
version of their result, due to Vinberg and Gaschütz, asserts the following:

Theorem 1.1. Let p be a prime. Let Γ be a finitely generated group whose
pro-p completion Γp̂ has a presentation with d generators and r relators such
that r < d2/4 and d is the minimal number of generators for Γp̂. Then Γp̂

is infinite (and so is Γ).

The inequality r < d2/4 is a special case of the so-called Golod-Shafarevich
condition, which guarantees that a pro-p group given by generators and re-
lators is infinite.

Definition. Let G be a pro-p group. Let 〈X|R〉 be a pro-p presentation of
G, and let ri be the number of defining relators of degree i with respect to
the Zassenhaus filtration.

a) We say that the above presentation satisfies the Golod-Shafarevich
condition if there exists 0 < t < 1 such that 1− dt+

∑∞
i=1 rit

i < 0.
b) We say that G is a Golod-Shafarevich group if it has a presentation

satisfying the Golod-Shafarevich condition.

Definition. A discrete group Γ is Golod-Shafarevich (with respect to p)1 if
its pro-p completion Γp̂ is Golod-Shafarevich.

Remark: If a discrete group Γ is given by a presentation 〈X|R〉, then Γp̂

is given by the same presentation 〈X|R〉 in the category of pro-p groups.

It is easy to show (see subsection 2.3) that a discrete group Γ is Golod-
Shafarevich provided d(Γp̂) > 1 and Γ has a presentation 〈X|R〉 with |R| <
|X| − d(Γp̂) + d(Γp̂)2/4 (here d(Γp̂) is the minimal number of generators

The author is grateful for the support and hospitality of the Institute for Advanced
Study where this research was carried out. The author was supported by the National
Science Foundation under agreement No. DMS-0111298. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author and do
not necessarily reflect the views of the National Science Foundation.

1The reference to p will be omitted when clear from the context.
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for Γp̂). Groups satisfying this stronger condition will be called strongly
Golod-Shafarevich.

Golod-Shafarevich groups are known to be large in many ways:

Theorem 1.2. Let Γ be a discrete Golod-Shafarevich group. Then its pro-p
completion Γp̂ is infinite. Moreover, the following properties hold:

a) Γ has an infinite torsion quotient.
b) If {DnΓ} is the Zassenhaus p-series of Γ, then the sequence an =

log p |Γ/DnΓ| grows exponentially in n.
c) Γp̂ is not p-adic analytic.
d) Γp̂ contains a non-abelian free pro-p group.

Part a) follows from the fact that any discrete Golod-Shafarevich group
has a torsion quotient which is still Golod-Shafarevich. Golod [Go] used
this idea to produce first examples of infinite finitely generated residually
finite torsion groups. A (standard) proof of infiniteness of Golod-Shafarevich
groups (see e.g. [Ko]) automatically yields part b). Part c) follows from b)
and Lazard’s characterization of p-adic analytic groups (see [Lu1]), and d)
is a remarkable theorem of Zelmanov [Ze1].

Among all Golod-Shafarevich groups, of particular interest are those which
arise naturally in other contexts and are not just defined by a presentation
satisfying the Golod-Shafarevich condition. There are two main sources of
such examples: Galois groups of certain pro-p extensions of number fields
(these are pro-p groups) [Ko] and fundamental groups of hyperbolic three-
manifolds, discussed below in more detail. In this paper we introduce a
new family of discrete Golod-Shafarevich groups which appear as lattices
in certain totally disconnected locally compact groups (namely, topological
Kac-Moody groups over finite fields) and, most importantly, have property
(τ). The question of existence of Golod-Shafarevich groups with property
(τ) was interesting for several reasons, but the main motivation came from
Thurston’s virtual positive Betti number conjecture in the theory of hyper-
bolic three-manifolds. We shall now explain the connection between the two
problems.

Let Γ be the fundamental group of a compact hyperbolic three-manifold
or, equivalently, a cocompact torsion-free lattice in SO(3, 1). Then Γ has
a balanced presentation (a presentation with the same number of genera-
tors and relators) [Lu1]. Thus Γ is (strongly) Golod-Shafarevich as long
as d(Γp̂) ≥ 5 for some p. For any p, the condition d(Γp̂) ≥ 5 can always
be achieved by replacing Γ by a suitable finite index subgroup (which, of
course, is also the fundamental group of some hyperbolic three-manifold) –
see [LuZ] for details. In [Lu1], Lubotzky used Theorem 1.2c) to prove that
Γ, if arithmetic, does not have the congruence subgroup property; the latter
was a major open problem at the time, known as Serre’s conjecture. Fol-
lowing this discovery, it seemed feasible that Golod-Shafarevich techniques
could be used to attack an even more ambitious problem, Thurston’s virtual
positive Betti number conjecture, which asserts that Γ has a finite index
subgroup with infinite abelianization. It is easy to see that Thurston’s con-
jecture would imply Serre’s conjecture. In late 80’s Lubotzky and Sarnak
formulated another conjecture which is weaker than Thurston’s conjecture
(and stronger than Serre’s conjecture), with the hope that it would be more
tractable, while its solution might shed some light on Thurston’s conjecture.
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Conjecture 1.3 (Lubotzky-Sarnak). The fundamental group of a compact
hyperbolic three-manifold does not have property (τ).

Recall that a discrete group Γ has property (τ) if its finite quotients form a
family of expanders, and that property (τ) is a weaker version of Kazhdan’s
property (T ) (see Section 3 for details). Lubotzky-Sarnak conjecture follows
from Thurston’s conjecture since property (τ) is preserved under passage to
finite index subgroups and a group with (τ) cannot map onto Z.2

A purely group-theoretic approach to the Lubotzky-Sarnak conjecture
was suggested by Lubotzky and Zelmanov:

Conjecture 1.4. (Discrete) Golod-Shafarevich groups do not have property
(τ).

Conjecture 1.5. Strongly Golod-Shafarevich groups do not have property
(τ)

Conjecture 1.4 is stated in a recent paper of Zelmanov [Ze2, Conjecture B],
and Conjecture 1.5 appears in [La2] where it is called the Lubotzky-Zelmanov
conjecture. Of course, Conjecture 1.4 would imply Conjecture 1.5 which, in
turn, would yield Lubotzky-Sarnak conjecture. The main goal of this paper
is to provide a counterexample to Conjecture 1.4: 3

Theorem 1.6. For every sufficiently large prime p, there exists a finitely
generated group with (τ) (in fact, with (T )), which is Golod-Shafarevich with
respect to p.

We would like to explain why Conjecture 1.4 is interesting from a purely
group-theoretic point of view. A Golod-Shafarevich group is given by a
presentation with a “small” set of relators and hence should have plenty
of quotients. On the other hand, finite quotients of a group with prop-
erty (τ) satisfy strong restrictions. Thus it was natural to expect that
Golod-Shafarevich condition and property (τ) were mutually exclusive. The-
orem 1.6 is therefore a rather surprising result.

We now sketch an explicit construction of Golod-Shafarevich groups with
property (T ). Let A be a d× d generalized Cartan matrix, let F be a finite
field of characteristic p, and let G−

top(A,F ) be the corresponding topolog-
ical Kac-Moody group. The group G−

top(A,F ) is locally compact, totally
disconnected, and contains certain discrete subgroup U+(A,F ) which is a
lattice in G−

top(A,F ) provided |F | > d, as shown by Carbone and Gar-
land [CG] and Remy [Re3]. Dymara and Januszkiewicz [DJ] proved that if
|F | > 1

251764d−1, then G−
top(A,F ) has property (T ) if and only if the matrix

A is 2-spherical (see Theorem 4.2). Since a lattice in a topological group G
has property (T ) if and only if G has property (T ), it follows that U+(A,F )
has property (T ) whenever A is 2-spherical and |F | > 1

251764d−1. An ex-
plicit presentation for U+(A,F ) was found by Tits (see Theorem 4.4). While
Tits’ presentation uses an infinite set of generators, it can be “optimized”
by removing redundant generators and corresponding relators. Under the

2In [LLR], it is proved that the Lubotzky-Sarnak conjecture and the geometrization
conjecture imply Thurston’s conjecture for all lattices in SO(3, 1) which are commensu-
rable to a lattice containing Z/2Z×Z/2Z. The latter class includes all arithmetic lattices
as is also shown in [LLR].

3To the best of my knowledge, the first person to suggest that Golod-Shafarevich groups
with (τ) exist was Martin Kassabov.
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above assumptions on A and F , the optimized presentation has finitely many
generators and, as we show in Section 5, satisfies the Golod-Shafarevich con-
dition (with respect to p) for certain choices of A, provided |F | = p.

While we explicitly construct just one family of Golod-Shafarevich groups
with property (T ), Theorem 1.6 automatically yields a much larger class of
such groups since property (T ) is preserved by quotients, and any Golod-
Shafarevich group has plenty of quotients which are still Golod-Shafarevich.
This idea leads to two interesting applications of Theorem 1.6 to questions
seemingly unrelated to Golod-Shafarevich groups, namely examples of resid-
ually finite torsion non-amenable groups (Proposition 8.4) and examples of
discrete groups with property (τ) whose profinite completion is not finitely
presented (Corollary 8.6). These applications are based solely on the state-
ment of Theorem 1.6 and not on its proof. We believe that the explicit
presentations of Golod-Shafarevich groups with property (T ) described in
this paper as well as generalizations of our construction could yield more
applications of this kind.

The paper is organized as follows. In Section 2 we introduce basic concepts
arising in the definition of Golod-Shafarevich groups. Section 3 contains a
very brief discussion of property (τ). Background on Kac-Moody algebras
and groups is given in Section 4. In Section 5 we prove Theorem 1.6, and in
Section 6 we discuss variations and generalizations of our construction. In
Section 7 we give explicit examples of finitely presented Golod-Shafarevich
groups with (T ). Finally, Section 8 is devoted to applications of Theorem 1.6
and can be read independently of the previous three sections.

Acknowledgements. I would like to thank Efim Zelmanov and Lisa
Carbone for encouraging me to study Kac-Moody groups. I am indebted
to Alex Lubotzky and Martin Kassabov for very interesting conversations
about Golod-Shafarevich groups and property (τ). I want to thank Peter
Abramenko, Pierre-Emmanuel Caprace, Lisa Carbone and Bertrand Rémy
for useful discussions about Kac-Moody groups. I am thankful to Bernhard
Mühlherr and Alice Devillers for sending me their paper [DM] unpublished
at the time, and to Pierre-Emmanuel Caprace for drawing my attention
to that paper. I would like to thank Rostislav Grigorchuk for suggesting
one of the main applications of Theorem 1.6. I am grateful to Pierre de
la Harpe for his interest in this work and for sending me his papers [H]
and [H2]. Finally, I would like to thank Andrei Jaikin, Martin Kassabov,
Alex Lubotzky, Bertrand Rémy, and an anonymous referee for very helpful
comments on earlier versions of this paper.

2. Background on pro-p groups and their presentations

2.1. Pro-p completions. Let Γ be a group. The pro-p topology on Γ is
given by the base of neighborhoods of identity consisting of all normal sub-
groups of p-power index in Γ. The completion of Γ with respect to this
topology is a pro-p group called the pro-p completion of Γ and commonly
denoted by Γp̂. The group Γ is residually-p if and only if the pro-p topology
on Γ is Hausdorff or, equivalently, if the natural map Γ → Γp̂ is injective.

2.2. Zassenhaus filtration. Let X = {x1, . . . , xd} be a finite set, and let
F = F (X) be the free group on X. Let Rd := Fp〈〈u1, . . . , ud〉〉 be the
ring of non-commutative formal power series over Fp in d variables. The
map X → R∗d given by xi 7→ 1 + ui extends (uniquely) to an injective
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homomorphism F → R∗d, called the Magnus embedding. The ring Rd has
natural I-adic topology where I is the ideal generated by u1, . . . ud. The
closure of F in R∗d coincides with the pro-p completion of F ; this group is
called the free pro-p group on X (below we denote it by Fp̂).

The Zassenhaus series (filtration) {DnFp̂}n≥1 of the free pro-p group Fp̂

is defined as follows: for each n ≥ 1 set DnFp̂ := {g ∈ Fp̂ | g ≡ 1 mod In}.
For any g ∈ Fp̂\{1} there exists a unique n ≥ 1 such that g ∈ DnFp̂\Dn+1Fp̂ ;
we say that g has degree n and write deg (g) = n. It is easy to see that

(2.1) deg ([g, h]) ≥ deg (g) + deg (h) and deg (gp) = p · deg (g).

If Γ is a finitely generated (abstract) group, the Zassenhaus p-series
{DnΓ} can be defined as follows. If Γ is free, set DnΓ = DnΓp̂ ∩ Γ. In
the general case, write Γ in the form F/N where F is a finitely generated
free group, and set DnΓ := (DnF )N/N . It is easy to show that DnΓ is
independent of the choice of a presentation. Alternatively, one can define
{DnΓ} as the fastest descending chain of normal subgroups of Γ such that

D1Γ = Γ, [DiΓ, DjΓ] ⊆ Di+jΓ and (DiΓ)p ⊆ DpiΓ for i, j ≥ 1.

2.3. Pro-p presentations. Once again, let X be a finite set, and let R be
a subset of the free pro-p group F (X)p̂. One says that a pro-p group G
is given by the pro-p presentation 〈X|R〉 if G ∼= F (X)p̂/N where N is the
closed normal subgroup of F (X)p̂ generated by R. The following properties
of pro-p presentations are relevant for us (see [Lu1] for proofs):

1. Let Γ be an abstract group given by a presentation 〈X|R〉. Then the
pro-p completion of Γ is given by the same presentation 〈X|R〉 considered
as a pro-p presentation.

2. Let 〈X|R〉 be a (pro-p) presentation of a pro-p group G, and let
d = d(G) be the minimal number of generators for G.

a) |X| = d if and only if R has no relators of degree 1;
b) G has a pro-p presentation 〈X ′|R′〉 such that |X ′| = d and |R′|−|R| =

|X ′| − |X|.

Using these properties, we can explain why a strongly Golod-Shafarevich
group is always Golod-Shafarevich. Let Γ be a discrete strongly Golod-
Shafarevich group, and let d = d(Γp̂) > 1. By properties 1 and 2b), Γp̂ has
a pro-p presentation 〈X ′|R′〉 with |X ′| = d and |R′| < d2/4. For each i ≥ 1,
let ri be the number of relators of degree i in R′. By property 2a) we have
r1 = 0, whence 1 − dt +

∑
rit

i < 1 − dt + d2

4 t
2 = (1 − dt

2 )2. Therefore,
1− dt+

∑
rit

i < 0 for t = 2/d, so Γ is Golod-Shafarevich if d > 2. If d = 2,
the desired inequality holds at t = 1− ε for sufficiently small ε > 0.

3. On properties (τ) and (T )

In this section we briefly discuss properties (τ) and (T ), concentrating on
the results relevant to this paper. For an excellent general introduction to
the subject the reader is referred to the books [Lu2], [LuZ] and [BHV].

A locally compact group G is said to have Kazhdan’s property (T) if
the trivial representation 1G is an isolated point in the space of (isomor-
phism classes of) irreducible unitary representations of G. Property (τ),
introduced by Lubotzky, is a finitary (weaker) version of property (T ): one
says that G has (τ) if 1G is isolated in the space of those irreducible unitary
representations which factor through a finite quotient of G.
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Now assume that G is a discrete finitely generated group. In this case
property (τ) has a purely combinatorial characterization: 4

Definition. Let ε > 0. A finite graph X is called an ε-expander if for any
division of the set of vertices of X into two disjoint subsets A and B, the
number of edges between A and B is at least ε ·min{|A|, |B|}.

Proposition 3.1. Let G be a discrete group generated by a finite set S. Let
{Gi}∞i=1 be the set of all finite quotients of G, and let Si be the image of S
in Gi. Then G has (τ) if and only if the Cayley graphs Cay(Gi, Si) form a
family of ε-expanders for some ε > 0 (depending on S).

Here are some elementary facts about properties (τ) and (T ):
1. If a group G has (τ) (resp. (T )), then so do all its quotients.
2. The group Z does not have (τ).
3. If H is a finite index subgroup of G, then G has (τ) (resp. (T )) if and

only if H has (τ) (resp. (T )).
These facts provide a simple and by far the most common way of showing

the failure of (τ): to prove that a discrete group G does not have (τ) it
suffices to find a finite index subgroup of G with infinite abelianization.

A common way to prove that a discrete group has property (T ) (and
hence (τ)) is to use the following criterion: a lattice in a locally compact
group G has (T ) if and only if G has (T ). In fact, this approach was used
in the seminal paper of Kazhdan [Kaz] to establish property (T ) for lattices
in higher-rank simple algebraic groups over local fields, e.g. SLn(Z) or
SLn(Fp[t]), n ≥ 3. 5

4. Kac-Moody groups

4.1. Kac-Moody algebras. In this subsection we discuss basic properties
of Kac-Moody Lie algebras (see a book of Kac [K] for more details).

A square matrix (aij) is called a generalized Cartan matrix if

(a) aij ∈ Z for all i, j (b) aii = 2 for all i

(c) aij ≤ 0 if i 6= j (d) aij = 0 ⇐⇒ aji = 0.

For the rest of this section we fix a generalized Cartan matrix A and let
d denote its size.

Let g = gA be the associated (derived)6 Kac-Moody Lie algebra over
Q. By definition, g is generated by elements {ei, fi, hi}d

i=1 satisfying the
following relations:

1) [hi, hj ] = 0 5) [ei, fj ] = 0 for i 6= j

2) [hi, ej ] = aijej 6) (ad ei)−aij+1(ej) = 0 for i 6= j

3) [hi, fj ] = −aijfj 7) (ad fi)−aij+1(fj) = 0 for i 6= j.

4) [ei, fi] = hi

4A discrete group with (T ) is always finitely generated. There exist discrete groups
with (τ) which are not finitely generated.

5The results of Kazhdan were used by Margulis in early 70’s to give the first explicit
construction of expanders. The concept of property (τ) was introduced much later in
[Lu2].

6The algebra gA is the commutator subalgebra of the usual Kac-Moody algebra.
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Let h be the linear span of {hi}, and let h∗ be the dual space of h. Then
g has the following root space decomposition: g = h ⊕

⊕
α∈∆

gα, where

gα = {x ∈ g | [h, x] = α(h)x, h ∈ h}, and ∆ = {α ∈ h∗\{0} | gα 6= 0}.
Elements of ∆ are called roots of g.

According to the defining relations, for each 1 ≤ i ≤ d, the element ei
lies in some root subspace; let αi be the corresponding root. The roots
α1, . . . , αd are called simple; the set of simple roots will be denoted by Π.
Each root has the form

∑
niαi where ni ∈ Z and either ni ≥ 0 for all i

or ni ≤ 0 for all i. The roots are called positive or negative accordingly;
the set of positive (resp. negative) roots is denoted by ∆+ (resp. ∆−). If
α =

∑
niαi, the number

∑
ni is called the height of α and denoted by ht(α).

4.2. Real roots, the Weyl group and the Dynkin diagram. For sim-
plicity, we assume that the matrix A is symmetrizable, which means that A
is the product of a symmetric matrix and a diagonal matrix.

Let Q =
d⊕

i=1
Zαi be the integral span of simple roots (of course, ∆ ⊂ Q).

Symmetrizability of A ensures the existence of a symmetric bilinear form
(·, ·) : Q×Q→ Z such that 2(αi,αj)

(αi,αi)
= aij for all i, j and (αi, αi) > 0 for all

i. For 1 ≤ i ≤ d, define the element wi ∈ Aut (Q) ∼= GLd(Z) by setting

wi(β) = β − 2(αi, β)
(αi, αi)

αi.

The group W ⊂ Aut (Q) generated by {wi} is called the Weyl group corre-
sponding to A. The action of W clearly preserves the form (·, ·).

It is easy to see that ∆ is W -invariant, that is, W∆ = ∆. Let Φ =
WΠ ⊆ ∆ be the set of W -translates of simple roots. Elements of Φ are
called real roots, and we set Φ± = ∆± ∩ Φ. The remaining roots ∆\Φ are
called imaginary. By construction, (α, α) > 0 for any α ∈ Φ. It is well
known that (α, α) ≤ 0 for any α ∈ ∆\Φ (see [K, Proposition 5.2c)]).

For each α ∈ Φ we define wα ∈ Aut (Q) by wα(β) = β − 2(α,β)
(α,α) α (so

wi = wαi for 1 ≤ i ≤ d). It is easy to see that if α = wαj for some j, then
wα = wwjw

−1.
If X is any subset of Φ, the root subsystem generated by X is the smallest

subset Ψ of Φ such that X ⊂ Ψ and wαΨ ⊂ Ψ for each α ∈ X. In fact, Ψ is
a root system in the “usual” sense, that is, wαΨ ⊂ Ψ for each α ∈ Ψ.

Finally, recall the notion of the Dynkin diagram of A, which we will
denote by Dyn(A). We define Dyn(A) to be a (multi)-graph on d vertices
{v1, . . . , vd}, where vi and vj (for i 6= j) are connected by aijaji edges. 7

4.3. Kac-Moody groups. Let F be a field. In this subsection we describe
the group G(A,F ), the simply-connected Kac-Moody group over F (corre-
sponding to A), as constructed by Tits [Ti2]. The easiest way to define
G(A,F ) is by generators and relators. Most of the data in the presentation
comes directly from the matrix A and the associated real root system Φ(A).
The only external ingredient is a “Chevalley system” {eα ∈ gα}α∈Φ of the
Kac-Moody algebra gA (see [Ti2, 3.2] and [Mo] for details). Each eα is well
defined up to sign; it is common (but not necessary) to assume that eαi = ei
and e−αi = fi for 1 ≤ i ≤ d.

7Our definition is different from the one in [K].
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By definition, the groupG = G(A,F ) is generated by the symbols {xα(u) |
α ∈ Φ, u ∈ F} satisfying relations (R1)-(R7) below. One should think of
xα(u) as playing the role of exp(ueα).

In all the relations u, v are elements of F (arbitrary, unless mentioned
otherwise), 1 ≤ i, j ≤ d, and α, β ∈ Φ.

(R1) xα(u+ v) = xα(u)xα(v)
(R2) Let {α, β} be a prenilpotent pair, that is, there exist w1, w2 ∈ W

such that w1α,w1β ∈ Φ+ and w2α,w2β ∈ Φ−. Then

[xα(u), xβ(v)] =
∏

i,j≥1

xiα+jβ(Cijαβu
ivj)

where the product on the right hand side is over all pairs (i, j) ∈ Z>0×Z>0

such that iα + jβ ∈ Φ, in some fixed order, and Cijαβ are integers inde-
pendent of F (but depending on the order). The prenilpotency assumption
implies that |(Z>0α+ Z>0β) ∩ Φ| <∞ – see [KP, Proposition 4.7].

For 1 ≤ i ≤ d and u ∈ F ∗ set x±i(u) = x±αi(u), w̃i(u) = xi(u)x−i(−u−1)xi(u),
w̃i = w̃i(1) and hi(u) = w̃i(u)w̃−1

i . The remaining relations are
(R3) w̃ixα(u)w̃−1

i = xwiα(±u)

(R4) hi(u)xα(v)hi(u)−1 = xα(vu 2
(α,αi)

(αi,αi) ) for u ∈ F ∗

(R5) w̃ihj(u)w̃−1
i = hj(u)hi(u−aji)

(R6) hi(uv) = hi(u)hi(v) for u, v ∈ F ∗

(R7) [hi(u), hj(v)] = 1 for u, v ∈ F ∗

The choice of a Chevalley system {eα} determines the appropriate signs in
relations (R3) and structure constants in relations (R2). In fact, the latter
can be computed as follows (see [Re1, 9.2.2] for details):

Let {α, β} be a prenilpotent pair, and choose some order on the finite set
(Z>0α+ Z>0β) ∩ Φ. Then the constants Cijαβ are given by the identity

(4.1) [exp(teα), exp(seβ)] =
∏

i,j≥1

exp(Cijαβt
isjeiα+jβ).

Here s and t are formal commuting variables, and (4.1) represents an equal-
ity in the ring of power series U(gA)[[s, t]], where U(gA) is the univer-
sal enveloping algebra of gA. In particular, C11αβ satisfies the equation
[eα, eβ ] = C11αβeα+β.

Before discussing the general structure of Kac-Moody groups, we mention
two important special cases where G has an explicit realization.

1) The simplest case is when A is a matrix of finite type, that is, A is
positive definite. In this case A is the Cartan matrix of a finite-dimensional
simple Lie algebra g, and G(A,F ) is the group of F -points of the corre-
sponding simply-connected Chevalley group G. The above presentation is a
slight modification of the Steinberg presentation for G(F ).

2) Another well-known case is when A is of affine type, that is, A is
positive semi-definite, but not positive-definite. For concreteness, let d > 2
and let A be the generalized Cartan matrix such that aij = −1 if |i− j| = 1
and aij = 0 if |i−j| > 1; in this case the Dynkin diagram is a cycle of length
d, usually denoted by Âd−1. The Kac-Moody group G(A,F ) is a central
extension of the group SLd(F [t, t−1]) by F ∗ .

Remark: If A is of finite type, then ∆ is finite, all roots are real, and each
pair {α, β} with α 6= −β is prenilpotent.
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Next we introduce several important subgroups of G:

1. Root subgroups. For each α ∈ Φ let Uα = {xα(u) | u ∈ F}. Each
Uα is isomorphic to the additive group of F .

2. “Extended” Weyl group. Let W̃ be the subgroup of G generated
by the elements {w̃i}. One can show that there exists a surjective
homomorphism ε : W̃ →W such that ε(w̃i) = wi for 1 ≤ i ≤ d.

3. Let U+ = 〈Uα | α ∈ Φ+〉 and U− = 〈Uα | α ∈ Φ−〉.
4. Let H = 〈{hi(u) | 1 ≤ i ≤ d, u ∈ k}〉. It is known that relations

(R6)-(R7) are defining relations for H. Thus H is isomorphic to the
sum of d copies of F ∗. One can think of H as the analogue of a
torus.

5. Let B+ = 〈H,U+〉 and B− = 〈H,U−〉. By relations (R4), H nor-
malizes both U+ and U−, so we have B+ = HU+ = U+H and
B− = HU− = U−H. Moreover, U+ ∩H = U− ∩H = {1}, as shown
by Rémy [Re1, 3.5.4].

6. Finally, let N = 〈W̃ ,H〉. Since W̃ normalizes H, we have N = W̃H.
It is also easy to see that N/H ∼= W .

Tits [Ti2] proved that (B+, N) and (B−, N) are BN-pairs of G. These lead
to actions of G on two buildings: the positive building X+ and the negative
building X−.

4.4. Topological Kac-Moody groups over finite fields. From now on
we assume that F is a finite field of characteristic p. In this case the buildings
X+ and X− are locally finite as chamber complexes. The automorphism
group of a locally finite building carries a natural topology with a base of
neighborhoods of identity consisting of pointwise stabilizers of finite unions
of chambers.

Consider the topologies on G induced by its actions on X+ and X−, and
let G+

top and G−
top be the corresponding completions of G – such groups were

introduced in [RR] and called topological Kac-Moody groups (see also [CG]
for a slightly different construction). Usually, one works with the group
G+

top, but for us it will be more convenient to work with G−
top.

Let ι : G → G−
top be the natural map, and let Z be the kernel of ι or,

equivalently, the kernel of the action of G on X−. It is known that Z is
a central subgroup of H (see [RR, 1.B, Lemma 1] which is based on [Re1,
1.5.4, 3.5.4]). In particular, Z ∩ U− = Z ∩ U+ = {1}.

Before proceeding, we shall describe the subgroups introduced above in
the case Dyn(A) = Âd−1.

1. G−
top is isomorphic to PSLd(F [[t−1]]). Under this isomorphism, ι(G)

is mapped to PSLd(F [t, t−1]).
2. ι(B+) (resp. ι(U+)) consists of matrices in PSLd(F [t]) which are

upper-triangular (resp. upper-unitriangular) mod t.
3. ι(B−) (resp. ι(U−)) consists of matrices in PSLd(F [t−1]) which are

lower-triangular (resp. lower-unitriangular) mod t−1. The closures
of these subgroups in G−

top have analogous descriptions with F [t−1]
replaced by F [[t−1]].

4. ι(H) consists of diagonal matrices in PSLd(F )
5. ι(N) is a product of diagonal matrices in PSLd(F [t, t−1]) and mono-

mial matrices.
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Now we return to the general case. The group G−
top has nice topological

structure, strengthening the analogy with the affine case. It is easy to see
that ι(H), ι(N) and ι(B+) are discrete in G−

top. Let B−
top (resp. U−

top) be the
closures of ι(B−) (resp. ι(U−)) in G−

top. The following theorem was proved
independently by Carbone and Garland [CG] and Rémy and Ronan ([RR],
[Re2]):

Theorem 4.1. The group G−
top is locally compact. Moreover, B−

top is an
open profinite subgroup of G−

top, and U−
top is an open pro-p subgroup.

As a consequence of this theorem, we see that U− is a residually-p group,
and by symmetry the same is true for U+.

Now we turn to the discussion of when topological Kac-Moody groups
have property (T). An almost complete answer to this question is given by a
fundamental work of Dymara and Januszkiewicz [DJ], who established very
general necessary and sufficient conditions for a group with a BN-pair to
have property (T). Theorem 4.2 below is a special case of their result.

Definition. We say that the matrix A is 2-spherical if any pair of simple
roots in Φ(A) generates a finite root subsystem.

Remark: A is 2-spherical if and only if aijaji ≤ 3 for all i 6= j.

Theorem 4.2. a) If A is not 2-spherical, G−
top does not have property (T).

b) If A is 2-spherical and |F | > 1
251764d−1, then G−

top has (T).

The next theorem was proved independently by Carbone and Garland
[CG] and Rémy [Re3]:

Theorem 4.3. The group ι(B+) is a non-uniform lattice in G−
top provided

|F | > d (recall that d is the size of the matrix A).

Now a lattice in G−
top has (T) if and only if G−

top has (T). Moreover, if
ι(B+) has (T), then U+ also has (T) because (T) is invariant under the
passage to a finite index subgroup. Here we use the fact that ι(U+) has
finite index in ι(B+) and U+ ∩Ker ι = {1}.

4.5. Tits’ presentation for U+. So, U+ is always a residually-p group,
and we know when U+ has property (T). In order to test whether the pro-p
completion of U+ is a Golod-Shafarevich group, we need an explicit presenta-
tion for U+. Such a presentation was established by Tits [Ti1, Proposition 5]
(see also [Re1, 3.5.3]).

Theorem 4.4 (Tits). The group U = U+ is generated by the symbols
{xα(u) | α ∈ Φ+, u ∈ F} subject to relations (R1) and (R2) (see subsec-
tion 4.3).

5. Proof of Theorem 1.6

In this section we give specific examples where U+ is a Golod-Shafarevich
group with property (T). We retain all notations from the previous section,
and we will write U for U+ (the matrix A and the field F are fixed for the
entire section).

We will take F to be the prime field Fp. This assumption is essential; in
fact, we do not know if U can be a Golod-Shafarevich group when F is a
non-prime field.
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As before, fix an integer d ≥ 2, and let A be the d× d generalized Cartan
matrix such that aij = −1 for i 6= j. Note that Dyn(A) is the complete
(simply-laced) graph with d vertices. Clearly, A is 2-spherical, so by Theo-
rem 4.2b) U has property (T) provided p > 1

251764d−1.
Recall that Π = {α1, . . . , αd} denotes the set of simple roots. Finally, we

set xα := xα(1) for each α ∈ Φ.

5.1. Optimizing Tits’ presentation. In this subsection we construct a
new presentation for the group U which has a much smaller generating set
than Tits’ presentation. Informally speaking, this presentation is obtained
from Tits’ presentation as follows. For each non-simple positive root α ∈ Φ
and u ∈ F we express xα(u) in terms of xα1 , . . . , xαd

using Tits’ presentation;
then we eliminate xα(u) from the generating set, which allows us to eliminate
one of the defining relators in Tits’ presentation as well. As a result, we
obtain a presentation for U with the generating set {xα1 , . . . , xαd

}; it will
be called an optimized presentation. In the next subsection we will show
that this optimized presentation satisfies the Golod-Shafarevich condition
provided d ≥ 45.

Since the matrix A is symmetric, we can normalize the form (·, ·) such
that (γ, γ) = 2 for any γ ∈ Φ. Note that wα(β) = β − (β, α)α for any
α, β ∈ Φ.

We start with a simple characterization of prenilpotent pairs.

Lemma 5.1. A pair of positive real roots {α, β} is prenilpotent if and only
if (α, β) ≥ −1.

This result follows easily from the proof of [KP, Proposition 4.7]. For
completeness we present a proof at the end of this section.

Next we determine the precise form of relations (R2) in Tits’ presentation.

Lemma 5.2. Let {α, β} be a prenilpotent pair of positive roots.
a) If (α, β) = −1, then (Z>0α + Z>0β) ∩ Φ = {α + β}. Moreover,

[xα, xβ ] = x±1
α+β.

b) If (α, β) ≥ 0, then (Z>0α+ Z>0β) ∩ Φ = ∅, whence [xα, xβ] = 1.

Proof. a) Given i, j ≥ 1, we have (iα + jβ, iα + jβ) = 2(i2 + j2 − ij) =
2(i− j)2 + 2ij. If either i > 1 or j > 1, then 2(i− j)2 + 2ij > 2, so iα+ jβ
cannot be a root. On the other hand, α+ β = wα(β) is a root.

Now we prove the statement about the commutation relation. We know
that [xα, xβ] = x

C11αβ

α+β for some C11αβ ∈ Z, and C11αβ is given by the equa-
tion [eα, eβ ] = C11αβeα+β (where {eγ}γ∈Φ is the chosen Chevalley system).
Since (α, α) = (β, β) = 2 and (α, β) = −1, the root subsystem Ψ generated
by α and β is finite; more precisely, Ψ = {±α,±β,±(α+ β)} is of type A2.
Hence, {eγ}γ∈Ψ is a part of a Chevalley basis for a finite-dimensional simple
Lie algebra (isomorphic to sl3). By [St, Theorem 1d)], C11αβ = ±(q + 1)
where q ∈ Z≥0 is the largest integer such that α−qβ ∈ Ψ. From the explicit
description of Ψ we see that q = 0, so C11αβ = ±1.

The proof of b) is analogous. �

If {α, β} is a prenilpotent pair such that α + β is a root, then after
swapping α and β if necessary, we can assume that the commutator [xα, xβ]
is equal to xα+β, not x−1

α+β. In this case we will say that {α, β} is properly
ordered.
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Let P1 be the set of properly ordered prenilpotent pairs {α, β} of positive
roots such that α+ β is a root. Let P2 be the set of unordered prenilpotent
pairs {α, β} of positive roots such that α 6= β and α + β is not a root. Let
P = P1 t P2. Now we can write Tits’ presentation for U very explicitly.

Proposition 5.3. The group U has a presentation 〈X | R〉 where X = {xα |
α ∈ Φ+}, and R consists of three types of relations:

(A) [xα, xβ ] = xα+β where {α, β} ∈ P1.
(B) [xα, xβ ] = 1 where {α, β} ∈ P2.
(C) xp

α = 1 where α ∈ Φ+.

Proof. Recall two commutator identities: [a, bc] = [a, c][a, b][[a, b], c] and
[ab, c] = [a, c][[a, c], b][b, c]. Using these identities it is easy to see that
relations (A) and (B) imply that [xn

α, x
m
β ] = xnm

α+β for {α, β} ∈ P1 and
[xn

α, x
m
β ] = 1 for {α, β} ∈ P2, with n,m ∈ Z>0. These relations along with

relations (C) form a set of defining relations for U by Theorem 4.4. �
It is clear that the above generating set X is not minimal. In fact, we

will see shortly that U is generated by xα1 , . . . , xαd
. The latter is an easy

consequence of a purely combinatorial statement:

Proposition 5.4. Let γ be a positive non-simple real root. Then there exists
a pair {α, β} ∈ P1 such that γ = α+ β.

Proof. By [CER, Lemma 6.2], there exist simple roots αi, αj , a (non-simple)
root γ0 ∈ Z>0αi + Z>0αj and w ∈ W such that wαi > 0, wαj > 0 and
wγ0 = γ. By Lemma 5.2a), Z>0αi + Z>0αj = {αi + αj}, whence γ =
w(αi + αj) = wαi + wαj . Since the pair {αi, αj} is prenilpotent, so is the
pair {wαi, wαj}. Thus we can set {α, β} = {wαi, wαj} �

Now we will define another presentation for U of the form 〈X0|R0〉 where
X0 = {x1, . . . , xd} is a set of cardinality d, and xi represents xαi in U .
Informally speaking, this presentation is obtained from Tits’ presentation
by rewriting defining relations (A), (B) and (C) of Proposition 5.3 in terms
of the new generating set X0.

Let F (X0) be the free group on X0. We shall define elements Cγ ∈ F (X0),
for γ ∈ Φ+, by induction on ht(γ). If γ = αi for some i, we set Cγ = xi.
Now let γ ∈ Φ+ be arbitrary, and suppose that Cγ′ is already defined for
all γ′ with ht(γ′) < ht(γ). Choose {α, β} ∈ P1 such that γ = α+ β (this is
possible by Proposition 5.4), and set Cγ = [Cα, Cβ ]. The chosen pair {α, β}
will be denoted by p(γ). Finally, let P3 := {p(γ) | γ ∈ Φ+} ⊂ P1.

Define R0 to be the subset of F (X0) consisting of the following elements:
(A) [Cα, Cβ]C−1

α+β where {α, β} ∈ P1\P3,
(B) [Cα, Cβ] where {α, β} ∈ P2,
(C) Cp

α where α ∈ Φ+.
Note that if {α, β} ∈ P3, then [Cα, Cβ]C−1

α+β = 1 (as an element of F (X0)).

Let Ũ be the group given by the presentation 〈X0|R0〉. We claim that Ũ
is isomorphic to U .

By construction, there is a well-defined homomorphism ϕ : U → Ũ such
that ψ(xα) = Cα for α ∈ Φ+ (here Cα is not an element of F (X0), but its
image in Ũ). Now consider the homomorphism ψ : F (X0) → U defined by
ψ(xi) = xαi for 1 ≤ i ≤ d. By induction on height, we see that ψ(Cα) = xα

for α ∈ Φ+, whence ϕ factors through a homomorphism ψ̄ : Ũ → U . Clearly,
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ϕ and ψ̄ are mutually inverse, whence Ũ is isomorphic to U . From now on the
presentation 〈X0 | R0〉 of U will be referred to as the optimized presentation.

By construction, for each α ∈ Φ+ the element Cα is a commutator (not
necessarily left-normed) of length ht(α) in {x1, . . . , xd}. Hence, the degrees
of elements of R0 (with respect to the Zassenhaus p-series of F (X0)) are
given as follows: deg ([Cα, Cβ]C−1

α+β) = ht(α) + ht(β) for {α, β} ∈ P1\P3,
deg ([Cα, Cβ]) = ht(α) + ht(β) for {α, β} ∈ P2, and deg (Cp

α) = p · ht(α) for
α ∈ Φ+.

5.2. Verifying the Golod-Shafarevich condition. We are now ready to
show that U is a Golod-Shafarevich group for sufficiently large d:

Theorem 5.5. Suppose that d ≥ 45 and p > 2. Then the optimized presen-
tation of U satisfies the Golod-Shafarevich condition.

Proof. Throughout this subsection t will be a fixed real number between
0 and 1. Let ri be the number of defining relators of degree i in R0, and
let H(t) = 1 − dt +

∑∞
i=2 rit

i (it is clear that r1 = 0). We will show that
H(2/d) < 0 provided d ≥ 45.

Clearly, we have

H(t) = 1− dt+
∑

{α,β}∈P

tht(α)+ht(β) −
∑

α∈Φ+\Π

tht(α) +
∑

α∈Φ+

tp·ht(α).

The third and the fourth terms in the above sum count the total weight of
relators of type (A) and (B) in the optimized presentation for U ; the fourth
term (with the minus sign) takes into account relators from the Tits’ presen-
tation which correspond to pairs in P3 (and become trivial after rewriting).
Finally, the fifth term counts the total weight of relators of type (C).

For i ≥ 1, let Li be the number of real roots of height i, and for 1 ≤ i ≤ j
let Li,j be the number of pairs {α, β} ∈ P such that {ht(α),ht(β)} = {i, j}
as unordered pairs. Note that Li,j ≤ LiLj for i 6= j and Li,i ≤

(
Li
2

)
. Let

S(t) =
∑∞

i=3 Lit
i. Then

∑
{α,β}∈P t

ht(α)+ht(β) =
∑

1≤i≤j Li,jt
i+j , whence

H(t) < 1− dt+
(
L1

2

)
t2 + L1,2t

3 + L2,2t
4 + S(t)(L1t+ L2t

2)+

S(t)2/2− L2t
2 − S(t) + L1t

p + L2t
2p + S(tp).

We know that there are d simple roots, so L1 = d. Since wj(αi) =
αi + αj for i 6= j, we have L2 =

(
d
2

)
. By Lemma 5.1, a pair {αi + αj , αk} is

prenilpotent if and only if k = i or k = j. It follows that L1,2 = d(d − 1).
Similarly, a pair {αi +αj , αk +αl} is prenilpotent if and only if k = i, k = j,
l = i or l = j, so L2,2 = d

(
d−1
2

)
. Therefore, we have

H(t) < 1− dt+ d(d− 1)t3 + d

(
d− 1

2

)
t4 + S(t)(dt+

(
d

2

)
t2)+

S(t)2/2− S(t) + dtp +
(
d

2

)
t2p + S(tp).

Now set S = S(2/d). Using the trivial estimate S(tp) < S(t)p and assum-
ing that p > 2, we get

H(2/d) < 1−2+
8
d

+
8
d

+S(2+2)+S2/2−S+Sp = −1+
16
d

+3S+S2/2+Sp.
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To prove Theorem 5.5, it suffices to show that S < 1/5 for d ≥ 45.

In order to estimate S, we introduce the notion of the depth of a root:

Definition. Let β be a positive real root.
a) Set N(β) = {γ ∈ Φ+ | γ = wiβ for some i and ht(γ) > ht(β)}.
b) The depth of β is the minimal length l of a sequence of real roots

β1, . . . , βl where β1 is simple, βl = β and βj+1 ∈ N(βj) for 1 ≤ j ≤ l − 1.

To prove that depth is always defined, we need to show that for every
β ∈ Φ+ there exists i such that ht(wiβ) < ht(β). Suppose this is not the
case for some β. Then (β, αi) ≤ 0 for all i, and since β is a linear combination
of αi’s with non-negative coefficients, it would follow that (β, β) ≤ 0. The
latter is impossible since β is real.

For each i ≥ 1, let Φi be the set of real roots of depth i and let Si(t) =∑
α∈Φi

tht(α). Clearly, roots of depth 1 (resp. 2) are precisely roots of height
1 (resp. 2), so S(t) =

∑
i≥3

Si(t).

Lemma 5.6. The following hold:
a) Roots of depth 3 are all of the form αi + αj + 2αk where i, j, k are

distinct, so S3(t) < d3

2 t
4.

b) For every i ≥ 3, Si+1(t) < Si(t)(2t+ dt3).

The required estimate on S follows immediately from the above lemma.
Indeed, we have

S(2/d) =
∞∑
i=3

Si(2/d) <
S3(2/d)

1− 4/d− 8/d2
<

8
d− 4− 8/d

,

so S(2/d) < 1/5 for d ≥ 45. This completes the proof of Theorem 5.5 �

Proof of Lemma 5.6. a) This is straightforward.
b) Clearly, Φi+1 =

⋃
α∈Φi

N(α) for every i ≥ 1. Therefore, it is enough to

show that for every α of depth at least 3,
∑

β∈N(α)

tht(β) < tht(α)(2t + dt3).

Since N(α) has at most d elements, the last inequality will follow if we show
that N(α) contains at most two roots β with ht(β) ≤ ht(α) + 2.

Write α in the from
∑d

i=1 niαi. For 1 ≤ j ≤ d, we have wj(α) = α +
(
∑

i6=j ni−2nj)αj . Since ht(α) =
∑d

i=1 ni, we have ht(wjα) = 2ht(α)−3nj .
Hence ht(wjα) ≤ ht(α) + 2 if and only if 3nj ≥ ht(α) − 2. The latter
inequality holds for at most 3 values of j (provided ht(α) > 2): if ht(α) > 8,
this follows from an obvious counting argument, and if 3 ≤ ht(α) ≤ 8, this
is an easy case-by-case verification.

Thus we showed that there are at most 3 roots of the form wjα whose
height is at most ht(α)+2. However, one of those 3 roots has height smaller
than ht(α) and hence does not lie in N(α). This observation finishes the
proof. �

Remark: In the course of the proof of Theorem 5.5 we showed that the
optimized presentation for U+ has no relators of degree 2.

Proof of Lemma 5.1. First, assume that (α, β) ≥ −1. Since α, β ∈ Φ+, to
prove that {α, β} is prenilpotent it suffices to show that there is w ∈ W
such that wα,wβ ∈ Φ−. If (α, β) = 0, then wαwβ(α) = wα(α) = −α,
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wαwβ(β) = −β, so we take w = wαwβ. If (α, β) ≥ 1, then wβ(α)+wα(β) =

(1− (α, β))(α+ β) ∈
d⊕

i=1
Z≤0αi. Thus wβ(α) ∈ Φ− or wα(β) ∈ Φ−, so both

α and β are mapped to Φ− by wβ or wα. Finally, if (α, β) = −1, we have
{wα,wβ} = {−β,−α} for w = wαwβwα.

Now suppose that (α, β) ≤ −2, and set q = −(α, β). It is well known that
the set Ω := {k ∈ Z | α+ kβ ∈ ∆} consists of consecutive integers (without
gaps) – see [K, Proposition 3.6 b)]. Since wα(β) = β + qα ∈ Φ, we have
q ∈ Ω. We also know that 0 ∈ Ω, whence 1 ∈ Ω, that is, α + β ∈ ∆. Since
(α+ β, α+ β) = 4− 2q ≤ 0, α+ β is an imaginary root. This implies that
{α, β} is not prenilpotent. Indeed, if w ∈W is such that wα,wβ ∈ Φ−, then
w(α+ β) ∈ ∆−. The latter is impossible since the set of positive imaginary
roots is W -invariant by [K, Proposition 5.2a)]. �

6. Variations and generalizations

In this section we discuss possible variations and generalizations of our
construction, which could yield a larger class of (explicitly defined) Golod-
Shafarevich groups with property (T ) as well as strengthening of the state-
ment of Theorem 1.6. Potential applications of such generalizations will be
discussed in Section 8.

6.1. Using other generalized Cartan matrices. The assumption that
Dyn(A) is a complete graph was made to keep computations as simple as
possible, and we could work in much more general situation. For instance,
everything in subsection 5.1 remains valid as long asDyn(A) is simply-laced,
i.e. aij = 0 or −1 for all i 6= j. The essential thing for U+ to be Golod-
Shafarevich is that A should have few zero entries (as each such entry leads
to a defining relator of degree 2).

In general, when A is 2-spherical, there is a presentation for U+ which
has fewer relations than Tits’ presentation – see [AM, Théorème A] and
[Cap, Theorem 3.6]. Using this presentation and a more careful counting
argument, one can show that in the case when Dyn(A) is a complete graph
on d vertices, U+ is a Golod-Shafarevich group for d ≥ 12.

6.2. Finitely presented Golod-Shafarevich groups with (T). Abra-
menko [A] proved that, assuming |F | > 6, U+ = U+(A,F ) is finitely pre-
sented if and only if A is 3-spherical, that is, every triple of simple roots in
Φ(A) generates a finite root subsystem.

Now assume that Dyn(A) is simply-laced. Then it is easy to see that A
is 3-spherical if and only if Dyn(A) does not contain cycles of length three.
Thus if Dyn(A) is a complete graph, then U+ is not finitely presented.

Nevertheless, it is easy to construct a finitely presented Golod-Shafarevich
group with property (T ). One way is to use the following result of Shalom
(see [Sh, Theorem 6.7]):

Theorem 6.1. Let Γ be a discrete group with property (T ). Let 〈X|R〉 be
a presentation for Γ with |X| < ∞. Then there exists a finite subset R′ of
R such that the group Γ′ := 〈X|R′〉 also has property (T).

Clearly, if Γ is a Golod-Shafarevich group, then so is Γ′. The disadvantage
of this approach is that we do not have an explicit presentation for Γ′ and
we do not know if Γ′ is residually finite.
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Another way to construct a finitely presented Golod-Shafarevich group
with property (T) is as follows. Let A be a d× d generalized Cartan matrix
such that Dyn(A) is the complete bipartite graph Kd/2,d/2 (d - even). Then
A is 3-spherical, so U+ is a finitely presented group with property (T ). While
U+ is not a Golod-Shafarevich group, it does come very close to satisfying
the required inequality (provided F is a prime field). It turns out that U+

has a subgroup of index p which is Golod-Shafarevich when d is large enough.
Moreover, if A is 3-spherical, an explicit finite presentation for U+ is given

by the following theorem of Devillers and Mühlherr [DM, Corollary 1.2]: 8

Theorem 6.2. Suppose that A is 3-spherical, |F | ≥ 16, and U = U+(A,F ).
Let {α1, . . . , αd} be the simple roots in Φ(A). Let Ui = Uαi for 1 ≤ i ≤ d and
Ui,j = 〈Uαi , Uαj 〉 for 1 ≤ i < j ≤ d. Then U is the amalgamated product of
the system {Ui}∪ {Ui,j} with respect to inclusions Ui → Ui,j and Uj → Ui,j.

Remark: The conclusion of Theorem 6.2 can be reformulated as follows.
For 1 ≤ i ≤ d choose some generating set Xi of Ui, and for 1 ≤ i < j ≤ d
choose some presentation 〈Xi ∪ Xj |Ri,j〉 of Ui,j . Then U is given by the
presentation 〈X|R〉 where X =

⋃
1≤i≤d

Xi and R =
⋃

1≤i<j≤d

Ri,j .

Thus the second method produces a residually-p Golod-Shafarevich group
with (T) given by an explicit finite presentation. The details of this con-
struction are given in the next section.

6.3. Dependence of the number of generators on p.

Question 6.3. For which pairs (p, d) (p-prime, d ≥ 2) does there exist a
group Γ with property (T ) which is Golod-Shafarevich with respect to p and
such that d(Γp̂) = d?

In the previous section we showed that such a group exists for d ≥ 45 and
p > 1

251764d−1. An interesting problem is to remove the dependence of d on
p, e.g. to produce such groups for pairs (p, d) where p is fixed and d→∞ (at
least for large enough p). A natural thing to try would be to start with one
of our examples and then take a suitable finite index subgroup. In this way,
one can always ensure that the number of generators is as large as needed,
but it is hard to control if the obtained group will be Golod-Shafarevich.

Of course, it is possible that the group U+(A,F ) always has (T ) whenever
A is 2-spherical and Dyn(A) is simply-laced 9 - if this is true, the above
problem would be solved. However, proving that U+(A,F ) has (T ) when
|F | is small with respect to the size of A, would require new ideas.

Finally, we should mention that a solution to the above problem would be
a major step towards proving the conjecture that a Golod-Shafarevich group
always has an infinite quotient with property (T ) (see Conjecture 8.2).

7. Finitely presented examples. Explicit construction.

In this section we will explicitly construct a finitely presented Golod-
Shafarevich group with property (T). We believe that our technique could
be useful in the future for construction of Golod-Shafarevich groups with
various additional properties (e.g. see Question 6.3).

8Abramenko informed the author that the proof of his finite presentability criterion
yields the same result in 3-spherical case, but the techniques are completely different.

9Abramenko showed that if |F | = 2 or 3, then U+(A, F ) may not be finitely generated
even if A is 2-spherical. However, this cannot happen if Dyn(A) is simply-laced.
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7.1. Some basic facts about presentations.
1. Presentations of finite index subgroups. Suppose that a group G is

given by some presentation 〈X|R〉. Let F be the free group on X, and let
N be the normal closure of R in F (so that G ∼= F/N). Let H be a finite
index subgroup of G. Let F1 be the preimage of H under the natural map
F → G, let Y be a free generating set for F1, and let T be a transversal for
F1 in F . Then H is given by the presentation

(7.1) 〈Y | {rt}r∈R, t∈T 〉 where rt = t−1rt.

2. Generator eliminations. Let 〈X|R〉 be a presentation for a group G
where X = {x1, . . . , xk}, and suppose that one of the defining relations has
the form xi = wi where the word wi does not depend on xi. Then one
can construct a new presentation for G be eliminating the generator xi, the
relation xi = wi, and substituting wi for xi in all other relations. We shall
call such procedure a generator elimination.

3. Elementary transformations. Let 〈X|R〉 be some presentation where
R = {r1, . . . , rs}. Fix i, j ∈ {1, . . . , s} with i 6= j, and let R′ = {r′1, . . . , r′s}
where r′k = rk for k 6= i and r′i = rir

±1
j or r′i = r±1

j ri. Then the presentations
〈X|R〉 and 〈X|R′〉 define isomorphic groups. We will say that R′ is obtained
from R by an elementary transformation.

7.2. The construction. Fix d ∈ N, and let A = (aij)2d
i,j=1 be the 2d × 2d

generalized Cartan matrix such that aij = 0 if i − j is even (and i 6= j),
and aij = −1 if i − j is odd. Then Dyn(A) is isomorphic to the complete
simply-laced bipartite graph Kd,d. In particular, Dyn(A) does not contain
any cycles of length 3, so A is 3-spherical.

Let {α1, . . . , α2d} be the simple roots in Φ(A). Given i, j ∈ {1, . . . , 2d}
let Φi,j be the root subsystem of Φ(A) generated by αi, αj . Then Φi,j is a
root system of type A1 ×A1 if i− j is even, and A2 if i− j is odd.

Let p > 16 and U = U+(A,Fp). Let Ui = Uαi for 1 ≤ i ≤ 2d and Ui,j =
〈Uαi , Uαj 〉 for 1 ≤ i < j ≤ 2d. Clearly, Ui,j

∼= Z/pZ⊕ Z/pZ if i− j is even,
and Ui,j is isomorphic to the upper-unitriangular subgroup of SL3(Fp) if i−j
is odd. Hence, Ui,j = 〈xαi , xαj | x

p
αi = xp

αj = [xαi , xαj ] = 1〉 if i − j is even
and Ui,j = 〈xαi , xαj | x

p
αi = xp

αj = [[xαi , xαj ], xαj ] = [[xαj , xαi ], xαi ] = 1〉 if
i− j is odd.

For convenience, we introduce shortcut notations for the generators of U :
for 1 ≤ i ≤ d we set xi = xα2i−1 and yi = xα2i . By Theorem 6.2, U is given
by the presentation 〈X|R〉 where X = {x1, . . . , xd, y1, . . . , yd} and R is the
following set of relations

(Ai,j) [xi, xj ] = 1, 1 ≤ i < j ≤ d (Bi,j) [yi, yj ] = 1, 1 ≤ i < j ≤ d

(Ci,j) [[xj , yi], yi] = 1, 1 ≤ i, j ≤ d (Di,j) [[yi, xj ], xj ] = 1, 1 ≤ i, j ≤ d

(Ei) xp
i = 1, 1 ≤ i ≤ d (Fi) yp

i = 1, 1 ≤ i ≤ d

Let F be the free group on X, and let F ′ be the unique normal subgroup
of F of index p which contains all the generators in X except x1. Let
π : F → U be the natural quotient map and V = π(F ′). We will show that
V is a Golod-Shafarevich group when d ≥ 300 by starting with a presentation
given by (7.1), then performing several generator eliminations followed by
suitable elementary transformations and elimination of redundant relations.

It is clear that F ′ is freely generated by the set
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X ′ = {z}∪ {xi,j : 2 ≤ i ≤ d, 0 ≤ j ≤ p−1}∪ {yi,j : 1 ≤ i ≤ d, 0 ≤ j ≤ p−1}

where z = xp
1, xi,j = x

xj
1

i and yi,j = y
xj
1

i . The set T = {1, x1, . . . x
p−1
1 } is a

transversal for F1 in F . Therefore, V is given by the presentation 〈X ′|R′〉
where R′ = RT is the set of T -conjugates of relations (A)-(F) above.

7.3. Elimination of generators.
1. The relation (E1) can be written as z = 1. Note that (E1) is T -

invariant, that is, zt = z for any t ∈ T , whence T -conjugates of (E1) do not
yield new relations. Thus we can eliminate the generator z and all relations
in (E1)T , and replace z by 1 in all other relations.

2. For each i = 2, . . . , d, the relation (A1,i) can be written as xx1
i = xi or,

equivalently, xi,1 = xi,0. The T -conjugates of this relation are

xi,1 = xi,0, xi,2 = xi,1, . . . , xi,p−1 = xi,p−2, xi,0 = xi,p−1.

Thus we can eliminate all relations in (A1,i)T as well as the generators
xi,1, . . . xi,p−1 (replacing them by xi,0 in other relations).

3. The final source of generator eliminations is relations {(Di,1)}. For each
i = 1, . . . , d, we can write the relation (Di,1) as (y−1

i (yi)x1)x1 = y−1
i (yi)x1

or, equivalently, yi,2 = yi,1y
−1
i,0 yi,1. The T -conjugates of (Di,1) are

yi,n+2 = yi,n+1y
−1
i,nyi,n+1, 0 ≤ n ≤ p− 1

(where subscripts are taken modulo p). The first p−2 of these T -conjugates
can be used to eliminate yi,2, yi,3, . . . , yp−1. We get

(7.2) yi,n = (yi,1y
−1
i,0 )n−1yi,1 for 2 ≤ n ≤ p− 1

The last two T -conjugates of (Di,1) are easily seen to be equivalent to the
relation (yi,1y

−1
i,0 )p = 1. However, this relation is a consequence of other

relations since yp
i,0 = yp

i,1 = 1 by (Fi) and its T -conjugates, and [yi,1, yi,0] = 1
by (Ci,1) (see below).

7.4. Elementary transformations. From now on we write xi = xi,0, yi =
yi,0 and zi = yi,1. Elimination of generators in 7.3 yields a new presentation
〈X ′′|R′′〉 of V where X ′′ = {xi}d

i=2 ∪ {yi}d
i=1 ∪ {zi}d

i=1 and R′′ is the union
of the following subsets of R′:

R(A) =
⋃

2≤i<j≤d

(Ai,j)T , R(D) =
⋃

1≤i≤d, 2≤j≤d

(Di,j)T ,

R(B) =
⋃

1≤i<j≤d

(Bi,j)T , R(E) =
⋃

2≤i≤d

(Ei)T ,

R(C) =
⋃

1≤i≤d, 2≤j≤d

(Ci,j)T , R(F ) =
⋃

1≤i≤d

(Fi)T .

R1(C) =
⋃

1≤i≤d

(Ci,1)T ,

(all these relations are rewritten in terms of the new generating set X ′′).
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We shall apply suitable elementary transformations to each of the sets
(Ai,j)T , (Bi,j)T , . . . , (Fi)T (as described below) and then eliminate redun-
dant relations. The new sets of relations will be denoted (Ai,j)T

∗ , (Bi,j)T
∗ . . .

(Fi)T
∗ , and let R∗ denote the union of those sets.

If S is any subset of R∗, we set HS(t) =
∑

r∈S t
deg (r). By the degree of

a relation r1 = r2 (where r1, r2 are elements of the free group F (X ′′)) we
mean the degree of r1r−1

2 with respect to the Zassenhaus p-series on F (X ′′).
1. We start with the set R(C). Let 1 ≤ i, j ≤ d with j > 1. The relation

[[xj , yi], yi] = 1 has degree 3, and so do all of its T -conjugates. Notice,
however, that all of these conjugates will depend on just 3 variables: xj , yi

and zi. After applying elementary transformations to the set (Ci,j)T , we
can assume that the number of relations of degree n in the transformed set
(Ci,j)T

∗ does not exceed the number of left-normed commutators of length n
in 3 variables, which is surely less than 3n. Thus

H(Ci,j)T
∗
(t) ≤

∞∑
n=3

3ntn =
27t3

1− 3t
for 1 ≤ i ≤ d and 2 ≤ j ≤ d

2. The set R1(C). For 1 ≤ i ≤ d, the relation (Ci,1) is equivalent to
[yi, zi] = 1. By (7.2), all T -conjugates of (Ci,1) are products of commutators
in yi and zi, so they are consequences of (Ci,1). Therefore, H(Ci,1)T

∗
(t) = t2

for 1 ≤ i ≤ d.
3. The set R(D) is treated in the same way as R(C). We conclude that

H(Di,j)T
∗
(t) ≤ 27t3

1−3t for 1 ≤ i ≤ d and 2 ≤ j ≤ d.

4. The set R(A). For each i, j, with 2 ≤ i < j ≤ d, the relation [xi, xj ] = 1
is T -invariant, so its T -conjugates do not yield new relations. Therefore
H(Ai,j)T

∗
(t) = t2 for 2 ≤ i < j ≤ d.

5. The set R(E). As in the previous case, for each i > 1, the relation
xp

i = 1 is T -invariant. Thus, H(Ei)T
∗

= tp for 2 ≤ i ≤ d.

6. The set R(F ). For 1 ≤ i ≤ d, T -conjugates of the relation yp
i = 1

are yp
i,n = 1, 0 ≤ n ≤ p − 1. Since yi,n = (ziy−1

i )n−1zi and [yi, zi] = 1,
the relations yp

i,n = 1 for n ≥ 2 are redundant. Hence, H(Fi)T
∗

= 2tp for
1 ≤ i ≤ d.

7. The set R(B). This case requires a more delicate argument. Let
1 ≤ i < j ≤ d. By (7.2), the T -conjugates of the relation [yi, yj ] = 1 are

[(ziy−1
i )n−1zi, (zjy−1

j )n−1zj ] = 1, 0 ≤ n ≤ p− 1.

Clearly, all these conjugates depend only on four variables yi, yj , zi, zj , so
after applying elementary transformations we can assume that there are at
most 4n relations of degree n for n ≥ 2. However, we need a better bound
for n = 2.

By basic commutator identities, for each n = 0, . . . , p− 1, we have

[(ziy−1
i )n−1zi, (zjy−1

j )n−1zj ] = [zi, zj ]n
2
([zi, yj ][yi, zj ])−n(n−1)[yi, yj ](n−1)2P3(n)

where P3(n) is a product of commutators of length at least 3. Hence, if Fi,j

is the free group on {yi, yj , zi, zj}, then the projection of the set (Bi,j)T to
γ2Fi,j/γ3Fi,j lies in the linear span of just three elements: [yi, yj ], [zi, zj ] and
[yi, zj ][zi, yj ]. Therefore, we can assume that there are at most 3 relations
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of degree 2 in the transformed set (Bi,j)T
∗ . Arguing as in previous cases, we

have H(Bi,j)T
∗
≤ 3t2 + 64t3

1−4t for 1 ≤ i < j ≤ d.

Finally, let H(t) = 1 − |X ′′|t +HR∗(t). Combining the above estimates,
we get

H(t) ≤ 1− (3d−1)t+d(d−1)
27t3

1− 3t
+dt2 +d(d−1)

27t3

1− 3t
+

(
d− 1

2

)
t2+

(d−1)tp+d·2tp+
(
d

2

) (
3t2 +

64t3

1− 4t

)
≤ 1−(3d−1)t+2d2t2+3dtp+

86d2t3

1− 4t
.

It is straightforward to check thatH( 2
3d) < 0 for d ≥ 300, so the presentation

〈X ′′|R∗〉 satisfies the Golod-Shafarevich condition.

8. Applications

Since any Golod-Shafarevich group has “plenty” of infinite quotients, The-
orem 1.6 provides a large supply of residually finite groups with property (τ);
moreover, these groups are very different from classical examples of groups
with (τ) such as SLn(Z) or SLn(Fp[t]). In this section we discuss some
consequences of Theorem 1.6 and its potential applications in the future.

8.1. Theorem 1.6 provides further indication that groups with property (τ)
are not necessarily “small from the top”. Some evidence in this direction
was recently obtained in [Ka] and [JKN].

First, results of Kassabov [Ka] already imply the existence of a “large”
pro-p group with property “(τ)”. Of course, a compact group always has
property (τ) in the usual sense. However, if G is a finitely generated profinite
group and S is a finite generating set for G, one can say that the pair (G,S)
has “(τ)” if finite quotients of G form a family of expanders (with respect to
the generating sets which are images of S). Kassabov showed that property
“(τ)” in this sense holds for the pair (ELn(Fp〈〈x1, . . . xd〉〉), S), n ≥ 3, where
Fp〈〈x1, . . . xd〉〉 is the ring of formal power series over Fp in non-commuting
variables {x1, . . . , xd}, and S is the set of elementary matrices {1 + xkeij}.
Since the group ELn(Fp〈〈x1, . . . xd〉〉) has a finite index pro-p subgroup, one
immediately obtains the following interesting consequence.

Corollary 8.1. 10 There exists a family of expanders {Gn} (with the bounded
number of generators) such that each Gn is a finite p-group, the sequence
log p|Gn| is exponential in n while the exponent and nilpotency class of Gn

are linear in n.

Our results provide new examples of such families. Indeed, if Γ is any
Golod-Shafarevich group with property (τ), its finite p-quotients satisfy the
conclusion of Corollary 8.1 by Theorem 1.2b).

In [JKN], it is shown that a group with property (τ) can have very large
(almost exponential) subgroup growth; moreover, it is possible that the
method can be extended to produce groups with property (τ) of exponential
or even super-exponential subgroup growth. We should point out that the
groups constructed in that paper are very far from being residually-p, so it is
still possible that if Γ is a discrete group with (τ), then the subgroup growth
of the pro-p completion of Γ cannot be too large. In this context, it would

10We do not know if such example was known before [Ka].
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be interesting to determine subgroup growth for the pro-p completions of
our examples.

8.2. Next we discuss how Theorem 1.6 can be used to construct large
families of groups with property (T ).

The following conjecture was suggested by Lubotzky.

Conjecture 8.2. Every Golod-Shafarevich group has an infinite quotient
with property (T ).

Conjecture 8.2 was originally motivated by the following well-known ques-
tion asked in slightly different forms by Vershik [Ve] and de la Harpe [H]
(see also [Ze2]):

Question 8.3. Does there exist an amenable Golod-Shafarevich group?

Indeed, an infinite group with property (T ) cannot be amenable, so Con-
jecture 8.2 would imply the negative answer to Question 8.3.

Conjecture 8.2 is also interesting in its own right and, if true, would
provide further testimony to the “largeness” of Golod-Shafarevich groups.
Lubotzky proposed the following strategy for using the results of this paper
to attack Conjecture 8.2. Let Γ = 〈X | R〉 be a Golod-Shafarevich group.
Suppose, one can construct a group Γ1 = 〈X | R1〉 (with the same set of
generators as Γ) such that Γ1 has (T ) and the group Γ2 = 〈X | R ∪ R1〉
is Golod-Shafarevich. Then Γ2 is an infinite quotient of Γ, and Γ2 has (T )
being a quotient of Γ1.

At the moment, the supply of Golod-Shafarevich groups with (T ) is in-
sufficient to make the above strategy work. One should either construct a
more general class of Golod-Shafarevich groups with (T ) or find a way to
prove that the group Γ2 defined above is infinite without showing that it is
Golod-Shafarevich.

While Conjecture 8.2 is out of reach for the moment, we can still give an
interesting application of Theorem 1.6 which uses the above ideas.

Proposition 8.4. There exists an infinite residually finite torsion group
with property (T).

Proof. Let Γ be a Golod-Shafarevich group with property (T). As mentioned
in the introduction, Γ has a p-torsion quotient Γ0 which is still Golod-
Shafarevich. Indeed, let g1, g2, . . . be elements of Γ listed in some order.
Given a sequence of positive integers n1, n2, . . ., let Γ0 be the quotient of
Γ by the normal subgroup generated by {gk

pnk}∞k=1. Clearly, Γ0 is Golod-
Shafarevich provided the numbers {nk} are large enough.

Being a quotient of Γ, the group Γ0 has property (T ). Even though
Γ0 may not be residually finite, the image of Γ0 in its pro-p completion is
infinite. The latter group clearly satisfies the required conditions. �

An immediate corollary of Proposition 8.4 answers a question of de la
Harpe [H2, Question 5]. We are grateful to Rostislav Grigorchuk for sug-
gesting this application.

Corollary 8.5. There exists a residually finite torsion non-amenable group.

8.3. The following Corollary of Theorem 1.6 gives an affirmative answer to
a question of Lubotzky and Zuk [LuZ, Question 1.27].

Corollary 8.6. There exists a finitely generated group with property (τ)
whose profinite completion is not finitely presented.
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Proof. Let Γ0 be a p-torsion Golod-Shafarevich group with property (T)
(constructed as in the proof of Proposition 8.4). Since Γ0 is Golod-Shafarevich,
it is easy to see that there exist a sequence of positive integers n1 < n2 < . . .
and a sequence of elements g1, g2, . . . of Γ0 such that for each i we have

a) gi ∈ γniΓ0,
b) gi 6∈ 〈g1, . . . , gi−1〉Γ0γni+1Γ0,
c) the group Γ1 := Γ0/〈{gi}∞i=1〉Γ0 is Golod-Shafarevich.
As usual, γkΓ0 denotes the kth term of the lower central series of Γ0, and

〈S〉Γ0 is the normal subgroup of Γ0 generated by S.
We claim that the group Γ1 satisfies the conclusion of Corollary 8.6. In-

deed, Γ1 has property (T) as a quotient of Γ0. If G1 denotes the profinite
completion of Γ1, then G1 is also the pro-p completion of Γ1 since every
finite quotient of Γ1 is a p-group. Finally, G1 is not finitely presented. If
G1 was finitely presented, then by [Er, Proposition 3.1] there would exist
N ∈ N with the following property: if ϕ : H → G1 is a surjective homo-
morphism from another pro-p group H onto G1 such that Kerϕ ⊆ γNH,
then ϕ is an isomorphism. We see that the latter is impossible by taking
H = Γ0/〈{gi}k

i=1〉Γ0 where k is such that nk > N . �

8.4. Finally, let us say a few words about the current status of the Lubotzky-
Sarnak conjecture. Theorem 1.6 shows that the conjecture cannot be estab-
lished just by using the fact that groups in question are virtually Golod-
Shafarevich. Nevertheless, it may be possible to prove the conjecture by
purely group-theoretic methods. First of all, Conjecture 1.5 may still hold.
Moreover, if Γ is the fundamental group of a compact hyperbolic three-
manifold, each finite index subgroup of Γ has a balanced presentation. Us-
ing just this property (and the fact that dp(H) ≥ 5 for some finite index
subgroup H of Γ), Lackenby [La2] showed that Γp̂ (the pro-p completion
of Γ) has very large subgroup growth; more precisely, the number of sub-
groups of Γp̂ of index n is at least C · 2n/(

√
log n log (log n)) for some C > 0.

Furthermore, using topological techniques, Lackenby [La1] showed that the
subgroup growth of Γp̂ is exponential (the largest possible growth type for
pro-p groups) provided Γ is arithmetic. As we said before, it is feasible that
pro-p completions of groups with (τ) always have smaller subgroup growth.
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almost split Kac-Moody groups] Astérisque No. 277 (2002), viii+348 pp
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