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Abstract. We establish property (T ) for a large class of groups graded by

root systems, including elementary Chevalley groups and Steinberg groups of

rank at least two over finitely generated commutative rings with 1. We also
construct a group with property (T ) which surjects onto all finite simple groups

of Lie type and rank at least two.

1.1. Introduction. Groups graded by root systems can be thought of as natural
generalizations of Steinberg and Chevalley groups over rings. In recent preprints
[5, 18], the authors of this paper determined a sufficient condition which “almost”
implies property (T ) for a group graded by a root system (see Theorem 1.1 below)
and used this result to establish property (T ) for Steinberg and Chevalley groups
corresponding to reduced irreducible root systems of rank at least two. The goal of
this paper is to give an accessible exposition of those results and describe the main
ideas used in their proofs.

As will be shown in [5], a substantial part of the general theory of groups graded
by root systems can be developed using the term ‘root system’ in a very broad
sense. However, the majority of interesting examples (known to the authors) come
from classical root systems (that is, finite crystallographic root systems), so in this
paper we will only consider classical root systems (and refer to them simply as ‘root
systems’).

The basic idea behind the definition of a group graded by a root system Φ is
that it should be generated by a family of subgroups indexed by Φ, which satisfy
commutation relations similar to those between root subgroups of Chevalley and
Steinberg groups.

Definition. Let G be a group, Φ a root system and {Xα}α∈Φ a family of subgroups
of G. We will say that the groups {Xα}α∈Φ form a Φ-grading if for any α, β ∈ Φ
with β 6∈ Rα, the following inclusion holds:

(1.1) [Xα, Xβ ] ⊆ 〈Xγ : γ ∈ (R≥1α+ R≥1β) ∩ Φ〉.

If in addition G is generated by the subgroups {Xα}, we will say that G is graded
by Φ and that {Xα}α∈Φ is a Φ-grading of G. The groups Xα themselves will be
referred to as root subgroups.

Clearly, the above definition is too general to yield any interesting structural
results, and we are looking for the more restrictive notion of a strong grading. A
sufficient condition for a Φ-grading to be strong is that the inclusion in (1.1) is an
equality; however, requiring equality in general is too restrictive, as, for instance, it
fails for Chevalley groups of type Bn over rings where 2 is not invertible. In order
to formulate the definition of a strong grading in the general case, we need some
additional terminology.

Let Φ be a root system in a Euclidean space V with inner product (·, ·). A subset
B of Φ will be called Borel if B is the set of positive roots with respect to some
system of simple roots Π of Φ. Equivalently, B is Borel if there exists v ∈ V , which
is not orthogonal to any root in Φ, such that B = {γ ∈ Φ : (γ, v) > 0}.

If B is a Borel subset and Π is the associated set of simple roots, the boundary
of B, denoted by ∂B, is the set of roots in B which are multiples of roots in Π. In
particular, if Φ is reduced, we simply have ∂B = Π.



GROUPS GRADED BY ROOT SYSTEMS AND PROPERTY (T) 3

Definition. Let Φ be a root system, let G be a group and {Xα}α∈Φ a Φ-grading
of G. We will say that the grading {Xα} is strong if for any Borel subset B of Φ,
and any root γ ∈ B \ ∂B we have Xγ ⊆ 〈Xβ : β ∈ B and β 6∈ Rγ〉.

It is easy to see that for any commutative ring R with 1 and any reduced irre-
ducible root system Φ, the elementary Chevalley groups EΦ(R) and the Steinberg
group StΦ(R) are strongly graded by Φ.

Our first main theorem asserts that any group strongly graded by an irreducible
root system of rank at least two is in some sense close to having property (T ).

Theorem 1.1 ([5]). Let Φ be an irreducible root system of rank at least two, and
let G be a group which admits a strong Φ-grading {Xα}. Then the union of root
subgroups {Xα} is a Kazhdan subset of G (see Definition 1.3).

By definition, a group G has property (T ) if it has a finite Kazhdan subset. Even
though the root subgroups are almost never finite, Theorem 1.1 reduces proving
property (T ) for G to showing that the pair (G,∪Xα) has relative property (T ),
and the latter can be achieved in many important examples. In particular, as a
consequence of Theorem 1.1 and those results on relative property (T ), we obtain
the following theorem:

Theorem 1.2 ([5, 18]). Let Φ be a reduced irreducible root system of rank at least
two and R a finitely generated ring (with 1). Assume that

(a) R is commutative or
(b) R is associative and Φ = An (with n ≥ 2) or
(c) R is alternative and Φ = A2.

Then the elementary Chevalley group EΦ(R) and the Steinberg group StΦ(R) have
property (T ).

Remark: Recall that a ring R is called alternative if (xx)y = x(xy) and x(yy) =
(xy)y for all x, y ∈ R.

Part (b) of Theorem 1.2 was previously established in [4], but the result for
root systems of types other than A was only known over rings of Krull dimension
one [10]. Later in the paper we will discuss several extensions of Theorem 1.2,
dealing with twisted Steinberg groups over rings with involution.
Convention. All rings in this paper are assumed to be unital and all groups are
assumed to be discrete.

1.2. Examples of groups graded by root systems. In all examples below
gradings are strong unless explicitly stated otherwise.

(1) Let Φ be a reduced irreducible root system, let R be a commutative ring,
and let GΦ(R) be the corresponding simply-connected Chevalley group.
The root subgroups of GΦ(R) with respect to the standard torus clearly
form a Φ-grading. Thus the subgroup EΦ(R) of GΦ(R) generated by those
root subgroups, which will be referred to as the elementary Chevalley group,
is graded by Φ.

(2) Let R be an associative ring. The group ELn(R) with n ≥ 3 has a natural
An−1-grading {Xij}1≤i 6=j≤n, where Xij = {In + rEij : r ∈ R}. Of course,
ELn(R) = EAn−1

(R) for R commutative.
(3) Let R be an alternative ring. As shown in [6, Appendix], one can define the

A2-graded group EL3(R) via “exponentiation” (in a suitable sense) of the
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Lie algebra el3(R) which, in turn, is defined as the quotient of the Steinberg
Lie algebra st3(R) modulo its center.

(4) Let R be an associative ring endowed with an involution ∗, that is, an anti-
automorphism of order at most 2. Then ∗ induces the associated involution
A 7→ A∗ on the ring M2n(R) of 2n × 2n matrices over R, where A∗ is the
transpose of the matrix obtained from A by applying ∗ to each entry. Let
Jsymp =

∑n
i=1Ei,̄i − Eī,i, where ī = 2n + 1 − i. The symplectic group

Sp2n(R, ∗) is defined by

Sp2n(R) = {M ∈ GL2n(R) : MJsympM
∗ = Jsymp}.

It can be shown that the following subgroups of Sp2n(R) form a Cn-grading
(1 ≤ i, j ≤ n).

Xei−ej = {I + rEij − r∗Ej̄ī : r ∈ R} for i 6= j,

Xei+ej = {I + rEij̄ + r∗Ejī : r ∈ R} for i < j.

X−ei−ej = {I + rEj̄i + r∗Eīj : r ∈ R} for i < j,

X2ei = {I + rEīi : r ∈ R, r∗ = r},

X−2ei = {I + rEīi. : r ∈ R, r∗ = r}.
These root subgroups generate the elementary symplectic group ESp2n(R, ∗).
Note that Xγ

∼= (R,+) if γ is a short root, and Xγ
∼= (Sym(R),+) if γ is a

long root, where Sym(R) = {r ∈ R : r∗ = r}.
(5) Again let R be an associative ring with an involution ∗, and let m ≥ 4 be an

integer. Keeping the notations from Example 4, let Junit =
∑m
i=1Ei,m+1−i.

The unitary group Um(R, ∗) is defined by

Um(R) = {M ∈ GLm(R) : MJunitM
∗ = Junit}.

If m = 2k is even, the group U2k(R, ∗) has a natural Ck-grading, where
each short root subgroup is isomorphic to (R,+) and each long root sub-
group is isomorphic to (Asym(R),+) where Asym(R) = {r ∈ R : r∗ = −r}.

If m = 2k+ 1 is odd, the group U2k+1(R, ∗) has a natural BCk-grading,
where each long root subgroup is isomorphic to (R,+), each double root
subgroup is isomorphic to (Asym(R),+), and short root subgroups have
more complicated description (they are nilpotent of class at most 2, typi-
cally equal to 2).

In both cases the subgroup of Um(R) generated by those root subgroups
will be denoted by EUm(R). This grading is always strong for m ≥ 6 and
strong for m = 4, 5 under some natural condition on the pair (R, ∗).

(6) For any associative ring R, the group ELn(R) actually has an Ak-grading
{Xij} for any 1 ≤ k ≤ n − 1, constructed as follows. Choose integers
a1, . . . , ak+1 ≥ 1 with

∑
ai = n. Thinking of elements of Mn(R) as (k +

1)×(k+1)-block matrices with (i, j)-block having dimensions ai×aj , we let
Xij be the subgroup generated by all elementary matrices whose nonzero
diagonal entry lies in the (i, j)-block.

(7) Given any Φ-grading {Xα} of a group G, one can construct another Φ-

graded group Ĝ, which naturally surjects onto G, and called the graded

cover of G. Somewhat informally, Ĝ can be defined as follows. Given
any α, β ∈ Φ with β 6∈ Rα, let Φα,β = (R≥1α + R≥1β) ∩ Φ. By the
commutation relations (1.1), for any x ∈ Xα and y ∈ Xβ , there exist
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elements {zγ(x, y) ∈ Xγ : γ ∈ Φα,β} such that

(1.2) [x, y] =
∏
γ∈Φα,β

zγ(x, y)

(where the product is taken in some fixed order). The group Ĝ is the
quotient of the free product of the root subgroups {Xα} by the commutation

relations (1.2). It is clear that Ĝ also has a Φ-grading, which is strong
whenever the original Φ-grading of G is strong.

If G = EΦ(R), the graded cover of G (with respect to its canonical
grading) is the Steinberg group StΦ(R) (this can be taken as the definition
of the Steinberg group). Similarly, for any associative ring R, the Steinberg
group Stn(R) is the graded cover of ELn(R).

(8) If G is any group graded (resp. strongly graded) by a root system Φ, any
quotient of G is also graded (resp. strongly graded) by Φ in an obvious
way.

(9) Let R be an alternative ring with involution ∗. Consider J := H3(R, ∗),
the space of 3 × 3 Hermitian matrices over R, and for every x ∈ H3(R, ∗)
define the operator Ux : J → J by Ux(y) = xyx. Then J with operators
Ux becomes a quadratic Jordan algebra (see [11, Pg 83] for the definition).
Note that if 1

2 ∈ R, then J is a usual Jordan algebra with product x ◦ y =
1
2 (xy + yx).

For x, y, z ∈ J , define Vx,y(z) = (Ux+z − Ux − Uz)(y) and L0(J ) :=
span{Vx,y x, y ∈ J }. The celebrated Tits-Kantor-Koecher construction
allows us to endow to the abelian group T KK(J ) := J + ⊕ L0(J ) ⊕ J−
with a Lie algebra structure depending only on the U and V operators
defined above (see [11, Pg 13]). Such Lie algebra admits a C3-grading
where J± are the weight spaces corresponding to {±(ei + ej)} and L0(J )
contains the zero weight space and the ones corresponding to {±(ei− ej)}.

The elementary symplectic group ESp6(R, ∗) is generated by “exponen-
tials” of the nonzero weight subspaces of the above Lie algebra (see [18]
and the references therein for details). The group ESp6(R, ∗) is C3-graded,
see [18].

It is an interesting problem to find an abstract characterization of groups in
some of the above examples, at least up to graded covers. Such characterization of
groups in Examples 1 and 2 of type An, n ≥ 3, Dn and En, was obtained in [14].
The ongoing work [19] extends this characterization to groups in Examples 1-4 of
types An, n ≥ 2 and Cn, n ≥ 3 (with additional restrictions for types A2 and C3)
and may eventually lead to a complete classification of root-graded groups (which
can be informally thought of as groups graded by root systems endowed with a
suitable action of the Weyl group).
1.3. Prior work on property (T ).

Definition. Let G be a group and S a subset of G.
(a) The Kazhdan constant κ(G,S) is the largest ε ≥ 0 with the following

property: if V is a unitary representation of G which contains a vector
v such that ‖sv − v‖ < ε‖v‖ for all s ∈ S, then V contains a nonzero
G-invariant vector.

(b) S is called a Kazhdan subset of G if κ(G,S) > 0.
(c) G has property (T ) if it has a finite Kazhdan subset.

If a group G has property (T ), then G is finitely generated and moreover any
generating subset of G is Kazhdan.
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In order to establish property (T ) for many interesting groups, one needs the
notion of relative property (T ). Relative property (T ) was first defined for pairs
(G,B) where B is a normal subgroup of a group G, but more recently has been
extended to the case when B is an arbitrary subset of G.

(a) Let B be a normal subgroup of G. The pair (G,B) has relative property
(T ) if there exists a finite subset S of G such that whenever a unitary
representation V of G has a vector v ∈ V satisfying ‖sv − v‖ ≤ ε‖v‖ for
every s ∈ S, there must exist a nonzero B-invariant vector in V .

(b) Assume now that B is an arbitrary subset of G. The pair (G,B) has
relative property (T ) if there exist a finite subset S of G and a function
f : R>0 → R>0 such that if V is any unitary representation of G and v ∈ V
satisfies ‖sv− v‖ ≤ f(ε)‖v‖ for every s ∈ S, then ‖bv− v‖ ≤ ε‖v‖ for every
b ∈ B.

The equivalence of definitions (a) and (b) in the case when B is a normal subgroup
of G is not trivial, but what one typically uses is the implication “(a)⇒(b)”, whose
proof is elementary and was first given in [12] (though expressed in a different
language there).

Clearly in order to prove that a group G has property (T ), it is sufficient to find
a subset B of G such that

(i) B is a Kazhdan subset of G, that is, κ(G,B) > 0
(ii) (G,B) has relative property (T ).

Suppose now that G = ELn(R) for some n ≥ 3 and associative ring R. If one
wants to prove property (T ) using the above general strategy, a natural choice for B
is Elemn(R), the set of elementary matrices in ELn(R) or, equivalently, the union
of root subgroups. Verification of condition (ii) in this case is an easy consequence
of the following result:

Theorem 1.3. Let R be a finitely generated associative ring. Then the pair
(EL2(R) n R2, R2) has relative property (T ), where EL2(R) acts on R2 by left
multiplication.

Theorem 1.3 was proved by Burger [2] for R = Z, by Shalom [12] for commu-
tative R, and by Kassabov [8] in the above form. It immediately implies that the
pair (ELn(R),Elemn(R)) has relative property (T ) (for n ≥ 3) since for any root
subgroup Xij of ELn(R) there is a homomorphism ϕij : EL2(R) n R2 → ELn(R)
such that Xij ⊂ ϕij(R

2). Shalom [12] also proved that Elemn(R) is a Kazdhan
subset of ELn(R) when R is commutative of Krull dimension 1 (thereby establish-
ing property (T ) in this case), using the fact that ELn(R) over such rings is known
to be boundedly generated by root subgroups.

In later works of Shalom [13] and Vaserstein [17], a generalization of the bounded
generation principle was used to prove property (T ) for ELn(R), n ≥ 3, over any
finitely generated commutative ring R, but that proof followed a more complex
strategy and did not involve verification of conditions (i) and (ii) above for some
subset B.

In [4], Ershov and Jaikin-Zapirain proved that Elemn(R) is a Kazhdan subset
of ELn(R) (and hence ELn(R) has property (T )), but this time by a completely
different method, which we describe next.
1.4. Property (T ) for the group associated with a graph of groups. The
main ingredient of the argument in [4] is a criterion for property (T ) for groups
associated to a graph of groups. In order to describe it we need to introduce a
series of definitions.
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Definition. Let V be a Hilbert space, and let {Ui}ni=1 be subspaces of V , at least
one of which is non-trivial. The quantity

codist({Ui}) = sup

{
‖u1 + · · ·+ un‖2

n(‖u1‖2 + · · ·+ ‖un‖2)
: ui ∈ Ui

}
.

will be called the codistance between the subspaces {Ui}ni=1.

It is clear that codist({Ui}) is a real number in the interval [ 1
n , 1]. Moreover,

codist({Ui}) = 1
n if and only if the subspaces {Ui} are pairwise orthogonal and

codist({Ui}) = 1 whenever the intersection ∩Ui is non-trivial.
It is easy to show that the codistance can also be defined as the square of the

cosine of the angle between the subspaces diag(V ) = {(v, v, . . . , v) : v ∈ V } of V n

and U1 × . . .× Un:

codist({Ui}) = sup

{
‖
∑n
i=1〈v, ui〉‖2

‖v‖2(
∑n
i=1 ‖ui‖2)

: ui ∈ Ui, v ∈ V
}
.

An important consequence of the latter formula is that codist({Ui}) < 1 if and only
if a unit vector v ∈ V cannot be arbitrarily close to Ui for all i.

Definition. Let {Hi}ni=1 be subgroups of the same group, and letG = 〈H1, . . . ,Hn〉.
The codistance between {Hi}, denoted by codist({Hi}), is defined to be the supre-
mum of the quantities codist(V H1 , . . . , V Hn), where V ranges over all unitary repre-
sentations of G without nonzero G-invariant vectors and V Hi denotes the subspace
of Hi-invariant vectors.

Proposition 1.4 ([4]). Suppose that G = 〈H1, . . . ,Hn〉. Then
(a)

⋃
Hi is a Kazhdan subset of G ⇔ codist({Hi}) < 1;

(b) If codist({Hi}) < 1 and Si is a Kazhdan subset of Hi, then ∪Si is a Kazh-
dan subset of G.

There are very few examples where one can prove that codist({Hi}) < 1 by
directly analyzing representations of the group G = 〈H1, . . . ,Hn〉. However, in
many cases one can show that codist({Hi}ni=1) < 1 by estimating codistances be-
tween suitable subsets of the set {H1, . . . ,Hn} (combined with some additional
information on the subgroups {Hi}). The first result of this kind was obtained
by Dymara and Januszkiewicz in [3] who showed that codist({Hi}) < 1 whenever
for any two indices k 6= l, the codistance codist(Hk, Hl) is sufficiently close to
1
2 ; a quantitative improvement of this result [4, Thm 1.2] asserts that requiring
codist(Hk, Hl) <

n
2(n−1) is sufficient. Moreover, it was shown in [4] that a similar

principle can be applied in a more complex setting when we are given a graph of
groups decomposition of the group G over certain finite graph, as defined below.

Graph-theoretic conventions. All graphs we consider are assumed non-
oriented and without loops. The sets of vertices and edges of a graph Γ will be
denoted by V(Γ) and E(Γ), respectively. Given two vertices ν and ν′, we will write
ν ∼ ν′ if they are connected by an edge in Γ; similarly, for a vertex ν and an edge
e we will write ν ∼ e if ν is an endpoint of e.

If Γ is regular, by ∆(Γ) we denote its Laplacian (our convention is that the
matrix of ∆ is kI − A where k is the degree of Γ and A is the adjacency matrix).
Finally, by λ1(∆) we will denote the smallest nonzero eigenvalue of ∆.

Definition. Let G be a group and Γ a graph. A graph of groups decomposition
(or just a decomposition) of G over Γ is a choice of a vertex subgroup Gν ⊆ G for
every ν ∈ V(Γ) and an edge subgroup Ge ⊆ G for every e ∈ E(Γ) such that
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(a) The vertex subgroups {Gν : ν ∈ V(Γ)} generate G;
(b) If a vertex ν is an endpoint of an edge e, then Ge ⊆ Gν
(c) For each ν ∈ V(Γ) the vertex subgroup Gν is generated by the edge sub-

groups {Ge : ν ∼ e}
The following criterion from [4] informally says that if the codistance between

the edge subgroups at each vertex is small and the graph Γ is highly connected (i.e.
λ1(∆) is large), then the union of the edge subgroups is a Kazhdan subset.

Theorem 1.5 ([4, Thm 5.1]). Let Γ be a finite connected k-regular graph and let
G be a group with a given decomposition over Γ. For each ν ∈ V(Γ) let pν be
the codistance between the subgroups {Ge : ν ∼ e} of Gν , and let p = max

ν
pν . If

p < λ1(∆)
2k , then codist({Gν}ν∈V(Γ)) < 1, and therefore ∪ν∈V(Γ)Gν is a Kazhdan

subset of G. Moreover, ∪e∈E(Γ)Ge is also a Kazhdan subset of G.

Remark: Since λ1(∆) ≤ 2k, the assumption p < λ1(∆)
2k implies that each pν < 1,

so the last assertion of Theorem 1.5 follows from Proposition 1.4.

Example 1.6. Suppose that a group G is generated by three subgroups H1, H2, H3.
Let Γ be a complete graph on three vertices labeled v12, v13 and v23, and denote
the edge between vij and vik by ei (with i, j, k distinct). Define the vertex and edge
subgroups by Gvij = 〈Hi, Hj〉 and Gei = 〈Hi〉. Then p = max{codist(Hi, Hj)},
k = 2 and λ1(∆) = 3. By Theorem 1.5, κ(G,H1 ∪H2 ∪H3) > 0 whenever p < 3

4 ,
so in this way we recover [4, Thm 1.2] mentioned above in the case n = 3.

1.5. Proof of property (T ) for ELn(R), with R arbitrary. The following key
result from [4] asserts that for any group G strongly graded by A2, the union of root
subgroups is a Kazhdan subset of G. To give the reader a better feel, we formulate
this result explicitly, unwinding the definition of a strong A2-grading.

Proposition 1.7. Let G be a group generated by 6 subgroups {Xij : 1 ≤ i, j ≤
3, i 6= j} such that for any permutation i, j, k of the set {1, 2, 3} the following
conditions hold:

(a) Xij is abelian; (b) Xij and Xik commute;
(c) Xji and Xki commute; (d) [Xij , Xjk] = Xik.

Then κ(G,
⋃
Xij) ≥ 1

8 .

The group G satisfying the above hypotheses has a natural decomposition over
the graph with six vertices indexed by pairs (i, j) where 1 ≤ i 6= j ≤ 3, in which
(i, j) is connected to every other vertex except (j, i). The vertex subgroup at the
vertex (i, j) is Gij = 〈Xik, Xkj〉, where k ∈ {1, 2, 3} is distinct from both i and j.
If e is the edge joining (i, j) and (i, k) (with i, j, k distinct), the edge subgroup Ge
is XijXik, and if e joins (i, j) and (k, i), we set Ge = Xkj . An easy computation
shows that the codistance between edge subgroups at each vertex is bounded above

by 1/2 (typically equal to 1/2), while the quantity λ1(∆)
2k is also equal to 1/2.

Thus, Theorem 1.5 is not directly applicable in this situation and cannot be
used to prove Proposition 1.7. Instead the latter is proved in [4] by adapting the
proof of Theorem 1.5 and using conditions (a)-(d) more efficiently. In this paper
we will introduce a generalized spectral criterion (Theorem 1.8), which can be used
to prove not only Proposition 1.7, but its generalization Theorem 1.1.

We finish by explaining how to deduce property (T ) for ELn(R), n ≥ 3, from
Proposition 1.7. Recall that by Theorem 1.3 we only need to show that the union of



GROUPS GRADED BY ROOT SYSTEMS AND PROPERTY (T) 9

root subgroups of ELn(R) is a Kazhdan subset. If n = 3, this follows directly from
Proposition 1.7. If n > 3, we apply Proposition 1.7 to the A2-grading of ELn(R)
described in the Example 6 of § 2.1, and use the fact that each root subgroup in
that A2-grading is a bounded product of usual root subgroups of ELn(R).

1.6. Generalized spectral criterion. Before stating the generalized spectral cri-
terion, we give a brief outline of the proof of the basic spectral criterion (Theo-
rem 1.5), which will also motivate the statement of the former.

So, let G be a group with a chosen decomposition over a finite k-regular graph
Γ. Let V be a unitary representation of G without invariant vectors, and let
Ω be the Hilbert space of all functions f : V(Γ) → V , with the inner product
〈f, g〉 =

∑
ν∈V(Γ)〈f(ν), g(ν)〉. Let U ⊆ Ω be the subspace of all constant functions

and W ⊆ Ω be the subspace of all functions f such that f(ν) ∈ V Gν for each
ν ∈ V(Γ). According to Proposition 1.4, in order to prove that ∪ν∈V(Γ)Gν is a
Kazhdan subset of G, it suffices to show that

(1.3) codist(U,W ) ≤ 1− ε for some ε > 0, independent of V.

Let V ′ be the closure of U +W . Since V has no G-invariant vectors, U ∩W = {0},
which implies that

(1.4) codist(U,W ) = codist(U⊥,W⊥),

where U⊥ and W⊥ are the orthogonal complements in V ′ of U and W , re-
spectively. The Laplacian operator ∆ of Γ naturally acts on the space Ω by
(∆f)(y) =

∑
z∼y(f(y)− f(z)), and it is easy to show that U⊥ = PV ′∆(W ), where

PZ denotes the orthogonal projection onto a subspace Z. Combining this observa-
tion with (1.4), we reduce the desired inequality (1.3) to the following condition on
the Laplacian:

For any f ∈W , the element ∆f cannot be almost orthogonal to W , that is,

(1.5) ‖PW (∆f)‖ ≥ ε‖∆f‖ for some ε > 0 independent of V and f.

In order to establish (1.5), we consider the decomposition V = W ⊕W⊥, and write
any f ∈ V as the sum of its projections onto W and W⊥: f = PW (f) + PW⊥(f).
It is not difficult to show that

λ1(∆)

2k
‖PW (∆f)‖2 +

λ1(∆)

2kp
‖PW⊥(∆f)‖2

≤ ‖∆f‖2 = ‖PW (∆f)‖2 + ‖PW⊥∆f‖2.

Thus, if p < λ1(∆)
2k (which is an assumption in Theorem 1.5), the above inequality

implies that ‖PW (∆f)‖ cannot be too small relative to ‖∆f‖, thus finishing the
proof.

Keeping the notations from Theorem 1.5, assume now that we are in the bound-

ary case p = λ1(∆)
2k . Also suppose that for each vertex ν there is a normal subgroup

CGν of Gν such that for any representation Vν of Gν without CGν-invariant vec-
tors, the codistance between the subspaces {V Geν : e ∼ ν} is bounded above by
p(1− δ) for some absolute δ > 0.

To make use of this condition, we now decompose V into a direct sum of three
subspaces V = W1 ⊕W2 ⊕W3, where

W1 = W, W3 = {f ∈ Ω : f(ν) ∈ V CGν}, W2 = (W1 ⊕W3)⊥.
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Denoting by Pi the orthogonal projection onto Wi and repeating the above argu-
ment, for any f ∈W we get

λ1(∆)

2k
‖P1(∆f)‖2 +

λ1(∆)

2kp
‖P2(∆f)‖2 +

λ1(∆)

2kp(1− δ)
‖P3(∆f)‖2

≤ ‖∆f‖2 = ‖P1(∆f)‖2 + ‖P2(∆f)‖2 + ‖P3(∆f)‖2.

By our assumption the coefficient of ‖P2(∆f)‖2 on the left-hand side is equal to
1 and the coefficient of ‖P3(∆f)‖2 is larger than 1. Thus, the inequality implies
that if the ratio ‖P1(∆f)‖/‖∆f‖ is close to 0, then the ratio ‖P2(∆f)‖/‖∆f‖ must
be close to 1. Explicitly disallowing the latter possibility, we obtain the following
generalized version of the spectral criterion.

Theorem 1.8 ([5]). Let Γ be a finite connected k-regular graph. Let G be a group
with a chosen decomposition over Γ, and for each ν ∈ V(Γ) choose a normal sub-

group CGν of Gν , called the core subgroup. Let p = λ1(∆)
2k , where ∆ is the Laplacian

of Γ. Suppose that
(i) For each ν ∈ V(Γ), the codistance between the edge subgroups {Ge : ν ∼ e}

of Gν is bounded above by p.
(ii) There exists δ > 0 such that for any ν ∈ V(Γ) and any unitary representa-

tion V of the vertex group Gν without CGν-invariant vectors, the codistance
between the fixed subspaces of Ge, with ν ∼ e, is bounded above by p(1− δ);

(iii) There exists δ′ > 0 such that ‖P2(∆f)‖ < (1 − δ′)‖∆f‖ for any f ∈ W ,
where P2 is defined as above.

Then ∪e∈E(Γ)Ge is a Kazhdan subset of G.

1.7. Sketch of the proof of Theorem 1.1. Let G be a group with a strong
Φ-grading {Xα}α∈Φ for some irreducible root system Φ of rank at least two. The
first key observation is that G has a natural decomposition over certain graph
Γl = Γl(Φ), which we call the large Weyl graph of Φ. The reader can easily see
that the decomposition of A2-graded groups introduced in § 1.5 is a special case of
the following construction.

The vertices of Γl(Φ) are labeled by the Borel subsets of Φ, and two distinct
vertices B and B′ are connected if and only if B ∩B′ 6= ∅ (equivalently, B′ 6= −B).
For a subset S of B, we put GS = 〈Xα : α ∈ S〉. Then the vertex subgroup at
a vertex B is defined to be GB , and if e is an edge joining vertices B and B′, we
define the edge subgroup at e to be GB∩B′ . Finally, the core subgroup at a vertex
B is set to be GB\∂B , that is, CGB = GB\∂B in the notations of Theorem 1.8.

We claim that Theorem 1.8 is applicable to this decomposition of G over Γl.
Below we outline verifications of conditions (i) and (ii) of Theorem 1.8, skipping the
more technical argument needed for part (iii). The proof is based on the following
result about codistances of certain families of subgroups in nilpotent groups:

Lemma 1.9. Let N be a nilpotent group, and let {Xi}ni=1 be a finite family of
subgroups of N such that for each 1 ≤ i ≤ n, the product set Ni =

∏n
j=iXj is a

normal subgroup of N , N1 = N and [Ni, N ] ⊆ Ni+1 for each i. Let {Gj}mj=1 be
another family of subgroups of N , and let l ∈ Z be such that for each 1 ≤ i ≤ n, the
subgroup Xi lies in Gj for at least l distinct values of j. Then codist(G1, . . . , Gm) ≤
m−l
m .
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Let us now go back to the proof of Theorem 1.1. Denote the Laplacian of Γl by
∆, let k = deg(Γl) and let d = |V(Γl)|. It is easy to see that λ1(∆) = k = d− 2, so

the ratio p = λ1(∆)
2k is equal to 1/2.

Now fix a Borel set B and let N = GB . If we let {Xi}ni=1 be suitably ordered
root subgroups contained in N , the first hypothesis of Lemma 1.9 clearly holds.
Letting {Gj} be the edge subgroups corresponding to edges incident to B, we get
that in the notations of Lemma 1.9, m = deg(Γl) and l = m/2. The latter holds
since B is connected by an edge with all other Borels except its opposite −B. Those
Borels split into pairs of mutually opposite ones, and each root subgroup Xi lies in
precisely one Borel from each pair. Thus, the ratio m−l

m is equal to 1/2, so condition
(i) of Theorem 1.8 follows from Lemma 1.9.

The proof of condition (ii) follows from a more technical version of Lemma 1.9,
which we do not state here. We only mention that it is proved by essentially the
same computation as Lemma 1.9 combined with the following general fact:

Proposition 1.10 ([5]). If a nilpotent group N of class c is generated by subgroups
X1, . . . , Xk, then codist(X1, . . . , Xk) ≤ 1− ε where ε = (k · 4c−1)−1.

Applying Theorem 1.8, we get that the union of the vertex subgroups GB is a
Kazhdan subset of G. However, each GB is a bounded product of root subgroups
Xα, which implies that ∪Xα is also a Kazhdan subset, thus finishing the proof.

1.8. Property (T ) for Steinberg groups. We start by deducing Theorem 1.2
from Theorem 1.1. Since elementary Chevalley groups are quotients of the associ-
ated Steinberg groups, we only need to prove property (T ) for Steinberg groups.

Let Φ be a reduced irreducible root system of rank at least two, R a finitely
generated commutative ring and {Xα}α∈Φ the root subgroups of the Steinberg
group StΦ(R). By Theorem 1.1, ∪α∈ΦXα is a Kazhdan subset of StΦ(R), so we
only need to prove relative property (T ) for the pair (StΦ(R),∪α∈ΦXα).

We shall use the following generalization of Theorem 1.3 where we replace the
group EL2(R) by R ∗R and allow R to be alternative.

Theorem 1.11 ([18]). Let R be a finitely generated alternative ring, and denote
by R ∗ R the free product of two copies of the additive group of R. Then the pair
((R∗R)nR2, R2) has relative property (T ), where the first copy of R in R∗R acts on
R2 by upper-triangular matrices and the second copy of R acts by lower-triangular
matrices.

The key fact which enables us to prove this generalization is that for any finitely
generated alternative ring R, its ring of left multiplication operators L(R), an as-
sociative ring, is finitely generated.

If Φ is simply-laced, relative property (T ) for the pair (StΦ(R),∪α∈ΦXα) follows
from Theorem 1.11 by the same argument as in the case of ELn(R) discussed above.
If Φ is not simply-laced, we use a similar argument to reduce relative property
(T ) for (StΦ(R),∪α∈ΦXα) to relative property (T ) for certain semi-direct product
(Q n N,N) where N is nilpotent of class at most 3 (at most 2 if Φ 6= G2). The
latter is proved by combining Theorem 1.11 with the following result:

Theorem 1.12 ([5]). Let G be a group, N a normal subgroup of G and Z a subgroup
of Z(G) ∩N . Assume that the following properties hold

(1) (G/Z,N/Z) has relative property (T ),
(2) G/N is finitely generated,
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(3) |Z : Z ∩ [N,G]| is finite.
Then (G,N) has relative property (T ).

Next we discuss property (T ) for elementary symplectic groups and elementary
unitary groups in odd dimensions (introduced in Examples 4, 5 and 9), as well as
their graded covers, for which we shall introduce special notations.

Definition. Let R be a ring with an involution ∗, and let n ≥ 2 be an integer. If
n = 3, assume that R is alternative, and if n 6= 3, assume that R is associative.

(i) The graded cover of the elementary symplectic group ESp2n(R, ∗) (with
respect to its canonical grading) will be denoted by St−1

Cn
(R, ∗).

(ii) The graded cover of the elementary unitary group EU2n(R, ∗) will be de-
noted by St1

Cn(R, ∗).

The reason we are using very similar notations for these groups is that one can
actually define the whole family of twisted Steinberg groups StωCn(R, ∗) where ω is
any central element of R satisfying ω∗ω = 1. The subscript Cn simply indicates
that those groups are Cn-graded.

Theorem 1.13 ([5, 18]). Let R be a finitely generated ring with involution ∗ and
n ≥ 3. If n = 3, assume that R is alternative and ω = −1, and if n 6= 3, assume
that R is associative and ω = ±1. Let J = {r ∈ R : r∗ = −ωr} and assume
that there exist a1, . . . , ak ∈ J such that every element a ∈ J can be expressed as

a =
∑k
i=1 siais

∗
i + (r − r∗ω) with si, r ∈ R. Then the following hold:

(a) The group StωCn(R, ∗) has property (T ).
(b) Assume in addition that ω = −1 and R is a finitely generated right module

over its subring generated by a finite subset of J . Then the group St−1
C2

(R, ∗)
has property (T ).

Remark: The group ESp2n(R, ∗) (resp. EU2n(R, ∗)) has property (T ) whenever
St−1
Cn

(R, ∗) (resp. St1
Cn(R, ∗)) has property (T ).

The method of proof of Theorem 1.13 is similar to that of Theorem 1.2, although
verifying that the grading is strong and establishing relative property (T ) for suit-
able pairs is computationally more involved, which is indicated by the somewhat
technical assumptions on the pair (R, ∗) in the above theorem.

In [5], we will establish analogues of Theorem 1.13 dealing with other types of
twisted elementary Chevalley groups of rank at least two and their graded covers.
These include

(i) twisted groups of type 2A2n+1 over associative rings with involutions (see
Example 5),

(ii) twisted groups of types 2Dn, n ≥ 4, and 2E6 over commutative rings with
involution,

(iii) twisted groups of type 3D4 over commutative rings endowed with an auto-
morphism of order 3, and

(iv) twisted groups of type 2F4 which can be defined over a commutative ring
R of characteristic 2 with a monomorphism ∗ : R→ R such that (r∗)∗ = r2

for all r ∈ R.
The groups in family (iv) are graded by non-crystallographic systems, so to prove
property (T ) for these groups one needs the version of Theorem 1.1 dealing with
general root systems (that is, root systems in the sense of [5]). We also note that
groups of type 2F4 are known as Ree groups in the case when R is a finite field and
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as Tits groups in the case when R is an arbitrary field (introduced in [16]), but we
are not aware of any previous works on these groups over non-fields.

1.9. Application to expanders. In 1973, Margulis observed that for any group
G with property (T ), the Cayley graphs of finite quotients of G form a family of
expander graphs; in fact, this gave the first explicit construction of expanders. Since
then a variety of methods for producing expander families have been developed, and
many different families of finite groups were shown to be expanding – formally, a
family of finite groups is called a family of expanders if the Cayley graphs of those
groups with respect to some generating sets of uniformly bounded size form a family
of expanders. One of the main theorems in this area asserts that all (non-abelian)
finite simple groups form a family of expanders. The proof of this result is spread
over several papers [8, 9, 1].

Given a family F of finite groups, a group G which surjects onto every group in F
will be called a mother group for F . Clearly, a family F admits a finitely generated
mother group if and only if the (minimal) number of generators of groups in F
is uniformly bounded. If in addition F is an expanding family, one may ask if
it admits a mother group with property (T ). In particular, it is interesting to
determine which families of finite simple groups have a mother group with (T ). We
shall obtain a positive answer to this question for “most” finite simple groups of
Lie type.

Theorem 1.14 ([5]). The family of all finite simple groups of Lie type and rank
at least two has a mother group with property (T ).

Theorem 1.14 cannot be extended to all finite simple groups (even those of Lie
type) since it is well known that the family {SL2(Fp)} does not have a mother group
with (T ). However, it is still possible that the family of all finite simple groups has
a mother group with property (τ) (certain weaker version of property (T )), which
would be sufficient for expansion.

To prove Theorem 1.14 we first divide all finite simple groups of Lie type and
rank at least two into finitely many subfamilies. Then for each subfamily F we
construct a strong Ψ-grading for each group G ∈ F by a suitable root system Ψ
(depending only on F). Finally we show that all groups in F are quotients of a
(possibly twisted) Steinberg group associated to Ψ, which can be shown to have
property (T ) by methods described in this paper. The precise realization of this
strategy is quite involved, so we will illustrate it by a series of examples, omitting
the more technical cases.

(1) Let Φ be a reduced irreducible root system of rank at least two. Then the
simple group of Lie type Φ over a finite field F is a quotient of StΦ(F )
and so it is a quotient of StΦ(Z[t]). The latter group has property (T ) by
Theorem 1.2.

(2) Let n ≥ 2. The simple groups PSU2n(Fq) (which are twisted Lie groups

of type 2A2n−1) are quotients of St1
Cn(Fq2 , ∗) where ∗ is the (unique) auto-

morphism of Fq2 of order 2. It is easy to show that the groups St1
Cn(Fq2 , ∗)

and St−1
Cn

(Fq2 , ∗) are isomorphic.
Let R = Z[t1, t2], the ring of polynomials in two (commuting) variables,

and let ∗ : R→ R be the involution which swaps t1 and t2. Then St−1
Cn

(R, ∗)
satisfies the hypotheses of Theorem 1.13 and all the groups St−1

Cn
(Fq2 , ∗) are

quotients of St−1
Cn

(R, ∗).
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(3) The simple groups PSL3k(F ), F a finite field, are quotients of EL3(Z〈x, y〉).
The latter group has property (T ) by [4].

(4) Let n ≥ 1, let R be the free associative ring Z〈x, y, z〉 and let ∗ be the
involution of R that fixes x, y, z. Then we can realize PSp6n(F ), F a finite
field, as a quotient of St−1

C3
(R, ∗). First observe that PSp6n(F ) is a quotient

of St−1
C3

(Mn(F ), ∗), where ∗ is the transposition.
The ring Mn(F ) can be generated by two symmetric matrices, and there

is a surjection St−1
C3

(R, ∗) → St−1
C3

(Mn(F ), ∗) which sends x and y to those

matrices and z to E11. By Theorem 1.13, St−1
C3

(R, ∗) has property (T ).
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