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Abstract. An automorphism of the free group Fn is called pure symmetric if it sends each
generator to a conjugate of itself. The group PSAutn of all pure symmetric automorphisms,
and its quotient PSOutn by the group of inner automorphisms, are called the McCool groups.
In this paper we prove that every BNSR-invariant Σm of a McCool group is either dense or
empty in the character sphere, and we characterize precisely when each situation occurs. Our
techniques involve understanding higher generation properties of abelian subgroups of McCool
groups, coming from the McCullough–Miller space. We also investigate further properties of
the second invariant Σ2 for McCool groups, using a general criterion due to Meinert for a
character to lie in Σ2.

1. Introduction

Let G be a finitely generated group. The BNS-invariant Σ(G) is a fundamental geometric
object introduced in the seminal 1987 paper of Bieri, Neumann, and Strebel [BNS87]. In
1988, two families of its higher-dimensional generalizations were defined: homological BNSR-
invariants Σm(G,R), m ∈ N, where R is a commutative unital ring, with Σ1(G,Z) = Σ(G),
studied by Bieri and Renz in [BR88], and homotopical BNSR-invariants Σm(G), m ∈ N, with
Σ1(G) = Σ(G), studied by Renz in [Ren88]. In this paper we will only deal with homotopical
invariants and refer to them simply as BNSR-invariants. The mth invariant Σm(G) is defined
whenever G is of type Fm, meaning G admits a classifying space with finite m-skeleton. In
general the BNSR-invariants of G form a descending chain Σ1(G) ⊇ Σ2(G) ⊇ · · · of open
subsets of the sphere S(G) = Sd, where d = dimHom(G,R)− 1. Among other things, Σm(G)
completely determines which coabelian subgroups of G are of type Fm (we call a subgroup of
G coabelian if it contains the commutator subgroup [G,G]); in particular, [G,G] itself is of
type Fm if and only if Σm(G) = S(G).

While the BNS-invariant Σ(G) has been fully computed in a number of interesting cases, the
class of groups for which all BNSR-invariants Σm(G) are defined and completely determined
for all m is much smaller. One prominent class for which the latter has been accomplished
is right-angled Artin groups (RAAGs) [MMV98], and it is natural to ask what can be said
about BNSR-invariants for groups which are sufficiently close to RAAGs in some sense. In
this paper we will focus on the computation of BNSR-invariants for one such collection of
groups which are frequently called McCool groups.

Let Fn be the free group of rank n, with a fixed basis {x1, . . . , xn}. An automorphism of
Fn is called pure symmetric if it sends each xi to a conjugate of itself. The subgroup PSAutn
of the automorphism group Aut(Fn) consisting of all pure symmetric automorphisms arises
in many contexts, and has several different names. It is sometimes simply called the pure
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symmetric automorphism group, sometimes the McCool group, in reference to seminal work of
McCool [McC86], and sometimes the pure loop braid group, for its appearance as the group of
motions of n unlinked distinguishable circles in 3-space; see for example [BWC07, BH13] for
some important applications of these groups, and [Dam17] for an overview of all their different
guises. The “outer” version PSOutn of PSAutn is the quotient of PSAutn by the group of
inner automorphisms, and we will collectively refer to all the PSAutn and PSOutn as McCool
groups.

At a very superficial level, McCool groups are similar to RAAGs because they admit simple
presentations by generators and relations where all relations are of the form [u, v] = 1 for some
words u and v, and in the majority of relations u and v are both generators. However, there
are much deeper analogies between these groups, which make many techniques and ideas from
[MMV98] applicable to McCool groups.

The first BNS-invariant for the McCool groups has been completely determined by Orlandi-
Korner in [OK00]. In [Zar18], the second author computed some pieces of the higher BNSR-
invariants Σm(PSAutn) and conjectured that each Σm(PSAutn) is either dense (in the respec-
tive sphere) or empty, depending on whether m ≤ n − 2 or not [Zar18, Remark 4.24]. The
main theorem of this paper confirms this conjecture and also establishes the analogous result
for the groups PSOutn:

Theorem 1.1. For all n ≥ 2, the following hold:

(a) Σn−2(PSAutn) is dense in S(PSAutn).
(b) Σn−1(PSAutn) = ∅.

For all n ≥ 3, the following hold:

(c) Σn−3(PSOutn) is dense in S(PSOutn).
(d) Σn−2(PSOutn) = ∅.

Hence, Σk(PSAutn) is dense for all 0 ≤ k ≤ n−2 and empty for all k ≥ n−1, and Σk(PSOutn)
is dense for all 0 ≤ k ≤ n− 3 and empty for all k ≥ n− 2.

Remark 1.2.

(i) Since we always have S(G) = Σ0(G) ⊇ Σ1(G) ⊇ · · · , the “hence” part is immediate
from parts (a)–(d).

(ii) All assertions of Theorem 1.1 were previously known for n ≤ 3. Indeed, Σ1(PSAut2)
is empty and Σ1(PSAut3) is dense in S(PSAut3) by the main theorem of [OK00], and
the proof of that theorem also easily implies that Σ1(PSOut3) is empty. Finally, the
equality Σ2(PSAut3) = ∅ was established by the second author in [Zar18].

While Theorem 1.1 naturally extends the results and confirms the aforementioned conjecture
from [Zar18], the techniques used in the proofs are very different, as we will see later.

A consequence of Theorem 1.1, together with Theorem 2.3 below, is that if χ : PSAutn → Z
is a “generic” discrete character of PSAutn, then the kernel of χ is of type Fn−2 but not
Fn−1. Similarly, the kernel of a “generic” discrete character of PSOutn is of type Fn−3 but
not Fn−2. We should also mention that our proof of parts (b) and (d) actually shows the
stronger statement that Σn−1(PSAutn;Z) = ∅ and Σn−2(PSOutn;Z) = ∅, where these are the
homological BNSR-invariants.

In order to prove parts (b) and (d), about certain BNSR-invariants being empty, we prove
a rather easy (and somewhat “folklore”), but very general, result about groups of type F
(meaning groups admitting a finite classifying space) with non-zero Euler characteristic –
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see Proposition 3.1 which asserts that if G is a group of type F whose BNSR-invariants are
symmetric (Definition 2.4) and whose Euler characteristic is non-zero, then Σ∞(G) = ∅. Since
for a group of type F we have Σ∞(G) = Σm(G) where m is the dimension of a finite classifying
space for G, parts (b) and (d) follow easily from known facts about the McCool groups.

To prove parts (a) and (c), about certain BNSR-invariants being dense, requires quite a
lot more effort. The key is a criterion due to Meier, Meinert and Van Wyk [MMV98] that
relates the BNSR-invariants of a group to the BNSR-invariants of its subgroups, using the
notion of higher generation of groups by families of subgroups introduced by Abels and Holz
in [AH93]; see Theorem 4.3. The Meier–Meinert–Van Wyk criterion involves a number of
hypotheses on the group, and in order to apply it to the McCool groups we make use of the
Whitehead posets and McCullough–Miller spaces (see Definitions 4.6 and 4.15) and the fact
that the groups are highly generated by abelian subgroups; see Proposition 4.16. As a remark,
in [AGMP], a generalization of McCullough–Miller space for RAAGs is constructed with all
these desired properties, so it would be interesting to use this to analyze the BNSR-invariants
of the analogs of the McCool groups for RAAGs.

Given that PSAutn is sometimes called the “pure loop braid group”, it is natural to ask
if one could prove similar results about the pure braid groups PBn. Since PBn splits as
(PBn/Z(PBn))×Z [FM12, Section 9.3], we have that Σ∞(PBn) is dense in its character sphere
for trivial reasons, but an interesting problem is understanding when Σm(PBn/Z(PBn)) is
dense or empty. In fact PBn/Z(PBn) is isomorphic to the pure mapping class group of the
(n+ 1)-punctured sphere (equivalently the n-punctured plane) [FM12, Section 9.3], and it is
already known that Σn−2(PBn/Z(PBn)) = ∅ for all n ≥ 3 [HK, Example 7.3] (when n < 3
the group is trivial). Thus, a natural conjecture is that Σn−3(PBn/Z(PBn)) is dense in its
character sphere. This is trivially true for n = 3, and can be confirmed for n = 4 thanks
to the computation of Σ1(PB4) in [KMM15]. An impediment to proving this conjecture for
larger n is a lack of a known analog for PBn of the McCullough–Miller space for PSAutn and
PSOutn and, more generally, a lack of a known highly generating family of abelian subgroups.
If one could find a family of abelian subgroups of PBn that is ∞-generating in the sense
of Definition 4.1, then proving that Σn−3(PBn/Z(PBn)) is dense would probably be within
reach. We should mention that some results about highly generating families for PBn are in
the appendix of [BFM+16], but the degree of high generation is not high enough to tell us
anything about Σn−3(PBn/Z(PBn)).

We also prove further results about the second BNSR-invariant Σ2 for McCool groups. In
dimension 2, an underutilized result from the Ph.D. thesis of Meinert [Mei93] leads to an
easy-to-check sufficient condition for a character class to lie in Σ2(Q), where Q is a quotient
of a well-understood group G – see Theorem 5.4 for the general criterion and Proposition 5.3
for the specific application to McCool groups. Since Meinert’s thesis is not easily accessible,
we also provide a proof of Meinert’s theorem; see Theorem A.1 in Appendix A.

This paper is organized as follows. In Section 2 we recall some background material on
BNSR-invariants and McCool groups, and set the stage for inspecting BNSR-invariants of
McCool groups. In Section 3 we prove parts (b) and (d) of Theorem 1.1, about BNSR-invariants
being empty. In Section 4 we prove parts (a) and (c), about BNSR-invariants being dense. In
Section 5 we prove our further results about Σ2, stemming from Meinert’s criterion, and then
in Appendix A we provide a proof of Meinert’s criterion.
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2. Preliminaries

In this section we recall some background material, on BNSR-invariants in general, and on
the groups PSAutn and PSOutn that will be our main objects of interest.

2.1. BNSR-invariants. In this subsection, we recall the definition and some important
properties of the Bieri–Neumann–Strebel–Renz (BNSR) invariants of a group. The invariants
are somewhat difficult to define, and usually quite difficult to compute, but reveal a wealth of
information about the group. Let us gradually build up their definition.

Recall that a classifying space for a group G is a connected CW-complex whose fundamental
group is isomorphic to G, and whose homotopy groups vanish in all dimensions higher than 1.
Equivalently, it is a quotient of a connected CW-complex whose homotopy groups in positive
dimensions are trivial by a free cellular action of G.

A group is said to be of type Fn if it admits a classifying space with finite n-skeleton. Every
group is of type F0, finite generation is equivalent to type F1, and finite presentability is
equivalent to type F2. A group is of type F∞ if it is of type Fn for all n, and if a group has a
finite classifying space it is said to be of type F .

Throughout the paper, by a character of a group G we will mean a homomorphism χ : G → R
from G to the additive group of real numbers. Two characters are equivalent if they differ by
multiplication by a positive scalar. The equivalence classes [χ] of non-trivial characters of G
form the character sphere of G, denoted S(G).

This sphere should be viewed as the boundary of the Euclidean vector space Hom(G,R).
If this space is d-dimensional, then the character sphere of G is (d− 1)-dimensional. BNSR-
invariants of G are certain subsets of S(G), which can be defined in several slightly different
ways. The definition below is close, but not identical, to the original definition from [Ren88].

Let G be a group of type Fn, so by definition it has a classifying space with finite n-

skeleton. Choose any such classifying space K, let K̃ be the universal cover of K, and let

X be the n-skeleton of K̃, with the canonical G-action. It is not hard to show that for any
non-trivial character χ of G there exists a map hχ : X → R (called a height function) such

that hχ(g.x) = χ(g) + hχ(x) for all g ∈ G and x ∈ X. For t ∈ R, define Xhχ≥t to be the
subcomplex of X consisting of all cells whose vertices lie in h−1

χ ([t,∞)).

Definition 2.1 (BNSR-invariants). Let n, G and X be as above. For any 0 ≤ m ≤ n, the
mth Bieri–Neumann–Strebel–Renz (BNSR) invariant Σm(G) is the subset of S(G) consisting
of all [χ] for which the filtration Xhχ≥t of X is essentially (m− 1)-connected, meaning that
for every t there exists u ≤ t such that the inclusion Xhχ≥t → Xhχ≥u induces the trivial map
in all homotopy groups up to dimension m− 1.

Note that by construction, X in Definition 2.1 is (n−1)-connected, so all k-spheres in X can
be filled for any k ≤ n− 1, but what the condition [χ] ∈ Σm(G) measures is whether they can
be filled without causing the χ value to drop too far in the negative direction somewhere along
the filling disk. This definition is independent of the choices of X and hχ; see for example
[BG03, Theorem 12.1].

Remark 2.2.
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(a) One can compute BNSR-invariants using more general G-complexes. For instance,
one can take X to be any (n− 1)-connected CW-complex on which G acts properly,
cocompactly, and cellularly (see, e.g. [Zar18, Definition 1.1]); for an even more general
condition see [Bux04, Definition 8.1].

(b) For any X and χ as in Definition 2.1, to prove that the filtration Xhχ≥t is essentially
(m− 1)-connected it suffices to check the corresponding condition just for t = 0. This

follows easily from the fact that g.Xhχ≥t = Xhχ≥t+χ(g) for all g ∈ G and t ∈ R.
(c) The original definition from [Ren88] was as follows: [χ] ∈ Σm(G) if there exists some

X as in Definition 2.1 such that the subcomplex Xhχ≥t is (m− 1)-connected for all
t ∈ R. Note that unlike essential (m− 1)-connectivity, this condition does depend on
the choice on X. The equivalence of this definition and Definition 2.1 was established
already in [Ren88]; see also [Mei97, § 2] and [LI, § 2].

If n = 1, a natural choice for X in Definition 2.1 is the Cayley graph Cay(G,S) with respect
to some finite generating set S. Likewise, if n = 2, so that G is finitely presented, we can take
X to be the Cayley complex associated to a finite presentation of G.

If n = 1 and X = Cay(G,S) for a finite generating set S, there is no difference between
connectivity and essential connectivity (for any S); in fact in this case the following are
equivalent for a nonzero character χ:

(a) [χ] ∈ Σ1(G);
(b) Xhχ≥t is connected for all t;
(c) Xhχ≥t is connected for some t.

It is clear that (b) implies (a). That (c) implies (b) is proved, e.g., in [Str, Lemma A2.9].
Finally, to prove that (a) implies (c) note that for any u ≤ t, any vertex of Xhχ≥u is connected
by a path in Xhχ≥u to a vertex in Xhχ≥t (just choose s ∈ S±1 with χ(s) > 0 and multiply by
sn on the right for sufficiently large n); hence if Xhχ≥t is contained in a connected subset of
Xhχ≥u, then the entire Xhχ≥u is connected.

If G is of type F∞, then Σm(G) is defined for all m, and we have a nested sequence

S(G) ⊇ Σ1(G) ⊇ Σ2(G) ⊇ · · · .
The intersection of all the Σm(G) is denoted Σ∞(G). Note that if G is of type F with a finite
classifying space of dimension n, then Σn(G) = Σ∞(G) (for example this follows from [Zar17,
Citation 1.5]). Thus, for groups of type F the above sequence stabilizes.

An important property of BNSR-invariants, proved in [BNS87, Ren88], is that Σm(G) is
open in S(G) for all m < ∞. Another key property is that Σm(G) is invariant under the
action of Aut(G), that is, if α is an automorphism of G, then for a character χ we have
[χ ◦ α] ∈ Σm(G) if and only if [χ] ∈ Σm(G). This easily follows from the fact that Σm(G)
in Definition 2.1 does not depend on the choice of G-complex X or the choice of hχ, so in
particular one can keep the same complex X, but“twist” the action by α.

The main application of BNSR-invariants is the following theorem of Renz ([Ren88, Satz C];
see also Theorem 1.1 of [BGK10]).

Theorem 2.3. [Ren88, Satz C] Let G be a group of type Fn, and H a subgroup of G containing
the commutator subgroup [G,G]. Then H is of type Fn if and only if [χ] ∈ Σn(G) for all
0 ̸= χ ∈ Hom(G,R) such that χ(H) = 0.

For example, [G,G] itself is of type Fn if and only if Σn(G) = S(G). At the other extreme
in a sense, if 0 ̸= χ : G → R is discrete, meaning its image is cyclic, then ker(χ) is of type Fn if
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and only if [χ], [−χ] ∈ Σn(G). In practice, many groups have BNSR-invariants where one does
not need to worry about checking both χ and −χ, since they cannot have different behavior;
let us write

−Σm(G) := {[−χ] | [χ] ∈ Σm(G)},
and encode this situation into the following definition:

Definition 2.4 (Symmetric). We say that the BNSR-invariants of a group G are symmetric
if Σm(G) = −Σm(G) for all m. For example, if there is an automorphism ω of G such that
χ ◦ ω = −χ for all χ, then the BNSR-invariants of G are symmetric.

2.2. McCool groups. In this subsection we introduce our groups of interest. Let Fn be
the free group of rank n, with a fixed basis {x1, . . . , xn}. Consider the group Aut(Fn) of
automorphisms of Fn. Denote by Inn(Fn) the subgroup of inner automorphisms, and let
Out(Fn) = Aut(Fn)/ Inn(Fn) be the group of outer automorphisms. An automorphism of Fn

is called symmetric if it sends each xi to a conjugate of some xj , and pure symmetric if it
sends each xi to a conjugate of xi. Denote the group of all symmetric automorphisms of Fn

by SAutn, and the group of all pure symmetric automorphisms of Fn by PSAutn. Since all
inner automorphisms are pure symmetric, we have

Inn(Fn) ≤ PSAutn ≤ SAutn ≤ Aut(Fn).

Taking the quotient by Inn(Fn), we obtain “outer” versions:

PSOutn ≤ SOutn ≤ Out(Fn).

In [McC86], McCool exhibited a natural finite presentation for PSAutn. There is a generator
αij for each 1 ≤ i, j ≤ n with i ̸= j, and the defining relations are as follows:

• [αij , αkℓ] = 1 for i, j, k, ℓ distinct,
• [αij , αkj ] = 1 for i, j, k distinct,
• [αijαkj , αik] = 1 for i, j, k distinct.

The generator αij is the automorphism of Fn sending xi to x
xj

i = x−1
j xixj and fixing all xk for

k ̸= i. We will generally refer to PSAutn and PSOutn as McCool groups. Note that PSAut1
is trivial, so when talking about McCool groups we will often implicitly assume n ≥ 2, which
will avoid some pathologies.

Thanks to the second relation, if I ⊆ {1, . . . , n} and j ∈ {1, . . . , n} \ I, then αij and αi′j

commute for all i, i′ ∈ I. In particular it makes sense to define

αI,j =
∏
i∈I

αij ,

i.e., the order of the product does not matter. The automorphisms αI,j are called theWhitehead
generators of PSAutn. We say that αI,j is based at j. Note that Inn(Fn) is the subgroup of
PSAutn generated by all the α[n]\{j},j for 1 ≤ j ≤ n, where

[n] = {1, . . . , n}.

The McCool groups have some important topological properties that we will need to use
later:

Proposition 2.5. The group PSAutn is torsion-free and admits a free, simplicial, cocompact
action on an (n− 1)-dimensional contractible simplicial complex. Hence it is of type F. The
group PSOutn has the same properties, with n− 1 replaced by n− 2.
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Proof. Collins [Col89] proved that the groups SAutn and SOutn admit proper, simplicial,
cocompact actions on contractible simplicial complexes of dimensions n − 1 and n − 2,
respectively. On the other hand, PSAutn and PSOutn are torsion-free by a result of Baumslag
and Taylor [BT68]. Since a proper action of a torsion-free group must be free, restricting the
above actions of SAutn and SOutn to their finite index subgroups PSAutn and PSOutn, we
obtain free actions which remain cocompact. □

2.3. Setting the stage for BNSR-invariants of McCool groups. We can already begin
to see some facts relevant to the BNSR-invariants by looking at the McCool presentation.
First we can compute abelianizations. Since each defining relation is a commutator, the
abelianization of PSAutn is freely generated by the images of the αij and thus is isomorphic to

Zn(n−1). Hence Hom(PSAutn,R) ∼= Rn(n−1), and so S(PSAutn) ∼= Sn(n−1)−1. As for PSOutn,

in the abelianization we take Zn(n−1) generated by the images αij of the αij , and we mod
out n independent relations, of the form α[n]\{j},j = 0 for each j. Thus the abelianization of

PSOutn is isomorphic to Zn(n−1)−n = Zn(n−2), so S(PSOutn) ∼= Sn(n−2)−1.

Lemma 2.6. The BNSR-invariants of PSAutn and PSOutn are symmetric.

Proof. For PSAutn this is [Zar18, Observation 2.3], and the argument for PSOutn is analogous.
To spell it out, from the McCool presentation we see that there is an automorphism ω ∈
Aut(PSAutn) sending each αij to α−1

ij , which satisfies χ ◦ ω = −χ for every character χ of
PSAutn, and the induced automorphism ω of PSOutn has the same property. □

As we already mentioned, in [OK00] Orlandi-Korner fully computed the first BNSR-invariant
Σ1(PSAutn) for all n. In [Zar18], the second author gave a partial computation of Σm(PSAutn)
for m ≥ 2, and in particular proved that all “positive” (and all “negative”) characters of
PSAutn lie in Σn−2(PSAutn) \ Σn−1(PSAutn).

Remark 2.7. One can also ask about the BNSR-invariants of the full (as opposed to
pure) symmetric automorphism groups SAutn and SOutn, but this turns out to be a much
easier question since these groups have very low dimensional character spheres. We have
Hom(SAutn,R) ∼= R, so S(SAutn) = S0, and Σk(SAutn) is all of S(SAutn) for k ≤ n− 2 and
empty for k ≥ n− 1 [Zar18, Theorem B]. Even more extreme, Hom(SOutn,R) is trivial, since
any non-trivial map SAutn → R must restrict non-trivially to Inn(Fn).

3. Empty BNSR-invariants

In this section we prove parts (b) and (d) of Theorem 1.1, which assert that certain invariants
are empty. This is the easier part; indeed, it was arguably already known to experts, although
some pieces of proof need to be assembled.

Let G be a group such that all the rational homology groups Hi(G,Q) of G are finite-
dimensional, and vanish for large enough i. For example this happens if G is of type FP,
meaning the trivial G-module Z admits a finite-length resolution by finitely generated projective
G-modules. In particular this happens if G is of type F. The Euler characteristic X (G) of G
is

X (G) :=

∞∑
i=0

(−1)i dimHi(G,Q).

The following result must be well known, but we could not find it stated in this concise
form in the literature; the proof is reasonably elementary.
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Proposition 3.1. Let G be a group of type F such that X (G) ̸= 0. Then Σ∞(G)∩−Σ∞(G) = ∅,
so in particular if the BNSR-invariants of G are symmetric then Σ∞(G) = ∅.

Proof. Suppose Σ∞(G) ∩ −Σ∞(G) ̸= ∅. Since G is of type F, Σ∞(G) = Σm(G) where
m < ∞ is the dimension of some finite classifying space for G, so Σm(G) ∩ −Σm(G) ̸= ∅.
Since Σm(G) is open in S(G), we can choose a discrete character 0 ̸= χ : G → Z such that
[±χ] ∈ Σm(G) = Σ∞(G). Let K = ker(χ), so K is of type F∞.

Since G has a finite classifying space of dimension m, its cohomological dimension cd(G) is
at most m and hence cd(K) ≤ cd(G) < ∞ (see, e.g., [Bro82, Propositions VIII.2.2, VIII.2.4]).
Combined with K being of type F∞, hence FP∞, this implies that K is of type FP by
[Bro82, Proposition VIII.6.1]. Now by [Bro82, Proposition IX.7.3(d)], since K, G, and Z
are all of type FP, the Euler characteristic X is multiplicative for the short exact sequence
1 → K → G → Z → 1, and we get X (G) = X (K) · X (Z) = X (K) · 0 = 0, a contradiction. □

Remark 3.2. The above proof applies equally well to the homological BNSR-invariant
Σ∞(G;Z), since we only need to know that K was of type FP∞ (not necessarily F∞). We
should also mention that, as explained to us by Dawid Kielak, using some deep results from
ℓ2-homology the assumption about the BNSR-invariants being symmetric can be relaxed,
and the conclusion can be strengthened to saying that Σ∞(G;Q) = ∅, where Σ∞(G;Q)
is the homological BNSR-invariants with Q coefficients. This follows from Theorem A of
[HK], together with the fact that for groups of type F the Euler characteristic and ℓ2-Euler
characteristic coincide (see [Lüc02, Theorem 6.80(1)]). For our purposes, we only need the
result as stated in Proposition 3.1.

We can now prove Theorem 1.1(b)(d), that Σn−1(PSAutn) = ∅ and Σn−2(PSOutn) = ∅.

Proof of Theorem 1.1(b)(d). By Proposition 2.5, PSAutn and PSOutn are of type F. By
Lemma 2.6, the BNSR-invariants of these groups are symmetric. Finally, it is known that
X (PSAutn) ̸= 0 and X (PSOutn) ̸= 0; in fact, X (PSAutn) = (1−n)n−1 ̸= 0 and X (PSOutn) =
(1− n)n−2 ̸= 0; see Theorem A of [JMM07] and in particular Example 5.3 of [JMM07]. Thus,
Σn−1(PSAutn) = ∅ and Σn−2(PSOutn) = ∅ by Proposition 3.1. □

4. Dense BNSR-invariants

In this section we prove the much more difficult, “positive” statements of Theorem 1.1, parts
(a) and (c), that Σn−2(PSAutn) and Σn−3(PSOutn) are dense in their respective character
spheres. The general plan is to apply a criterion of Meier, Meinert and Van Wyk, with the
bulk of the work relating to the Whitehead poset WOn and McCullough–Miller space MMOn

of PSOutn, along with natural “auter” variants. In the coming subsections, we formulate
the Meier–Meinert–Van Wyk criterion, discuss the Whitehead poset and McCullough–Miller
space, and then prove the density results.

4.1. Higher generation and the Meier–Meinert–Van Wyk criterion. The key to
proving that certain characters are in certain BNSR-invariants will be a general criterion due
to Meier, Meinert, and Van Wyk [MMV98] (see Theorem 4.3 below), involving the concept of
higher generation due to Abels and Holz. We start with several definitions.

Let G be a group, let H be a family of subgroups of G, and let Cos(G,H) be the collection
of all cosets gH with g ∈ G and H ∈ H. We will view both H and Cos(G,H) as posets with
respect to inclusion. Recall that given a poset P , the associated flag complex F(P ) is the
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simplicial complex whose simplices are finite chains of elements of P (this is also known as the

order complex). If P has a global minimum element 0̂, let us also write

F0(P ) := F(P \ {0̂}).

Below we will be concerned with two flag complexes associated to G and H. The first is
F(Cos(G,H)), the flag complex of the poset of all cosets of subgroups in H. The second is
F0(H), the flag complex of the poset of all non-trivial subgroups in H (only the non-trivial
subgroups, not all cosets thereof).

Let U = {Ui | i ∈ I} be a covering of a set X. Recall that the nerve of U , denoted by N(U),
is the simplicial complex with vertex set I such that i0, . . . , ip span a p-simplex whenever
Ui0 ∩ · · · ∩ Uip is non-empty.

The following definition was introduced by Abels and Holz in [AH93].

Definition 4.1 (n-generating). Let H be family of subgroups of a group G, so Cos(G,H)
is a covering of G. For n ∈ N, the family H is said to be n-generating for G if the nerve
N(Cos(G,H)) is (n− 1)-connected, and ∞-generating if the nerve is contractible.

Remark 4.2. If H is closed under finite intersections, then by [AH93, Theorem 1.4(b)],
N(Cos(G,H)) is homotopy equivalent to the flag complex F(Cos(G,H)). Thus, in this case
we can replace N(Cos(G,H)) in Definition 4.1 with the complex F(Cos(G,H)), which is
somewhat easier to understand, being the flag complex of a poset.

We are now ready to state the general result of Meier–Meinert–Van Wyk from [MMV98]
relating BNSR-invariants to highly generating families of subgroups:

Theorem 4.3. [MMV98, Theorem 3.1] Let G be a group of type Fn. Let H be a non-empty,
finite, intersection-closed, n-generating family of subgroups of G such that each H ∈ H is of
type Fn. Let χ : G → R be a character such that χ|H ̸= 0 for each non-trivial subgroup H ∈ H.
Suppose that the following hold:

(i) Either the trivial subgroup does not belong to H or the simplicial complex F0(H) (as
defined above) is (n− 1)-connected, and

(ii) [χ|H ] ∈ Σn(H) for all non-trivial H ∈ H.

Then [χ] ∈ Σn(G).

Remark 4.4. The condition that the trivial subgroup does not belong to H is a strong
constraint since H needs to be closed under intersections. On the other hand, if the trivial
subgroup does belong to H, the complex F(H) is trivially contractible, which explains why
we are looking at F0(H) rather than F(H) in this case.

4.2. The Whitehead poset. In this subsection we recall the definition and prove some
properties of the Whitehead poset WOn, generally following [BMMM01]. The elements of
WOn can be viewed combinatorially as bipartite labeled trees on [n] = {1, 2, . . . , n}, which we
now define.

Definition 4.5. A bipartite labeled tree on [n] is a tree that has n vertices labeled by the
integers from 1 to n and some finite number of unlabeled vertices, satisfying the following
conditions:

(i) each edge connects a labeled vertex to an unlabeled vertex;
(ii) each unlabeled vertex has degree at least 2.
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The set of all bipartite labeled trees on [n] will be denoted by WOn. We will now define a
partial order on WOn. If T ∈ WOn has a labeled vertex v connected by edges to two unlabeled
vertices w1 and w2, we can form a new tree T ′ by identifying w1 and w2 and identifying the
edges joining w1 and w2 to v. In this case we say that T ′ is obtained from T by a folding at v.

Define a partial order ⪯ on WOn as follows: given T1, T2 ∈ WOn, we set T1 ⪯ T2 if T1 can
be obtained from T2 by a (possibly empty) sequence of foldings.

Definition 4.6. The set WOn with the partial order ⪯ is called the Whitehead poset.

We will also be working with WAn, the “auter” version of the Whitehead poset. We define
WAn to be the subposet of WOn+1 consisting of all trees T for which the vertex labeled n+ 1
has degree 1.

If T ∈ WOn has k unlabeled vertices, define the degree of T to be

deg(T ) = k − 1.

Let us collect a few basic properties of foldings and the degree function on WOn.

Observation 4.7. The following hold:

(a) If T ′ is obtained from T by a folding, then deg(T ′) = deg(T )− 1.
(b) 0 ≤ deg(T ) ≤ n− 2 for all T ∈ WOn.
(c) Every tree of positive degree admits at least one folding.
(d) Every tree of degree < n− 2 admits at least one unfolding (the reverse of a folding).
(e) WOn contains a unique tree of degree 0 (in which the unique unlabeled vertex is

connected to all n labeled vertices), and this tree is the (unique) global minimum of
WOn.

(f) The maximal elements of WOn are precisely the trees of degree n− 2. Moreover, for
every maximal tree T there exists a chain T0 ≺ T1 ≺ · · · ≺ Tn−2 = T in WOn.

(g) The maximal elements of WAn−1 are precisely the trees of degree n − 2 which lie
in WAn−1 (recall that WAn−1 is defined as a subset of WOn). Moreover, for every
maximal tree T ∈ WAn−1, every chain as in (f) is contained in WAn−1.

Proof. (a) This is clear from the definition of folding.
(b) Suppose that T has k unlabeled vertices (that is, k = deg(T ) + 1). Since every edge

connects an unlabeled vertex to a labeled vertex, we must have k ≥ 1, so deg(T ) ≥ 0. The
total number of vertices in T is n+ k and hence (since T is a tree), it has exactly n+ k − 1
edges. Since in addition every unlabeled vertex has degree ≥ 2, we have n+ k − 1 ≥ 2k, that
is k ≤ n− 1, or equivalently deg(T ) ≤ n− 2, which proves (b).
(c) A tree admits no foldings if and only if all labeled vertices have degree 1. This happens

exactly when n + k − 1 (the total number of edges) equals n (the total number of labeled
vertices), that is, when k = 1 or, equivalently, deg(T ) = 0.
(d) A tree T admits an unfolding if and only if it has an unlabeled vertex of degree > 2,

and by the computation in (b) the latter happens exactly when deg(T ) < n− 2.
(e) The first assertion is clear and the second one follows from (c).
(f) If deg(T ) = n− 2, then T is maximal by (a) and (b), and if deg(T ) < n− 2, then T is

not maximal by (d). The last assertion of (f) follows from (c) and (a).
(g) As in (f), if deg(T ) = n− 2, then T is maximal. If deg(T ) < n− 2, then by the proof

of (d) T has an unlabeled vertex of degree > 2, call it v. At least one of the neighbors of v is
labeled by some i ̸= n+ 1, and an unfolding at that neighbor produces a tree T ′ ∈ WAn−1

with T ≺ T ′, so T is not maximal. The last assertion of (g) holds simply because foldings
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do not increase the degrees of labeled vertices, so if T ∈ WAn−1, then S ∈ WAn−1 for any
S ≺ T . □

The following result is an immediate consequence of parts (f) and (g) of Observation 4.7.

Corollary 4.8. The flag complex F(WOn) is (n − 2)-dimensional, and the flag complex
F(WAn) is (n− 1)-dimensional.

4.3. A family of abelian subgroups. The main goal of this subsection is to show that the
Whitehead poset is isomorphic to a certain poset of abelian subgroups of PSOutn ordered by
inclusion. To build up to this, let us construct a subgroup H(T ) ≤ PSOutn associated to each
T ∈ WOn. Given T ∈ WOn and j ∈ [n], let Tj be the graph obtained from T by removing the
vertex labeled j (and all edges incident to it), and consider the partition of [n] \ {j} where two
elements lie in the same block if and only if the vertices of Tj with the corresponding labels
lie in the same connected component. Denote this partition by P(T, j). Now let

H(T ) :=

〈
αI,j

∣∣∣∣ j ∈ [n], I ∈ P(T, j)

〉
/ Inn(Fn),

and write

HOn := {H(T ) | T ∈ WOn}.

The following fundamental result is proved in [MM96]; see also [JMM06, Theorem 2.3(ii)].

Theorem 4.9. [MM96] The group H(T ) is free abelian of rank deg(T ).

In the “auter” case, for each T ∈ WAn let

HA(T ) := H(T ) ∩ PSAutn,

where we view PSAutn as a subgroup of PSOutn+1 by having each automorphism act trivially
on xn+1 (and noting that non-trivial automorphisms of this form are never inner). Let

HAn := {HA(T ) | T ∈ WAn}.

Note that each HA(T ) is abelian, being a subgroup of H(T ).

We will show that the map T → H(T ) is an isomorphisms of posets between WOn and
HOn (ordered by inclusion) and likewise the map T → HA(T ) is an isomorphisms of posets
between WAn and HAn. First we need some preparations.

Definition 4.10. Let T ∈ WOn and j ∈ [n]. A subset I of [n]\{j} will be called (T, j)-complete
if I is a (possibly empty) union of some blocks of the partition P(T, j).

Below, the image of a Whitehead generator αI,j in PSOutn will be denoted by αI,j .

Lemma 4.11. Let T ∈ WOn and I ⊆ [n] \ {j}. Then αI,j ∈ H(T ) if and only if I is
(T, j)-complete.

Proof. If I is (T, j)-complete, then I = ⊔kIk where each Ik ∈ P(T, j) and hence αI,j =∏
k αIk,j ∈ H(T ).
Let us now prove the converse. Suppose that αI,j ∈ H(T ) for some j ∈ [n] and I ⊆ [n] \ {j},

so that

αI,j =
k∏

t=1

(αBt,jt)
ct ,
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where Bt ∈ P(T, jt) for each t, all pairs (Bt, jt) are distinct, and all ct ≠ 0. For any collection
of Whitehead generators based at distinct vertices, their images in PSOutn/[PSOutn,PSOutn]
are linearly independent, so we must have jt = j for each t in the above equality, and we can
rewrite the latter as ∏

i∈I
αi,j =

k∏
t=1

(∏
i∈Bt

αi,j

)ct

. (∗ ∗ ∗)

Suppose now that some i, i′ ∈ [n] \ {j} lie in the same block of the partition P(T, j). Then
αi,j and αi′,j appear on the right-hand side of (***) with the same exponent. Since the only
vanishing products of the elements αi,j for a fixed j are powers of

∏
i∈[n]\{j} αi,j , it follows

that αi,j and αi′,j also have the same exponent on the left-hand side of (***), so i and i′ either
both lie in I or both lie outside of I. It follows that I is a union of blocks of P(T, j), so it is
(T, j)-complete. □

Lemma 4.12. The function η : T 7→ H(T ) is a bijection from WOn to HOn, and the function
ηA : T 7→ HA(T ) is a bijection from WAn to HAn.

Proof. The functions η and ηA are surjective by construction, so we just need to prove
injectivity.

We first prove that η is injective by describing an algorithm for extracting T from H(T ).
Fix T ∈ WOn. We claim that for any distinct i, j ∈ [n] the following conditions are equivalent:

(i) The vertices labeled i and j are connected to the same unlabeled vertex in T .
(ii) The unique reduced path in T connecting the vertices labeled i and j contains no

other labeled vertices.
(iii) The labels i and j lie in the same block of the partition P(T, k) for any k ∈ [n] \ {i, j}.
(iv) For any αI,k ∈ H(T ) with k ̸= i, j, the set I contains either both i and j or neither of

them.

The equivalences (i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii) are clear and (iii) ⇐⇒ (iv) holds by Lemma 4.11.
Since condition (iv) can be read off from H(T ), the same is true for (i).

Let us now form an auxiliary graph Aux(T ). It has n vertices, labeled by the elements of
[n], and no unlabeled vertices; the vertices labeled by i and j are connected by an edge if
and only if the vertices of T labeled i and j are connected by edges to the same unlabeled
vertex in T . By the previous paragraph, Aux(T ) is determined by H(T ). On the other hand,
it is easy to recover T from Aux(T ): create an unlabeled vertex for each maximal clique C
in Aux(T ) and connect that vertex to a vertex labeled by i for each i ∈ C. Thus, we have
proved that η is injective.

We now deduce injectivity of ηA from that of η. For this, we need to prove that if T,U ∈ WAn

are such that H(T )∩PSAutn = H(U)∩PSAutn then H(T ) = H(U). By symmetry it suffices
to check that H(T ) ⊆ H(U). Consider any αI,j ∈ H(T ), so j ∈ [n+1] and I is (T, j)-complete.
We will prove that αI,j ∈ H(U) by splitting into three cases.

Case 1: Suppose j ∈ [n] and n + 1 ̸∈ I. Then αI,j ∈ PSAutn, hence the hypothesis
H(T ) ∩ PSAutn = H(U) ∩ PSAutn ensures that αI,j ∈ H(U).

Case 2: Suppose j = n+ 1. Since n+ 1 is a leaf in T , we have I = [n] or ∅; in either case
αI,j is inner, so αI,j = 1 is automatically in H(U).

Case 3: Suppose j ∈ [n] and n + 1 ∈ I. Let I ′ be the complement of I in [n + 1] \ {j},
so αI,jαI′,j is inner. Hence αI′,j = α −1

I,j ∈ H(T ), but now n + 1 ̸∈ I ′, so by case 1 we have

αI′,j ∈ H(U), and thus αI,j ∈ H(U) as desired. □
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Recall that a poset is a meet semilattice if any two elements x and y have a unique greatest
lower bound, called their meet, denoted x ∧ y.

Proposition 4.13. [MM96, Lemmas 5.4 and 5.5] The posets WOn and WAn are meet
semilattices. Moreover, H(T ∧ U) = H(T ) ∩H(U) for any T,U ∈ WOn and HA(T ∧ U) =
HA(T ) ∩HA(U) for any T,U ∈ WAn. In particular, the families HAn and HOn are closed
under taking intersections, and so are also meet semilattices.

Now let us prove that the bijection η : T 7→ H(T ) is a poset isomorphism from WOn to
HOn, along with the “auter” version.

Proposition 4.14. For T,U ∈ WOn, we have T ⪯ U if and only if H(T ) ≤ H(U). For
T,U ∈ WAn, we have T ⪯ U if and only if HA(T ) ≤ HA(U). Hence η and ηA are isomorphisms
of posets, and we get F(WOn) ∼= F(HOn) and F(WAn) ∼= F(HAn). Analogous results also
hold with F replaced by F0 everywhere.

Proof. Suppose that T ⪯ U , so T is obtained from U by a sequence of foldings. Then for any
j ∈ [n] and any I ⊆ [n] \ {j} that is (T, j)-complete, I is also (U, j)-complete. We conclude
that H(T ) ≤ H(U).

Now suppose that H(T ) ≤ H(U). This implies that H(T ) = H(T ) ∩ H(U), and so by
Proposition 4.13 we have H(T ) = H(T ∧ U). By Lemma 4.12, this tells us that T = T ∧ U ,
and so T ⪯ U . Since we already know that η : WOn → HOn is a bijection, this proves that it
is an isomorphism of posets.

The proof for ηA is analogous, and the remaining statements in the proposition are all
immediate consequences of the facts that η and ηA are poset isomorphisms. □

4.4. McCullough–Miller space. We are now ready to define the McCullough–Miller spaces
MMOn and MMAn, slightly rephrasing the original definitions from [MM96] and [CGJ05]. The
idea for MMOn is to glue together copies of F(WOn), one for each element of PSOutn, along
appropriate intersections. Since we have already established that WOn is isomorphic to HOn, it
is not surprising that the end result of this is a complex isomorphic to F(Cos(PSOutn,HOn)),
and indeed we will simply define McCullough–Miller space this way. The equivalence between
this viewpoint and the original viewpoint of McCullough–Miller in [MM96] is not difficult,
and is discussed for example in [Gri13] (along with the MMAn case).

Definition 4.15 (McCullough–Miller space). Define the McCullough–Miller space MMOn to
be

MMOn = F(Cos(PSOutn,HOn)),

and define the “auter” version MMAn to be

MMAn = F(Cos(PSAutn,HAn)).

The only property of the McCullough–Miller spaces that we will need is also the most
important one, namely, that they are contractible:

Proposition 4.16. The complexes MMOn and MMAn are contractible. Thus, HOn and
HAn are ∞-generating, for PSOutn and PSAutn respectively.

Proof. Contractibility of MMOn was proved by McCullough and Miller in [MM96, Section 4].
Contractibility of MMAn is essentially proved by Chen, Glover and Jensen in [CGJ05, The-
orem 3.1]. Technically, in [CGJ05], Chen, Glover, and Jensen consider pure symmetric
automorphisms not of free groups, but of free products of finite groups. However, the proof of
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contractibility of the associated complex works for free products of any groups, in particular
free groups, as explained by Griffin in [Gri13, Section 5]; see [Gri13, Theorem 5.5]. The
statement about ∞-generation is now immediate from Remark 4.2. □

4.5. Proof of density. In this subsection we prove parts (a) and (c) of Theorem 1.1, that
Σn−2(PSAutn) and Σn−3(PSOutn) are dense in their respective character spheres. The idea
is to prove that a suitably generic character satisfies the hypotheses of Theorem 4.3, using the
family of subgroups HAn for PSAutn and HOn for PSOutn.

Most of the hypotheses involved in Theorem 4.3 have been dealt with by now. The one we
still need to prove is that the flag complexes of non-trivial subgroups from the above families
are highly connected. We will actually prove a stronger statement, involving the property of
being homotopy Cohen–Macualay:

Definition 4.17 (Homotopy Cohen–Macaulay). A simplicial complex X of finite dimension
n is called homotopy Cohen–Macaulay if for every p-simplex σ, the link lk(σ) is (n− p− 2)-
connected. (This includes the empty simplex, so X itself should be (n − 1)-connected.) A
poset is called homotopy Cohen–Macaulay if its flag complex is.

Proposition 4.18. The posets WOn and WAn are homotopy Cohen–Macaulay. Hence, the
flag complex F0(HOn) is (n− 4)-connected and F0(HAn) is (n− 3)-connected.

Remark 4.19. Since Proposition 4.8 says that the flag complexes of WOn and WAn are
(n− 2)-dimensional and (n− 1)-dimensional, respectively, and since F0(HOn) and F0(HAn)
are isomorphic to the link of a 0-simplex in WOn and WAn respectively, namely the trivial
vertex, the second statement follows from the first.

The fact that WOn is homotopy Cohen–Macaulay has already been proved in [BMMM01,
Theorem 5.13]. To show that WAn is also homotopy Cohen–Macaulay, we need to recreate
and adjust the proof for WOn. First we will introduce some terminology dealing with posets.

Definition 4.20. A poset P is called

• bounded if it has a global miminum and a global maximum;
• graded if it is bounded and all maximal chains have the same length, which is then
called the length of P .

Given p ≤ q in a poset P , write [p, q] = {r | p ≤ r ≤ q}, and call this a (closed) interval ;
analogously define open and half-open intervals. Given p, q ∈ P , we say that q covers p if
(p, q] = {q}. An atom in a poset with a global minimum is any element that covers the global
minimum.

There is a nice sufficient condition (see [BMMM01, Lemma 5.3]), originally due to Björner
and Wachs [BW83], for a bounded graded poset P to be homotopy Cohen–Macaulay, namely
that it admits a recursive atom ordering:

Definition 4.21. Let P be a bounded graded poset with global minimum 0̂ and global
maximum 1̂. We say that P admits a recursive atom ordering if either P has length 1 or P
has length greater than 1 and there is an ordering a1, . . . , aℓ of the atoms of P such that the
following hold:

(i) For each 1 ≤ j ≤ ℓ, the interval [aj , 1̂] admits a recursive atom ordering such that

any atoms of [aj , 1̂] that cover some ai with i < j come first in the ordering.
(ii) For all i < j, if ai, aj < y then there exist i′ < j and z ≤ y such that z covers ai′ and

aj .
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Let ŴOn be the result of adding a new element to WOn, as a global maximum. Construct

ŴAn from WAn in the same way. Let ZOn and ZAn be the dual posets of ŴOn and ŴAn

respectively, i.e., replace every ⪯ with ⪰. By [BMMM01, Theorem 5.12], ZOn admits a
recursive atom ordering. Our goal is to adapt that proof to the case of ZAn:

Proposition 4.22. ZAn admits a recursive atom ordering.

First let us explain why Proposition 4.18 for WAn follows from Proposition 4.22.

Proof of Proposition 4.18 for WAn. Proposition 4.22 and Lemma [BMMM01, Lemma 5.3]
imply that ZAn is homotopy Cohen–Macaulay. It is immediate from the definitions that
WAn is isomorphic to the link of the global minimum in ZAn, and that the property of being
homotopy Cohen-Macaulay is inherited by links. Thus WAn is homotopy Cohen–Macaulay as
well. □

Proof of Proposition 4.22. We first check that ZAn is bounded and graded. Since ZAn is the

dual of ŴAn, this is equivalent to showing that ŴAn is bounded and graded. Boundedness is

clear: ŴAn has a global maximum by construction and a global minimum since WAn does.

The fact that ŴAn is graded follows directly from Observation 4.7(g).
Let us now prove that ZAn has a recursive atom ordering. Since WAn is defined as a

subposet of WOn+1, we can view ZAn as a subposet of ZOn+1, with the same global minimum,

call it 0̂. Clearly the subposet WAn of WOn+1 is closed under taking lower bounds, since a
folding cannot increase the degree of a labeled vertex, so the subposet ZAn of ZOn+1 is closed
under taking upper bounds. Hence, for any T ⪯ U in ZAn, the interval [T,U ] is the same
viewed in either ZAn or ZOn+1.

Denote by 0 the unique tree in WOn+1 of degree 0. Recall that it is the global minimum
of WOn+1 and thus the global maximum of ZOn+1. By [BMMM01, Lemmas 2.5 and 2.7],

for every 0̂ ≠ T ∈ ZOn+1, any ordering of the atoms of [T,0] in ZOn+1 is a recursive atom
ordering, so by the previous paragraph the same holds in ZAn. In other words, the first
condition in the definition of recursive atom ordering will always be automatically satisfied.

As for the second condition, by Observation 4.7(f)(g), the posets ZAn and ZOn+1 are both
graded of the same length (namely n− 1) and the atoms of ZAn are precisely the atoms of
ZOn+1 that lie in ZAn. Now we claim that the recursive atom ordering for ZOn+1 given in
[BMMM01] induces an ordering of the atoms of ZAn that is also a recursive atom ordering.
Say the atoms of ZAn are ordered T1, . . . , Tℓ. Let i < j and say Ti, Tj ⪯ U for some U ∈ ZAn.
Working in ZOn+1, where we already know we have a recursive atom ordering, we get that
there exist i′ < j and V ⪯ U such that V covers Ti′ and Tj . Since ZAn is closed under upper
bounds and Tj ⪯ V we know V ∈ ZAn. The last thing to do is show that Ti′ ∈ ZAn.

The proof of [BMMM01, Theorem 5.12] essentially provides an algorithm for constructing
Ti′ from V . In that proof the elements of ZOn+1 are viewed as trees rooted at 1 and drawn
upside down. According to this graphical representation foldings are naturally divided into
two types, called lifts and merges, and the corresponding unfoldings are called drops and splits;
see [BMMM01, Definition 5.9]. The proof shows that Ti′ can be obtained from V by a split
(not a drop). On the other hand, if we view V as an unrooted tree, then any unfolding at a
leaf not labeled 1 is a drop. Since the vertex n+ 1 in V is a leaf not labeled 1, we know that
the unfolding that produces Ti′ from V is not based at n+ 1, so n+ 1 remains a leaf in Ti′

and hence Ti′ ∈ ZAn. □

We are now ready to prove our main result.
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Proof of parts (a) and (c) of Theorem 1.1. The proofs of these two parts are analogous, so
we will only prove (a), that Σn−2(PSAutn) is dense in S(PSAutn). Let χ be any character
of PSAutn such that χ|H ̸= 0 for all non-trivial H ∈ HAn. Let us verify the hypotheses
of Theorem 4.3, to confirm that [χ] ∈ Σn−2(PSAutn). We know that PSAutn and all the
HA(T ) are of type F∞, hence Fn−2, and that HAn is non-empty, finite, intersection-closed
(Proposition 4.13), and ∞-generating, hence (n − 2)-generating (Proposition 4.16). Since
χ|H ̸= 0 for all non-trivial H ∈ HAn, we have that [χ|H ] ∈ Σn−2(H) for all such H, since H
is abelian. Finally, F0(HAn) is (n− 3)-connected by Proposition 4.18. All the hypotheses of
Theorem 4.3 have been confirmed, and so we conclude that [χ] ∈ Σn−2(PSAutn).

The last thing to show is that the set of all such [χ] is dense. It is clear from the McCool
presentation that for any non-trivial HA(T ), the image of HA(T ) in the real vector space
PSAutn/[PSAutn,PSAutn]⊗ R has positive dimension. Thus, taking the dual, the subspace
of Hom(PSAutn,R) consisting of characters that send HA(T ) to 0 has positive codimension. A
finite union of subspaces with positive codimension has dense complement, so we are done. □

5. More on Σ2 for McCool groups

Let us say that a character χ of PSAutn (respectively, PSOutn) is generic if χ|H ̸= 0 for all
non-trivial H ∈ HAn (respectively, H ∈ HOn). It is not difficult to check that a character χ of
PSAutn is generic if and only if χ(αI,j) ̸= 0 for all (non-trivial) Whitehead generators αI,j and
likewise a character χ of PSOutn is generic if and only if χ(αI,j) ̸= 0 whenever αI,j ̸= 1 (recall
that αI,j is the image of αI,j in PSOutn). The proof of Theorem 1.1 shows that Σm(PSAutn)
and Σm(PSOutn) contain (the equivalence classes of) all generic characters for m ≤ n− 2 and
m ≤ n− 3, respectively, but does not say anything about non-generic characters.

The precise computation of Σ1(PSAutn) in [OK00] (see Theorem 5.1 below) suggests that
Σm(PSAutn) should be much larger than the set of generic characters. In this section we will
pose some specific questions about the structure of Σm(PSAutn) and then answer one of these
questions for m = 2. For brevity of exposition, we will limit our discussion to PSAutn, but all
the results and questions in this section have natural counterparts for PSOutn.

Theorem 5.1 (Orlandi-Korner). Let n ≥ 2 and let χ be a non-zero character of PSAutn.
Then [χ] ̸∈ Σ1(PSAutn) if and only if one of the following holds:

(1) There exist distinct indices i, j such that χ(αℓ,m) = 0 whenever {ℓ,m} ≠ {i, j} as sets.
(2) There exist distinct indices i, j, k such that χ(αℓ,m) = 0 whenever {ℓ,m} ̸⊆ {i, j, k}

and in addition χ(αi,k) +χ(αj,k) = 0, χ(αi,j) +χ(αk,j) = 0, and χ(αj,i) +χ(αk,i) = 0.

Define the support supp(χ) of a character χ of PSAutn to be the set of all (i, j) such that
χ(αi,j) ̸= 0. Thus, Theorem 5.1 implies in particular that the classes of characters whose
support has at least 4 elements always lie in Σ1(PSAutn), and one may ask if a similar
phenomenon holds for other BNSR invariants.

Question 5.2. Assume that m ≤ n− 2 and let χ a non-zero character of PSAutn.

(a) Does Σm(PSAutn) always contain [χ] whenever | supp(χ)| is largest possible, that is,
χ(αi,j) ̸= 0 for all i ̸= j?

(b) Does there exist a constant C(m) and a subset S(m,n) of {(i, j) | 1 ≤ i ̸= j ≤ n}
with |S(m,n)| = C(m) such that Σm(PSAutn) always contains [χ] whenever supp(χ)
contains S(m,n)?

(c) Does there exist a constant C(m) such that Σm(PSAutn) always contains [χ] whenever
| supp(χ)| > C(m)?
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Clearly, a positive answer to any part of Question 5.2 yields a positive answer to the preceding
parts. We also note that the conclusion of Theorem 1.1 as well as each of the conditions
(a)-(c) above yields a simple geometric condition on the set S(PSAutn) \ Σm(PSAutn), the
complement of Σm(PSAutn) in the character sphere of PSAutn.

We first recall that S(PSAutn) has dimension n(n− 1)− 1 and fix m ≤ n− 2. Theorem 1.1
implies that S(PSAutn) \ Σm(PSAutn) is contained in the union of finitely many spheres of
codimension 1, but the number of spheres grows exponentially with n. A positive answer to (a)
would reduce the number of spheres in the union to n(n− 1). Since Σm(PSAutn) is invariant
under a natural action of the symmetric group Sn, it is easy to show that (b) would imply
that S(PSAutn) \Σm(PSAutn) is contained in the union of finitely many spheres of dimension
2C(m)n. Finally, (c) would imply that the dimensions of the spheres can be bounded by a
function of m (independent of n).

The main goal of this section is to answer Question 5.2(b) in the affirmative for m = 2
and n ≥ 10. We will show that the set S(2, n) = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)} has the
required property; in other words, we will prove the following:

Proposition 5.3. Assume that n ≥ 10. Then [χ] ∈ Σ2(PSAutn) whenever χ(αi,j) ̸= 0 for all
(i, j) ∈ {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}.

We will prove Proposition 5.3 using the following general criterion:

Theorem 5.4 (Commutation Σ2-criterion for quotients). Let Q = ⟨X | R⟩ be a finitely
presented group, let R1 be a subset of R and G = ⟨X | R1⟩ (so that there is a natural surjection
from G to Q). Let χ be a character of Q such that

(a) [χ] ∈ Σ2(G) (we denote the character of G induced by χ by the same symbol) and
(b) for every r ∈ R \R1 there exists gr ∈ G with χ(gr) ̸= 0 such that gr commutes with

the image of r in G.

Then [χ] ∈ Σ2(Q).

Theorem 5.4 is a straightforward consequence of a criterion of Meinert (see Theorem A.1
in Appendix A) established in his Ph.D. thesis [Mei93]; see also a remark after the proof of
Corollary 2.8 in [Mei97] where Theorem A.1 is stated in a different language. Since [Mei93] is
not easily accessible, we will provide a proof of Theorem A.1 in Appendix A where we will
also explain why it implies Theorem 5.4.

Remark 5.5. Theorem 5.4 is particularly convenient to apply to a group Q = ⟨X | R⟩ in
the case when the majority of relations in R are of the form [x, y] = 1 for x, y ∈ X; call such
relations RAAG-like. In this case we can let R1 be a set of some or all of the RAAG-like
relations from R, so that G = ⟨X | R1⟩ is a RAAG, and therefore Σ2(G) is completely
determined by the main result of [MMV98] (see Theorem 5.6 below). This allows us to get a
handle on condition (a). As for condition (b), a natural way to ensure this holds is to require
that for each relator r ∈ R \R1 there exists a generator xr ∈ X such that, for every generator
x appearing in r, the (RAAG-like) relation [xr, x] = 1 holds and lies in R1. Indeed, in this
case if we set gr = xr, then condition (b) holds for any χ satisfying χ(xr) ̸= 0. The more
RAAG-like relations from R are included in R1, the easier it is to satisfy (b); however (unlike
for Σ1), including too many of the RAAG-like relations in R1 can affect whether (a) holds.
Thus, in practice it can be a balancing act to find the most useful R1.

Theorem 5.6 below describes the m = 1 and m = 2 cases of the full computation of the
BNSR-invariant Σm for an arbitrary RAAG, proved by Meier, Meinert, and Van Wyk in
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[MMV98], and also see [BG99] for an alternative proof due to Bux and Gonzalez. Before
stating Theorem 5.6, we introduce some standard notation and terminology. Let Γ be a finite

graph with no loops or multiple edges, and let Γ̂ be the flag complex associated to Γ (that

is, the simplices of Γ̂ are precisely the cliques in Γ). Let AΓ be the RAAG corresponding
to Γ, that is, AΓ has generators {xv | v is a vertex of Γ} and defining relations [xv, xw] = 1
whenever v and w are adjacent.

Let χ be a non-zero character of AΓ.

• A vertex v of Γ is called living (with respect to χ) if χ(v) ̸= 0 and dead otherwise.

• The living subcomplex of χ is the full subcomplex of Γ̂ spanned by the living vertices.

• A simplex σ of Γ̂ is called dead if all its vertices are dead.

• The living link of a simplex σ in Γ̂ is the full subcomplex of the link of σ spanned by
its living vertices.

Theorem 5.6. [MMV98, BG99] Let Γ and AΓ be as above and χ a non-zero character of AΓ.
The following hold:

(1) [χ] ∈ Σ1(AΓ) if and only if the living subcomplex of χ is connected and every dead
vertex is adjacent to a living vertex;

(2) [χ] ∈ Σ2(AΓ) if and only if
• the living subcomplex of χ is simply-connected,
• the living link of every dead vertex is connected and non-empty, and
• the living link of every dead edge is non-empty.

Condition (2) is often difficult to check in specific examples; however, its verification can
sometimes be avoided entirely as there is a natural condition on Γ which guarantees that
Σ1(AΓ) = Σ2(AΓ), namely the following:

Definition 5.7. A graph Γ is called chordal if any cycle C of length ≥ 4 in Γ has a chord,
that is, an edge of Γ connecting non-consecutive vertices of C.

Whenever Γ is chordal we have Σ1(AΓ) = Σ2(AΓ) [MMV98, Corollary 6.1], which makes
understanding Σ2(AΓ) much easier in this case. We now use RAAGs corresponding to chordal
graphs to prove our main result of this section, Proposition 5.3.

Proof of Proposition 5.3. Let S = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)} and define the graph Γ as
follows. The vertices of Γ are all the pairs (i, j) with 1 ≤ i ̸= j ≤ n. Two distinct vertices
(i, j) and (k, ℓ) are adjacent if and only if at least one of them lies in S and [αi,j , αk,l] = 1 in
PSAutn. Note that

(i) any two vertices in S are adjacent to each other,
(ii) every vertex of Γ is adjacent to a vertex in S, and
(iii) any vertex of Γ not in S can only be adjacent to vertices that are in S.

If C is a cycle in Γ, then either all vertices of C are in S or there is a vertex of C outside of
S, in which case both of its neighbors must be in S by property (iii); either way, by (i) C
contains a chord as soon as its length is at least 4. Thus, Γ is chordal.

Now let Q = PSAutn (with the McCool presentation) and G = AΓ. By construction, Q
is a quotient of G. Let χ be a character of Q such that χ(αi,j) ̸= 0 whenever (i, j) ∈ S. We
need to check that the induced character of G (also denoted by χ) satisfies the hypotheses of
Theorem 5.4. The living subcomplex of χ contains S and hence is connected by properties (i)
and (ii) above. Likewise, property (ii) implies that every dead vertex is adjacent to a living
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vertex. Hence by Theorem 5.6(1), [χ] lies in Σ1(G), and Σ1(G) = Σ2(G) since Γ is chordal.
Thus we have confirmed condition (a) of Theorem 5.4. We now check (b); actually, we will show
that it holds for all r ∈ R, where R is the set of defining relators in the McCool presentation.
This is because any r ∈ R involves at most four indices, but S has five elements, so there
exists (k, ℓ) ∈ S such that neither k nor ℓ appears in the subscript of any generator used in r,
whence the corresponding generator x(k,ℓ) of G commutes (in G) with every generator used
in r. □

Appendix A. A proof of Meinert’s Σ2-criterion

The goal of this appendix is to state and prove a criterion of Meinert established in his
Ph.D. thesis [Mei93, Satz 5.2.1], and that is the key to proving Theorem 5.4.

In order to state Meinert’s criterion, we need the notion of a generating set for groups
with operators. Let H be a group, and suppose we are given a set Φ together with a map
Φ → Aut(H). We will say that H is finitely generated as a Φ-group if there exists a finite
subset S of H such that the smallest Φ-invariant subgroup of H containing S is H itself. If H
is a normal subgroup of some group G and Φ is a subset of G, we can view H as a Φ-group
where Φ acts on H by conjugation.

Theorem A.1 (Meinert’s Σ2-criterion for quotients). Let 1 → N → G → Q → 1 be a short
exact sequence of groups, with G and Q finitely presented. Let χ be a non-zero character of Q.
Assume that

(i) [χ] ∈ Σ2(G) (as before we denote the character of G induced by χ by the same symbol)
(ii) N is finitely generated as a Gχ≥0-group, where Gχ≥0 = {g ∈ G | χ(g) ≥ 0}.

Then [χ] ∈ Σ2(Q).

This criterion should be compared to the classical fact that [χ] ∈ Σ1(G) always implies
[χ] ∈ Σ1(Q) [BNS87, Proposition 3.3].

Let us first deduce Theorem 5.4 from Theorem A.1.

Proof of Theorem 5.4. Assume that G and Q are as in Theorem 5.4. Then we have the short
exact sequence 1 → N → G → Q → 1 where N is the normal closure of the image of R \R1

in G. Condition (i) in Theorem A.1 holds by assumption, so we just need to check (ii). By

definition any element n ∈ N can be written as n =
∏k

i=1 air
±1
i a−1

i where ri ∈ R \ R1 and
ai ∈ G (here we are equivocating between ri and its image in G). Recall that by the hypotheses
of Theorem 5.4, for each i there exists gi such that χ(gi) ̸= 0 and [gi, ri] = 1 in G. The latter
condition means that in the above expression for n we can replace ai by aig

mi
i for any integer

mi, and since χ(gi) ̸= 0, after doing so we can assume that ai ∈ Gχ≥0. But this means that N
is generated as a Gχ≥0-group by the finite set R \R1, so hypothesis (ii) in Theorem A.1 holds,
as desired. □

We now make some preparations for the proof of Theorem A.1. We will start with some
terminology and notation. Let X be a set. As usual, by F (X) we will denote the free group
with basis X. By Ω(X) we will denote the set of all finite words in the alphabet X ⊔X−1

(not necessarily reduced). We can think of F (X) as both a subset and a quotient of Ω(X)
(the quotient map Ω(X) → F (X) is a homomorphism of monoids). While no non-empty
word in Ω(X) is invertible in Ω(X), there is a natural involution w 7→ w−1 on Ω(X): if
w = x1 · · ·xn ∈ Ω(X), with xi ∈ X±1 for all i, we set w−1 = x−1

n · · ·x−1
1 where by convention

(x−1)−1 = x for all x ∈ X.
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Let R be a subset of Ω(X). By RF (X) we will denote the normal closure of the image of R in

F (X). By RΩ(X) we will denote the set of all words of the form
∏k

i=1 airia
−1
i where ai ∈ Ω(X)

and ri ∈ R±1. Thus, RΩ(X) maps onto RF (X) under the natural projection Ω(X) → F (X).

Definition A.2. Given a word w = x1 · · ·xn ∈ Ω(X) with xi ∈ X±1 for all i, by a prefix of
w we will mean a subword of the form x1 · · ·xk with k ≤ n. We do allow k = 0.

If X is a generating set of some group G, any character of G naturally induces a character
of the group F (X) and a character of the monoid Ω(X) (for simplicity we will not introduce
separate notation for those induced characters).

Given w ∈ Ω(X) and a character χ of Ω(X), define

χmin(w) = min{χ(v) | v is a prefix of w}.

We will say that w is χ-non-negative if χmin(w) = 0 (since we count the empty word as a
prefix, χmin(w) is never positive).

The following observation collects some easy properties of the χmin function.

Observation A.3. Let X be a set, and let u, v ∈ Ω(X). The following hold:

(a) χmin(uv) = min{χmin(u), χ(u) + χmin(v)} ≥ χmin(u) + χmin(v).
(b) (special case of (a)). If χ(u) = 0, then χmin(uv) = min{χmin(u), χmin(v)}.
(c) If χ(u) = 0, then χmin(u

−1) = χmin(u).

We can rephrase the usual, topological definition of Σ2(G) combinatorially in terms of χmin

as follows.

Lemma A.4. Let ⟨X | R⟩ be a finite presentation of a group G, and let χ be a non-zero
character of G. Then [χ] ∈ Σ2(G) if and only if [χ] ∈ Σ1(G) and

(Σ2
comb) : there is a constant C such that if w ∈ Ω(X) is any χ-non-negative relator of G,

then there exists w′ ∈ RΩ(X) such that w′ = w in F (X) and χmin(w
′) ≥ C.

(Note that we must have C ≤ 0 since χmin(w
′) is never positive.)

Proof. Let K be the Cayley complex of G corresponding to the finite presentation ⟨X | R⟩.
Let hχ : K → R be as in the definition of Σ-invariants.

First recall that Σ2(G) is contained in Σ1(G), and for a character χ we have [χ] ∈ Σ1(G) if
and only if Khχ≥t is connected for some (or, equivalently, all) t ∈ R. Thus, Lemma A.4 only
deals with characters χ such that [χ] ∈ Σ1(G), and in view of Remark 2.2(b), it suffices to
show that the following are equivalent for a given constant C ≤ 0:

(a) the inclusionKhχ≥0 → Khχ≥C induces the trivial map π1(K
hχ≥0, 1G) → π1(K

hχ≥C , 1G)
(note that 1G lies in both Khχ≥0 and Khχ≥0).

(b) (Σ2
comb) holds for C.

We will use the following standard fact about the fundamental groups of CW-complexes.
Let Y be a path-connected CW-complex and fix a vertex v0 of Y . Then every element of
π1(Y, v0) is represented by an edge path, and if p is any closed edge path starting from v0,
then p represents the identity in π1(Y, v0) if and only if there exists another closed edge path
p′ starting from v0 such that

(1) p′ and p represent the same element in π1(Y
1, v0) where Y 1 is the 1-skeleton of Y ;
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(2) p′ can be written as a product
k∏

i=1
αiβiα

−1
i where for each i the path αi is an edge

path from v0 to some vertex vi of Y and there exists a 2-cell Ri containing vi such
that βi is a closed path which starts at vi and traverses the boundary of Ri.

We are now ready to prove the equivalence of conditions (a) and (b) above. Below we will
establish the implication “(a)⇒ (b)”. The other implication can be proved by just reversing
the argument.

Suppose (a) holds. Let w ∈ Ω(X) be a χ-non-negative relator of G, and let p be the unique
edge path in Cay(G,X) starting at 1G whose label is w. Note that p is closed since w is a
relator of G.

The assumption that w is χ-non-negative means precisely that p lies in Khχ≥0, so by our
choice of C, p represents the identity in π1(K

hχ≥C , 1G). Thus, there exists a closed edge
path p′ in Y = Khχ≥C satisfying (1) and (2) above. Let w′ ∈ Ω(X) denote the label of p′.
Condition (1) means precisely that w = w′ in F (X), and condition (2) means precisely that

w′ ∈ RΩ(X) with χmin(w
′) ≥ C. Thus, w′ satisfies the conclusion of (Σ2

comb), and therefore (b)
holds.

□

We can now prove Meinert’s criterion.

Proof of Theorem A.1. To reiterate the setup, we have a short exact sequence of groups
1 → N → G → Q → 1 with G and Q finitely presented, and a non-zero character χ : Q → R,
with χ also denoting the induced character of G. We are assuming that [χ] ∈ Σ2(G) and that
N is finitely generated as a Gχ≥0-group. Our goal is to prove that [χ] ∈ Σ2(Q).

Since [χ] ∈ Σ1(G), we clearly have [χ] ∈ Σ1(Q) [BNS87, Proposition 3.3]. Hence by
Lemma A.4 it suffices to show that χ considered as a character of Q satisfies (Σ2

comb).
Fix a finite presentation ⟨X | R⟩ of G. Choose a finite subset RQ of Ω(X) whose image in

G generates N as a Gχ≥0-group, and set

CQ = min{χmin(r) | r ∈ RQ} and CX = max{χ(x) | x ∈ X ⊔X−1}.
Note that CQ ≤ 0 and CX > 0. Next, let CG ≤ 0 be a constant for χ considered as a character
of G in (Σ2

comb), and set

C = CQ − CX + CG.

Note that C < CQ.

We will show that (Σ2
comb) holds for χ as a character of Q using this constant C and the finite

presentation Q = ⟨X | R ∪RQ⟩. Let w ∈ Ω(X) be a χ-non-negative relator of Q. The image

of w in G lies in N , so we can choose v ∈ Ω(X) with v = w in G such that v =
∏k

i=1 birib
−1
i ,

for some ri ∈ R±1
Q and bi satisfying χ(bi) ≥ 0 for each i. Since [χ] ∈ Σ1(G), without loss of

generality χmin(bi) ≥ 0 for all i; by Observation A.3(b) this ensures that χmin(v) ≥ CQ. Now
set u = wv−1, so u is a relator of G, and since χmin(w) = 0 by assumption, we compute using
Observation A.3(b)(c) that

χmin(u) ≥ min{χmin(w), χmin(v
−1)} = χmin(v

−1) = χmin(v) ≥ CQ.

Next choose x ∈ X ⊔X−1 with χ(x) > 0, and choose n ≥ 0 minimal such that χ(xn) ≥ −CQ.
By minimality, χ(xn) < −CQ + CX . Set u′ = xnux−n, so u′ is a χ-non-negative relator of G.

Since [χ] ∈ Σ2(G) we can choose u′′ ∈ RΩ(X) such that u′ = u′′ in F (X) and χmin(u
′′) ≥ CG.
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Say u′′ =
∏l

j=1 ajrja
−1
j for some aj ∈ Ω(X) and rj ∈ R±1. Since χ(ajrja

−1
j ) = 0 for all j, by

Observation A.3(b) we get

min
j

{χmin(ajrja
−1
j )} = χmin(u

′′) ≥ CG.

But now we can rewrite w as an element of F (X) as follows:

w = uv = (x−nu′xn)v = (x−nu′′xn)v =

 l∏
j=1

x−najrja
−1
j xn

 · v.

Let w′ ∈ Ω(X) denote this last word. Since v ∈ R
Ω(X)
Q , we have that w′ lies in (R ∪RQ)

Ω(X)

and w = w′ in F (X). The only thing remaining is to prove that χmin(w
′) ≥ C. Using

Observation A.3(b) again, we have

χmin(w
′) = min{χmin(v), χmin(x

−najrja
−1
j xn) | 1 ≤ j ≤ l}.

If χmin(w
′) = χmin(v), then χmin(w

′) ≥ CQ > C and we are done. Now suppose that

χmin(w
′) = χmin(x

−najrja
−1
j xn). By Observation A.3(a) we have

χmin(x
−najrja

−1
j xn) ≥ χmin(x

−n) + χmin(ajrja
−1
j ) + χmin(x

n).

By construction we have χmin(x
−n) > CQ − CX , χmin(x

n) = 0, and χmin(ajrja
−1
j ) ≥ CG, so

putting everything together we get χmin(w
′) ≥ CQ − CX + CG = C, as desired. □

References
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