
Math 8852. Unitary representations and property (T ).

Problem Set 3.

Below [BHV] refers to the book ‘Kazhdan’s property (T )’ by Bekka, de la
Harpe and Valette.

1. (leftover from Problem Set 2). LetG = H(Z) = 〈x, y, z | z = [x, y], [x, z] =
[y, z] = 1〉 be the Heisenberg group over Z. Let (π, V ) be an infinite-
dimensional irreducible unitary representation of H(Z), which has an eigen-
vector for y. Prove that there exists an orthonormal basis {ei}i∈Z of V and
λ, µ ∈ C with |λ| = |µ| = 1 and λ not a root of unity such that π(x)(ei) = ei+1

and π(y)(ei) = µλiei for all i.

Comments and hint: At the last problem session we showed that there
exist unit vectors {ei}i∈Z which topologically span V and λ, µ ∈ C with
|λ| = |µ| = 1 such that x and y act in the desired way. Assuming that λ is
not a root of unity, we also deduced that {ei} are pairwise orthogonal, thus
finishing the proof. It remains to eliminate the possibility that λ is a root of
unity. Here is a hint for how to do this.
Suppose that λ is a root of unity of order n. For each 0 ≤ i ≤ n − 1 let Vi
be the closure of the span of {ei+nk : k ∈ Z}. First note that both y and z
act as scalars on each Vi and show that V = ⊕n−1i=0 Vi. Also note that each
Vi is xn-invariant. Next explain why there exists a proper nonzero subspace
W ⊆ V0 which is xn-invariant, and then use W to construct a non-trivial
(closed) G-invariant subspace of V .

2. Let G = H(Z) be as in Problem 1 and H the subgroup of G generated by
y and z. Prove that each of the representations of G described in Problem 1
is equivalent to the induced representation Ind G

Hσ for some one-dimensional
representation σ of H. Hint: One-dimensional representations of H are all
of the form σλ,µ with |λ| = |µ| = 1 where σλ,µ(ziyj) is the multiplication by
λiµj.

3. In class we outlined the proof of the “Induction by stages” theorem which
asserts that given closed subgroups K ⊆ H ⊆ G of a topological group G

and a unitary representation (π, V ) of G we have

Ind G
Kπ
∼= Ind G

H(IndH
Kπ) as representations of G.

The goal of this exercise is to fill in the details that we omitted in class, thus
providing a complete proof of the theorem, in the case when G is discrete (in
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general, there are several non-trivial analytical aspects that need to be taken
care of).

Below we recall the notations introduced in class, and from now on we assume
that G is discrete (thus integrals are replaced by the sums).

Let V G
K = L2(G/K, V ) be the representation space of Ind G

Kπ, that is, V G
K is

the space of functions f : G→ V satisfying the K-equivariance condition

f(gk) = π(k−1)f(g) for all k ∈ K and all g ∈ G

and such that ‖f‖V G
K
<∞, where by definition

‖f‖2V G
K

=
∑

gK∈G/K

‖f(g)‖2.

Also recall that the inner product on V G
K is given by

〈f, f ′〉 =
∑

gK∈G/K

〈f(g), f ′(g)〉V .

Similarly, let V H
K = L2(H/K, V ) be the representation space of IndH

Kπ, let
WG
K = L2(G/H, V H

K ) = L2(G/H,L2(H/K, V )) be the representation space
of Ind G

H(IndH
Kπ), and let ρ : G→ U(WG

K ) denotes the action of G on WG
K .

In class we defined the map Φ : V G
K → WG

K by

((Φ(f))(g))(h) = f(gh) for all f ∈ V G
K , g ∈ G, h ∈ H,

and we claimed that Φ is a unitary equivalence between the representations
Ind G

K and Ind G
H(IndH

Kπ). The parts that we did not explicitly verified in
class were

(a) Φ intertwines the above representations, that is, for all g ∈ G

Φ ◦ Ind G
Kπ(g) = ρ(g) ◦ Φ as maps from V G

K to WG
K .

(b) Φ is bijective.

Hint for (b): Let S be a left transversal (that is, a set of left coset rep-
resentatives) for K in H, and let T be a left transversal for H in G. Then
TS = {ts : t ∈ T, s ∈ S} is a left transversal for K in G, and every element of
TS is uniquely represented as ts with t ∈ T and s ∈ S. Prove that there are
natural identifications (which are actually isometries of Hilbert spaces) be-
tween V G

K and L2(TS, V ) (here L2 is in the usual sense) and between WG
K and

2



L2(T, L2(S, V )), and that under these identifications the map Φ corresponds
to the map Ψ : L2(TS, V )→ L2(T, L2(S, V )) given by

((Ψ(f))(t))(s) = f(ts).

Thus, we are reduced to proving that Ψ is bijective, which is easy. In fact, in
the course of the proof you will automatically show that Ψ (and hence also
Φ) is an isometry, something that we established in class without assuming
that G is discrete (but modulo some hand-waving).

4. Let (π, V ) be a unitary representation of a group G and S a subset of G.

(a) Let S−1 = {s−1 : s ∈ S}. Prove that

κ(G,S, π) = κ(G,S−1, π) = κ(G,S ∪ S−1, π).

(b) Let n ∈ N, and let Sn be the set of elements of G which are repre-
sentable as s1 . . . sm with m ≤ n and si ∈ S ∪ S−1. Prove that

κ(G,Sn, π) ≤ n · κ(G,S, π).

5. Let Q be a compact subset of a topological group G, and suppose that
there exists ε > 0 such that κ(G,Q, π) ≥ ε for every non-trivial irreducible
representation π of G.

(a) Suppose thatG is discrete (and henceQ is finite). Prove that κ(G,Q, π) ≥
ε√
|Q|

for every completely reducible representation π of G without

nonzero invariant vectors. Hint: Consider the quantity K(G,Q, π) =

infv∈V,v 6=0(
∑

q∈Q
‖π(q)v−v‖2
‖v‖2 ) and note that κ(G,Q, π)2 ≤ K(G,Q, π) ≤

|Q| · κ(G,Q, π)2.

(b) In the general case prove that there exists δ > 0 such that κ(G,Q, π) ≥
δ for every completely reducible representation π of G without nonzero
invariant vectors. Start by showing that if there is no such δ, then there
actually exists a representation π in the above class with κ(G,Q, π) = 0
and then use an idea similar to part (a) to reach a contradiction.

Remark: If G is locally compact the assertions of (a) and (b) remain true for
an arbitrary (not necessarily completely reducible) representation π without
nonzero invariant vectors, but the proof requires more advanced tools. If in
addition G is second countable and the representation space of π is separable,
these generalizations of (a) and (b) can be proved by essentially the same
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method using decomposition of π into a direct integral of irreducibles (see
[BHV, F.6]).

6. In class we proved that κ(G,G) ≥
√

2 for any group G. This problem
investigates how far this inequality is from being optimal.

(a) Prove that min[π]∈Ẑ\{1Z} κ(Z,Z, π) =
√

3 (where as usual Ĝ is the uni-

tary dual of G) and that the minimum is attained on [π] = e2πi/3 (where
we use natural identification of Ẑ and S1).

(b) Prove that κ(G,G) =
√

2 for any non-compact locally compact group
G. Hint: In view of the general inequality κ(G,G) ≥

√
2, it suffices

to find a representation π of G without nonzero invariant vectors such
that κ(G,G, π) =

√
2.

(c) Prove that if G is a finite group of order n, then κ(G,G) ≥
√

2n
n−1

(d) Prove that inequality in (c) is actually equality for G = Z/2Z and
G = Z/3Z.
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