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Abstract

By a Theorem of Camina, the Nottingham group N (Fp) contains
an isomorphic copy of every finitely generated pro-p group. In this
paper we obtain several restrictions on the structure of subgroups of
N (Fp) which have positive Hausdorff dimension and show that such
groups, if finitely generated, cannot be linear over a local field. This
implies that just-infinite subgroups of N (Fp) studied in [F] and [BK]
are not linear over any profinite ring.

1 Introduction

Let F be a finite field and let N (F ) be the group of wild automorphisms
of the field F ((t)), traditionally called the Nottingham group. One of the
remarkable properties of the Nottingham group N = N (Fp) is the fact that
any finitely generated pro-p group can be embedded as a closed subgroup of
N . The original proof of this result is due to Camina [Ca1]; later a different
argument was given by Fesenko [F]. Both Camina’s and Fesenko’s proofs
provide a certain algorithm for constructing a subgroup of N isomorphic to
a given pro-p group G. However, the subgroups of N constructed in such a
way have rather special form. For example, they always lie in the closure of
the torsion of the Nottingham group and are small in the sense of Hausdorff
dimension. As noted in [BK], Fesenko’s construction always gives subgroups
of dimension zero, and in Camina’s construction dimensions cannot exceed
1/p; moreover, it is not clear whether positive dimensional subgroups can
occur at all. Thus one may hope that positive dimensional subgroups of the
Nottingham group have more restricted structure. In this note we prove the
following theorem.
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Theorem 1.1. Let G be a finitely generated subgroup of N (Fp) of positive
Hausdorff dimension. Then G is not linear over a local field (as a topological
group).

A stronger statement can be made about just-infinite subgroups ofN (Fp).
This is because of a Theorem of Jaikin-Zapirain [JZ] which says that a just-
infinite pro-p group which is linear over some profinite ring must be linear
over a local field.

Corollary 1.2. Let G be a just-infinite subgroup of N (Fp) of positive Haus-
dorff dimension. Then G is not linear over any profinite ring.

This result is important in connection with the problem of classification
of hereditarily just-infinite pro-p groups of finite width (HJIFW groups)−
see [LM] and [Sh]. The majority of the known examples of such groups are
compact open subgroups of linear algebraic groups over local fields. The
only other known examples of HJIFW groups are the Nottingham groups
N (Fq), where q = pn, and three infinite families B,Q and T of subgroups of
N (Fp) constructed in [BK], [Er] and [F], respectively (see also [Grif1] and
[Grif2]). All groups in the above families are easily seen to have positive
Hausdorff dimension, and thus Theorem 1.1 confirms that these groups are
not commensurable to any of the previously known HJIFW groups.

The proof of Theorem 1.1 consists of two parts. In the first part (Section
3) we use the structure of the Nottingham group to show that the centralizers
and the normalizers of certain subgroups of N (Fp) must have dimension zero
(in particular, any nilpotent subgroup of N (Fp) is zero dimensional). In the
second part (Sections 4 and 5) we use Pink’s Theorem [P] to show that
every finitely generated pro-p group G which is linear over a local field can
be written as a product of finitely many subgroups G1G2 . . . Gn such that
each Gi cannot be embedded in N (Fp) as a positive dimensional subgroup
because of the above restrictions (Theorem 4.1). The latter implies the
assertion of Theorem 1.1 according to Proposition 2.1.
Remark. Recently, M. Abert and B.Virag [AV] obtained several interesting
results about the structure of positive dimensional subgroups of Γ(p), the
group of p-adic automorphisms of the infinite rooted p-ary tree (see [Grig]
for background). In particular, they showed that such subgroups cannot be
solvable (and, more generally, cannot be abstractly generated by countably
many solvable subgroups). They also established a special case of their
conjecture (related to earlier conjectures of Boston [Bo] and Wilson [Wil])
that a positive dimensional subgroup of Γ(p) must contain a nonabelian
free pro-p group. It would be interesting to answer the analogous questions
about positive dimensional subgroups of N (Fp).
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2 Preliminaries

Throughout the paper, groups are assumed to be topological unless indicated
otherwise; by a subgroup of a topological group we always mean a closed
subgroup. As usual, (g, h) = g−1h−1gh will stand for the commutator of g
and h. The nth term of the lower central series of a group G will be denoted
by γnG.

Filtrations and Lie algebras of pro-p groups. By a filtration of a
profinite group G we mean a descending chain of open normal subgroups
G = G1 ⊇ G2 ⊇ . . . which form a base of neighborhoods of identity. A
filtration is called central if [Gi, Gj ] ⊆ Gi+j for all i, j ≥ 1. If in addition G
is pro-p and all quotients Gi/Gi+1 have exponent p, the filtration is called
p-central.

Now let {Gn} be a central filtration of a pro-p group G. The associated
graded Lie ring Lie(G) is defined as follows. As a graded abelian group,

Lie(G) =
∞⊕

n=1
Ln, where Ln = Gn/Gn+1, and Lie bracket is defined by

[aGn+1, bGm+1] = (a, b)Gn+m+1. With each subgroup H of G we associate

a Lie subring LieG(H) =
∞⊕

n=1
(H ∩Gn)Gn+1/Gn+1 ⊆ Lie(G). If the filtration

{Gn} is p-central, Lie(G) becomes a Lie algebra over Fp.
For every g ∈ G\{1} there exists a unique number n such that g ∈

Gn\Gn+1. This number will be called the degree of g and denoted by deg (g).
The coset g Gn+1 will be called the leading term of g and denoted by LT (g).
Note that if H is a subgroup of G, then {LT (h) | h ∈ H} coincides with the
set of homogeneous elements of LieG(H).

Hausdorff dimension. Let G be a profinite group with fixed filtration
{Gn}. One can define an invariant metric on G by setting d(x, y) = inf{|G :
Gn|−1 | xy−1 ∈ Gn} and use the associated Hausdorff dimension function
to measure the sizes of subgroups of G. This concept was studied in detail
by Barnea and Shalev [BSh] who showed that the Hausdorff dimension of
a subgroup H of G coincides with its lower box (Minkowski) dimension
dimGH and is given by the following formula:

Hdim GH = lim inf
n→∞

log |HGn : Gn|
log |G : Gn|

.

The upper box dimension, which is given by the formula

dimGH = lim sup
n→∞

log |HGn : Gn|
log |G : Gn|

,
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will also be considered.
Here are some basic properties of these dimension functions:
1) If H is open in G then dimGH = dimGH = 1.
2) Let K ⊆ H ⊆ G. Choose some filtration of G and consider the

induced filtrations on K and H. The associated dimension functions satisfy
the following inequalities:

dimHK · dimGH ≥ dimGK ≥ dimHK · dimGH

dimHK · dimGH ≤ dimGK ≤ dimHK · dimGH.

(2.1)

3) If G has subgroups {Gi}n
i=1 such that G = G1G2 . . . Gn, then
n∑

i=1

dimGGi ≥ 1. (2.2)

The following consequence of (2.1) and (2.2) will be one of our main tools 1.

Proposition 2.1. Let G be a pro-p group with fixed filtration and let H be a
subgroup of G of positive Hausdorff dimension. If H = H1H2 . . .Hn (where
each Hi is a subgroup), then dimGHi > 0 for some i.

The Nottingham group N = N (Fp) can be defined as the group of auto-
morphisms of the ring Fp[[t]] which act trivially on (t)/(t2) or, equivalently,
as the group of automorphisms of the local field Fp((t)) which act trivially on
the residue field (such automorphisms are called wild). A natural filtration
of N consists of congruence subgroups {Nn} where Nn = {f ∈ N | f(t) ≡ t
mod tn+1Fp[[t]]}. For a detailed account of the structure of N the reader is
referred to [Ca2]; some related concepts and properties will be introduced
throughout the paper as they are needed.
Definition. Let G be a subgroup of N . The set of possible degrees of
elements of G (with respect to the congruence filtration of N ) will be called
the index set of G and denoted by Ind (G).
It is easy to see that the upper (lower) box dimension of a subgroup G of
N (with respect to the congruence filtration) is equal to the upper (lower)
density of its index set. More precisely, we have

dimNG = lim sup
n→∞

card (Ind (G) ∩ {1, 2, . . . , n})
n

dimNG = lim inf
n→∞

card (Ind (G) ∩ {1, 2, . . . , n})
n

.

1The same idea is used in the proof of [AV, Corollary 8.3]
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3 Nottingham-small groups

For convenience we introduce the following definition.
Definition. a) A subgroup G of N will be called small, if G has upper box
dimension zero (with respect to the congruence filtration).
b) A pro-p group G will be called Nottingham-small (or N -small), if for
every embedding of G in N , the image of G is a small subgroup of N .

The goal of this section is to find sufficient conditions for a pro-p group
to be N -small.

The following theorem of Wintenberger [Win] implies that all abelian
pro-p groups are N -small.

Theorem 3.1 (Wintenberger). Let H be an abelian subgroup of N (Fp),
and let I be the index set of H. Let i1 < i2 < . . . be the elements of I listed
in increasing order. Then in+1 ≡ in mod pn for each n ∈ N.

In [Er] we used Wintenberger’s theorem to prove the following.

Theorem 3.2. Let H be an infinite subgroup of N (Fp). Then the centralizer
of H in N is small.

It follows immediately that every nilpotent group is N -small. We conjec-
ture that every solvable group is N -small. The latter would be established
if one could show that the normalizer of an infinite abelian subgroup of N
is always small. We will address this problem in the special case of abelian
groups of exponent p which is sufficient for our purposes. In other words,
we will prove the following.

Proposition 3.3. Let A be a subgroup of N which is isomorphic to the
additive group of the ring Fp[[t]]. Then the normalizer of A in N is small.

Remark. In what follows, the additive group of Fp[[t]] will be denoted by
Fp
∞. In fact, it is the unique infinite countably based abelian pro-p group

of exponent p.
The normalizers of abelian subgroups of exponent p are very easy to

study because we possess an exhaustive description of the centralizers of
elements of order p in N . Here we state only basic facts which will be used
in the proof; for more details the reader is referred to [K] and [Er].

Let f ∈ N be an element of order p. Consider N as the group of wild
automorphisms of a local field F ∼= Fp((t)). Denote the fixed field of f by
K and the centralizer of f in N by C. It is easy to see that K ∼= Fp((t)).
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Every element of C leaves K invariant, and the induced automorphism of K
is always wild. Therefore, we obtain a homomorphism ϕf : C → N . Clearly,
Ker ϕf = 〈f〉 (in fact, the image of ϕf is an open subgroup of N , as shown
in [Er], whence C is commensurable to N ). Note that our definition of ϕf

depends on the choice of an isomorphism between K and Fp((t)). However,
ϕf is well defined up to conjugation.

Now given h ∈ C, there exists a simple relation between the numbers
deg h and deg ϕf (h):

deg ϕf (h) =

{
deg h if deg h < deg f

deg f + deg h−deg f
p if deg h > deg f

(3.1)

The proof of this formula is analogous to that of [dSF, Lemma 4.2].
Finally, we note that the index set of C is equal to {i ∈ N | i ≡ deg f
mod p} (see [BK, Proposition A.1]).

The proof of Proposition 3.3 will be based on the following lemma which
is similar to Wintenberger’s theorem.

Lemma 3.4. Let B be a subgroup of N isomorphic to Fp
s for some s < ∞.

Let {j1 < j2 < . . . < js} be the index set of B. Let g be any element
of N such that d := deg (g) > js. Suppose that for any b ∈ B we have
(b, g) ∈ Npsd. Then d ≡ js mod ps.

Proof. The case s = 1 is obvious. Indeed, choose any b ∈ B\{1}. If d 6≡ j1

mod p, then by [Ca2, Proposition 1] we have deg (b, g) = deg b + deg g =
d + j1 < pd, contrary to our assumption.

We proceed by induction on s. Choose an element b ∈ B such that
deg (b) = j1. Let C be the centralizer of b in N , and let ϕb : C → N be an
associated homomorphism as described above.

First assume that g ∈ C. Let B′ = ϕb(B) and let g′ = ϕb(g). We claim
that the pair (B′, g′) satisfies the conditions of the Lemma. Since Kerϕb =
〈b〉, B′ has order ps−1. It follows from formula (3.1) that the largest element

of Ind (B′) is equal to j1 +
js − j1

p
which is less than deg g′ = j1 +

d− j1

p
.

Now given h′ ∈ B′, let h be any element of ϕ−1
b (h′). By our assumption

deg (g, h) ≥ psd, whence

deg (g′, h′) = deg ϕb((g, h)) ≥ j1 +
psd− j1

p
≥

ps−1(j1 +
d− j1

p
) + (ps−1 − ps−2)(d− j1) ≥ ps−1deg g′.
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By induction we have deg g′ ≡ j1 +
js − j1

p
mod ps−1, whence d ≡ js

mod ps.

Now we treat the general case. Since b is an element of order p and
deg b = j1, we know that the set Ind (C) consists of all integers n congruent
to j1 modulo p. Note also that all quotients Ni/Ni+1 are cyclic of order p,
whence (C ∩Nn)Nn+1 = Nn for every n ∈ Ind (C). It follows that g can be
written in the form cu where c ∈ C and deg u 6≡ j1 mod p.

Since (b, c) = 1, we have (b, u) = (b, cu) = (b, g) ∈ Npsd by assumption.
On the other hand, deg u 6≡p deg b, whence deg (u, b) = j1 + deg u. We
conclude that deg u ≥ psd − j1. We claim that the pair (B, c) satisfies the
conditions of the Lemma, and therefore we are reduced to the previous case.

Indeed, deg u > d = deg g, whence deg c = deg (gu−1) = d. For any h ∈
B, we have (h, g) = (h, cu) ≡ (h, c) mod Ndeg h+deg u. Now (h, g) ∈ Npsd

by assumption. Finally, deg h + deg u ≥ psd − j1 + deg h ≥ psd, whence
(h, c) ∈ Npsd. The proof is complete. �

Proof of Proposition 3.3. Let G be the normalizer of A in N . Set αn =
log p|G : Gn|
log p|N : Nn|

. It will be enough to show that lim sup αn ≤ 1/ps for every

positive integer s. From now on s will be fixed.
Let I = {i1 < i2 < i3 . . .} be the index set of A. Define the integer-

valued function j(n) by j(n) = card {i ∈ I | i ≤ n}. It follows easily from
Theorem 3.1 that j(n) ≤ C log pn for some constant C. Set m = is, and
choose a subgroup B of A whose index set is equal to {i1 < i2 < · · · < is}.

Let n be any integer larger than m, and set Q(n) := A/A ∩ Npsn. This
is a finite abelian group of exponent p which can be thought of as a vector
space over Fp. Its dimension dn does not exceed i(psn) ≤ C(log pn + s).
Now G acts by conjugation on both A and A ∩ Npsn, hence also on Q(n).
Let K(n) be the kernel of this action. Clearly, we have

log p|G : K(n)| ≤ log p|GLdn(Fp)| < C2(log pn + s)2.

On the other hand, if g is any element of K(n) whose degree d satisfies
the inequality m < d ≤ n, then applying Lemma 3.4 to the pair (B, g), we
conclude that d ≡ is mod ps. Now we can estimate the numbers {αn} from
above. We have

αn ≤
log p|G : Gm+1|+ log p|Gm+1 ∩K(n) : Gn ∩K(n)|+ log p|G : K(n)|

log p|N : Nn|
.
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The denominator of this fraction is equal to n − 1. In the numerator the
first term is independent of n, the third term is bounded from above by
C2(log pn + s)2, and the second term does not exceed card {d ∈ IndK(n) |
m < d ≤ n} ≤ n−m

ps +1. Therefore, lim supαn ≤ 1/ps, and we are done. �

Now we are ready to explain how Theorem 1.1 follows from Theorem 4.1.
Proof of Theorem 1.1. It is enough to show that G does not satisfy either
condition in the conclusion of Theorem 4.1. Condition b) cannot hold for
G by Proposition 3.3. Proposition 2.1 and Theorem 3.2 imply that G does
not satisfy a). �

4 Linear pro-p groups

In this section we will prove the following.

Theorem 4.1. Let G be a finitely generated pro-p group which is linear over
a local field. Then G has a finite index subgroup H satisfying at LEAST one
of the following conditions:

a) H is a product of finitely many subgroups H1, . . . ,Hk such that each
Hi has infinite centralizer in H;

b) H has a normal subgroup isomorphic to the additive group of the ring
Fp[[t]].

Our main tool is the famous theorem of Pink [P], which is stated below:

Theorem 4.2. Let G be a compact subgroup of GLn(E) where E is a local
field of characteristic p. Then there exist normal subgroups Γ3 ⊆ Γ2 ⊆ Γ1

of G such that
G/Γ1 is finite;
Γ1/Γ2 is abelian of finite exponent;
there exists a local field F of characteristic p, a connected semisimple

adjoint algebraic group Had over F with a universal cover π : H → Had and
an open compact subgroup L of H(F ) such that Γ2/Γ3 is isomorphic to π(L)
as a topological group;

Γ3 is solvable.

Proof of Theorem 4.1. If G is linear in characteristic zero, it is p-adic
analytic. In this case G is a product of finitely many procyclic subgroups,
and the assertion of the Theorem is obvious. Thus we can assume that G is
a closed subgroup of GLn(E) where E is a local field of characteristic p.

Let Γ1, Γ2 and Γ3 be as in Pink’s theorem. First we consider the case
when Γ3 is infinite.
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Case 1: Γ3 is infinite.
By Lie-Kolchin-Maltsev theorem, Γ3 has an open subgroup Γ4 which is tri-
angularizable over some finite extension E′ of E (which is also a local field).
Choose an open subgroup H of G such that R := Γ3 ∩H ⊆ Γ4. Note that
γ2R is unipotent. Moreover, we can assume that either R is abelian or γ2R
is infinite (if γ2R is finite, replace H by an open subgroup H1 such that
H1 ∩ γ2R = {1} and replace R by R ∩ H1). If γ2R is infinite, let C be
the last infinite term of the derived series of R. Once again replacing H by
an open subgroup we can assume that C is abelian. Now C is unipotent,
whence has finite exponent. Therefore, C(p) := {g ∈ C | gp = 1} is a closed
normal subgroup of H isomorphic to Fp

∞.

Suppose now that R is abelian. Since R is a pro-p group, every torsion
element of R has order pk for some k and therefore is unipotent. If every
element of R is unipotent, we can argue as before. Otherwise, consider the
set C = {gpn | g ∈ R}. Since R is abelian, C is a subgroup; moreover, C is
normal in H. It is easy to see that every element of C is diagonalizable over
E′, whence we can assume that C lies inside Dn(E′), the diagonal subgroup
of GLn(E′).

An easy computation shows that given c ∈ C and g ∈ GLn(E′) with
nonzero diagonal entries, g commutes with c whenever g−1cg ∈ Dn(E′).
Obviously, H has a finite index subgroup whose elements have nonzero di-
agonal entries. Since H normalizes C, we conclude that H has a finite index
subgroup with infinite center.

Case 2: Γ3 is finite.
Since G is finitely generated, Γ2 has finite index in G. We also know that
the kernel of the map π in Pink’s theorem is finite. Therefore, G has a
finite index subgroup H which is isomorphic to an open compact subgroup
of H(F ) (where F is a local field of characteristic p and H is a semisimple
simply-connected algebraic group over F ).

We use [Sp] as a reference for the theory of algebraic groups. Throughout
the proof we will identify an algebraic group defined over F with the set of its
F̄ -points (where F̄ is the algebraic closure of F ). We consider two subcases:

Subcase 1: H is isotropic (over F ).
We start by choosing an F -embedding of H into G = GLn. Since H is

isotropic, there exists an F -homomorphism λ from the multiplicative group
of F to H such that Im λ is non-central in H. After conjugating by an element
of GLn(F ) we may assume that there exist integers m1 ≥ m2 ≥ . . . ≥ mn

such that λ(a) is the diagonal matrix with entries am1 , am2 , . . . , amn for any
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a ∈ F̄ .
Consider the following subgroups of G = GLn:
UG

+ = {x ∈ G | lima→0 λ(a)xλ(a)−1 = 1},
UG

− = {x ∈ G | lima→0 λ(a)−1xλ(a) = 1} and
CG = CentG(Im λ), the centralizer of Im λ in G.
In fact, these subgroups can be described explicitly. In the simplest case

when all mi are distinct, UG
± are the subgroups of strictly upper (lower)

triangular matrices, and CG is the diagonal subgroup of GLn.
Now if K is any reductive F -subgroup of GLn, we set UK

± = UG
± ∩

K, CK = CG ∩ K. By [Sp, Theorem 13.4.2] UK
± and CK are connected

F -subgroups of K; CK is reductive, UK
± are unipotent, and the product

morphism πK : UK
− × CK × UK

+ → K is a bijection onto a Zariski open
subset of K.

Let {Gi} be the congruence filtration of G(F ) = GLn(F ) and let Hi =
H ∩Gi. If i is sufficiently large, Hi ⊆ H since H is open in H(F ). We also
know that Im πH is Zariski open in H, whence Hk ⊆ H ∩ Im πH for some k.
Thus for any h ∈ Hk there exist u− ∈ UH

−, u+ ∈ UH
+ and c ∈ CH such

that h = u−cu+. We claim that u−, c, u+ ∈ Gk.
Indeed, as an element of G, h has a unique decomposition of the form

h = v−tv+ where v− ∈ UG
−, v+ ∈ UG

+ and t ∈ CG. But we already
have one such decomposition: h = u−cu+. Therefore, u+ = v+, u− = v−

and c = t. On the other hand, one can compute v+, v− and t directly.
For simplicity assume that all integers {mi} are distinct. In this case we
must find a strictly lower triangular matrix v−, a diagonal matrix t and a
strictly upper triangular matrix v+ such that h = v−tv+. This problem
can be solved by Gaussian elimination, and the inclusions v−, t, v+ ∈ Gk

easily follow from the fact that the entries {hij} of h satisfy the congruence
hij ≡ δij mod mk, where m is the maximal ideal of the valuation ring of F .

Therefore, we have shown that

Hk = (UH
− ∩Gk)(CH ∩Gk)(UH

+ ∩Gk)

Using the fact that the groups UH
± are connected and unipotent, it is

easy to show that their subgroups UH
±∩Gk have infinite centers. The group

CH ∩Gk centralizes an infinite subgroup of Hk by construction. Therefore,
we managed to write Hk as a product of three subgroups with infinite cen-
tralizers.

Case 2: H is anisotropic.
Since H is simply connected, it is a direct product of finitely many almost

simple groups H1, . . . , Hk. Each Hi is obtained by restriction of scalars from
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an absolutely almost simple group Bi defined and anisotropic over some
finite extension Fi of F , and Hi(F ) ∼= Bi(Fi) as a topological group. By the
classification of absolutely almost simple algebraic groups over local fields
(see [Ti]), Bi(Fi) is isomorphic to the group SL1(Di) of reduced norm 1
elements of a finite-dimensional division algebra Di over Fi.

For each i = 1, . . . , k, set Hi = Hi(F )∩H. Since H is anisotropic, H(F )
is compact. Therefore, H has finite index in H(F ) = H1(F )× . . .×Hk(F ),
whence H1 × . . . ×Hk is a finite index subgroup of H. In the next section
we will use the structure of division algebras over local fields to show that
each Hi is a product of finitely many abelian subgroups. �

5 The group SL1(D)

Let D be a finite-dimensional central division algebra over a local field F of
characteristic p. Our goal in this section is to prove the following

Proposition 5.1. Let H be a finite index pro-p subgroup of SL1(D). Then
H is a product of finitely many abelian subgroups.

Remark. In the terminology of [Ab], a group which is a product of finitely
many abelian subgroups is said to have finite abelian width. 2

We start by reviewing some basic facts about the structure of division
algebras over local fields (see [Ri] for more details). First of all, D is always
a cyclic algebra. More precisely, there exists an unramified extension W of
F of degree n = deg (D) and an element π ∈ D such that

a) D = W ⊕Wπ ⊕Wπ2 ⊕ · · · ⊕Wπn−1 as a left vector space over W ;

b) πwπ−1 = σ(w) for all w ∈ W , where σ is a generator of the Galois
group Gal (W/F );

c) τ := πn is a uniformizer of F , i.e. τ is a generator of the maximal
ideal of the valuation ring of F .

We denote by OF , OW and OD the valuation rings of F , W and D, and
by mF , mW , mD the corresponding maximal ideals. Note that mD = πOD,
mF = τOF and mW = τOW . Let κF and κW be the residue fields of F and
W . Since W/F is unramified, the natural map Gal (W/F ) → Gal (κW /κF )
is an isomorphism. Thus Gal (κW /κF ) is generated by the element σ̄ defined
by σ̄(w + mW ) := σ(w) + mW = πwπ−1 + mW .

2I am extremely grateful to Laci Pyber who pointed out the relevance of such factor-
izations to linearity questions
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The reduced norm map from D to F will be denoted by Nred . Recall
that if a ∈ D, then Nred (a) is the determinant of the endomorphism of the
left W -vector space D given by d 7→ da.

Let U = {x ∈ D∗ | x ≡ 1 mod mD} and let G = U ∩ SL1(D), where
SL1(D) is the group of elements of D of reduced norm one. The groups
U and G have natural congruence filtrations {Ui} and {Gi}, respectively,
where Ui = {x ∈ U | x ≡ 1 mod mi

D} and Gi = G ∩ Ui. It is clear that U
is an open pro-p subgroup of D∗ and G is a finite index pro-p subgroup of
SL1(D) (since SL1(D) is compact). In what follows, Lie(U) and Lie(G) will
denote the Lie algebras of U and G with respect to the above filtrations.
Obviously, Lie(G) can be identified with the subalgebra LieU (G) of Lie(U).

The additive group of the Lie algebra Lie(U) is isomorphic to
∞⊕
i=1

κW ti

such that LT (1 + wπi) 7→ (w + mW )ti for all i ≥ 1 and all w ∈ OW \mW .
The Lie bracket is now given by the following simple formula:

[λti, µtj ] = (λσ̄i(µ)− µσ̄j(λ))ti+j , where σ̄ is as above.

The subalgebra LieU (G) has the form
∞⊕
i=1

Mi, where Mi = κW ti if n - i , and

Mi = {λti | tr (λ) = 0} if n | i (here tr is the trace of the extension κW /κF ).

Proof of Proposition 5.1. Clearly, it is sufficient to show that some open
subgroup of H has finite abelian width. Thus we can assume that H is one
of the congruence subgroups {Gi}. To keep notation simple we will present
the proof in the case H = G = G1; the reader is assured that the same
argument works in the general case (alternatively, one could show that the
property of having finite abelian width is a commensurability invariant).

The first step of the proof is to construct a ”large” abelian subgroup
of G. Let A be the group generated by the set {σ(w)w−1 | w ∈ W ∗ ∩ U}
(recall that σ(w) = πwπ−1). Since σ ∈ Gal (W/F ), A ⊂ W ∗ ∩U , whence A
is abelian. Moreover, A ⊂ G since Nred (σ(w)w−1) = Nred (πwπ−1w−1) = 1
for every w ∈ W ∗. We claim that the Lie algebra LieU (A) = LieG(A)
contains every homogeneous element of Lie(G) whose degree is a multiple
of n. Indeed, any such element is of the form λtni, where λ ∈ κW and
tr (λ) = 0. The last condition implies that there exists α ∈ κW such that
λ = α− σ̄(α). Choose a ∈ W such that α = a + mW and let w = 1 + aπni.
Clearly, LT (w) = αtni and LT (σ(w)) = LT (1+σ(a)πni) = σ̄(α)tni, whence
LT (σ(w)w−1) = LT (σ(w))− LT (w) = λtni.

To prove that G has finite abelian width we use the following criterion
which will be established in Appendix.

12



Lemma 5.2. Let G be a pro-p group. Let {Gn} be a p-central filtration of
G, and denote by Lie(G) the associated Lie algebra. Assume we are given

a) an abelian subgroup A of G,
b) a finite subset S of G,
c) an integer N such that
any homogeneous element of Lie(G) of degree n ≥ N either lies in

LieG(A) or has the form LT ((a, s)) for some s ∈ S and a ∈ A.
Then the product of finitely many conjugates of A contains GN . There-

fore, G has finite abelian width.

We resume the proof of Proposition 5.1. First assume that either n > 2
or p > 2. Let S be any subset of G such that the set V = {LT (s) | s ∈ S}
consists of all homogeneous elements of LieU (G) = Lie(G) of degree at most
n − 1. Now pick an integer k ≥ n and let u ∈ Lie(G) be a homogeneous
element of degree k. We already know that u ∈ LieG(A) if n | k. We claim
that if n - k, then u lies in the set B := {[a, v] | a ∈ LieG(A), v ∈ V }. This
will finish the proof by Lemma 5.2, since any element of B has the form
LT ((g, s)) for some s ∈ S and g ∈ A.

Write k in the form ni + j where 1 ≤ j ≤ n − 1. Since p > 2 or
n > 2, the field extension κW /κF can be generated by an element η of
trace zero (see [Ri, Lemma 4]). Since ηtni ∈ LieG(A), for any ν ∈ κW we
have B 3 [ηtni, νtj ] = (ησ̄ni(ν) − σ̄j(η)ν)tni+j = (η − σ̄j(η))ν tni+j . Now
η 6= σ̄j(η) since j < n = [κW : κF ]. Therefore, B 3 µtk for any µ ∈ κW .

Now we treat the case n = p = 2. By Artin-Schreier theory, there exists
x ∈ W such that σ(x) = x + 1. Recall that τ = π2 is a uniformizer of OF .
Given k ≥ 1, let gk = (1+τk(x+1))(1+τk x)−1 ∈ A. Choose a finite subset R
of OW \mW such that R+mW = OW and let S = {1+rτ iπ | r ∈ R, i = 0, 1}.
We claim that the set B := {LT ((gk, s)) | k ∈ N, s ∈ S} contains all
homogeneous elements of Lie(G) of odd degree d ≥ 5 (elements of Lie(G) of
even degree lie in LieG(A) as before).

Fix r ∈ R, i, k ∈ N, and let us compute the group commutator of the
elements hr,i := 1 + rτ iπ and gk. Let w = gk − 1 and v = rτ i. We have

(hr,i, gk) = (1 + vπ)−1(1 + w)−1(1 + vπ)(1 + w) =

1 + h−1
r,i g−1

k (vπ w − wvπ) = 1 + h−1
r,i g−1

k · v(σ(w)− w)π.

Now w =
τk

1 + τk x
, whence

σ(w)− w =
τk

1 + τk x
− τk

1 + τk(x + 1)
=

τ2k

(1 + τk x)(1 + τk(x + 1))
.

13



It is clear now that

LT ((hr,i, gk)) = LT (1 + rτ i+2kπ) = r̄t2i+4k+1 where r̄ = r + mW .

Since every odd integer d ≥ 5 is of the form 4k + 2i + 1 with i = 0 or 1, we
are done. �

6 Appendix

Proof of Lemma 5.2. Let s1, . . . , sl be the elements of S listed on some order.
For i = 1, . . . , l set Ai = s−1

i Asi.

Claim 6.1. For every g ∈ G of degree at least N and any n ≥ 1 there exist
elements a1 = a1(g, n), . . . , al = al(g, n), b1 = b1(g, n), . . . , bl = bl(g, n) and
r = r(g, n) such that g = b1a1b2a2 . . . blalr, ai ∈ Ai, bi ∈ A for i = 1, . . . , l,
and r ∈ Gn+1.

Proof. Fix g ∈ G with deg g ≥ N . We will prove the assertion by induction
on n. If n < N , the claim is obvious (just set ai = bi = 1 for all i and r = g).

Now let n be arbitrary and suppose we constructed elements a1 =
a1(g, n − 1), . . . , al = al(g, n − 1), b1 = b1(g, n − 1), . . . , bl = bl(g, n − 1),
and r = r(g, n − 1) satisfying the required conditions. If r ∈ Gn+1, there
is nothing to prove. Otherwise, let w = LT (r). By assumption, either
w ∈ LieG(A) or w = LT ((a, si)) for some a ∈ A and i ≤ l. We treat the
second case, the first one being even easier. There exists r1 ∈ Gn+1 such
that r = a−1s−1

i asir1. Let q = b1a1 . . . bi−1ai−1bi(rr−1
1 )ai . . . blal. Since

g = b1a1b2a2 . . . blalr and r ∈ Gn, it is clear that q ≡ g mod Gn+1. On the
other hand, q can written as follows: q = b′1a

′
1 . . . b′la

′
l, where b′j = bj , a′j = aj

for j 6= i; b′i = bia
−1, a′i = s−1

i asiai. Clearly, a′j ∈ Aj and b′j ∈ A for
j = 1, . . . , l. The proof is complete. �

It is now easy to finish the proof of Lemma 5.2. Apply the above claim
with g ∈ GN fixed and n → ∞. Since G is compact, there exists a se-
quence of integers n1 < n2 < . . . such that ai := limk→∞ ai(g, nk) and
bi := limk→∞ bi(g, nk) exist for every i. Clearly, ai ∈ Ai, bi ∈ A, whence
GN ⊆ AA1AA2 . . . AAl. Hence G is a product of 2l abelian subgroups and
finitely many cyclic subgroups (generated by representatives of the cosets of
G/GN ). �
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