Math 8852. Unitary representations and property (7).
Problem Set 3.

Below [BHV] refers to the book ‘Kazhdan’s property (T')” by Bekka, de la
Harpe and Valette.

1. (leftover from Problem Set 2). Let G = H(Z) = (z,y,z | z = [z,y], [z, 2] =
ly,z] = 1) be the Heisenberg group over Z. Let (m,V) be an infinite-
dimensional irreducible unitary representation of H(Z), which has an eigen-
vector for y. Prove that there exists an orthonormal basis {e;};cz of V' and
A, p € Cwith || = |u| = 1 and A not a root of unity such that m(x)(e;) = €;41
and 7(y)(e;) = pu'e; for all 4.

Comments and hint: At the last problem session we showed that there
exist unit vectors {e;};ez which topologically span V and A\, u € C with
|A| = || = 1 such that x and y act in the desired way. Assuming that X is
not a root of unity, we also deduced that {e;} are pairwise orthogonal, thus
finishing the proof. It remains to eliminate the possibility that A is a root of
unity. Here is a hint for how to do this.

Suppose that A is a root of unity of order n. For each 0 < i <n —1 let V;
be the closure of the span of {e;1,x : k € Z}. First note that both y and z
act as scalars on each V; and show that V = @]'-'V;. Also note that each
V; is x™-invariant. Next explain why there exists a proper nonzero subspace
W C Vi which is x™-invariant, and then use W to construct a non-trivial
(closed) G-invariant subspace of V.

2. Let G = H(Z) be as in Problem 1 and H the subgroup of G generated by
y and z. Prove that each of the representations of GG described in Problem 1
is equivalent to the induced representation Ind flo for some one-dimensional
representation o of H. Hint: One-dimensional representations of H are all
of the form oy, with |[A| = |u| = 1 where o, ,(2"y’) is the multiplication by
Nl

3. In class we outlined the proof of the “Induction by stages” theorem which
asserts that given closed subgroups K C H C (G of a topological group GG
and a unitary representation (7, V') of G we have

Ind $7 = Ind §(Ind £7) as representations of G.

The goal of this exercise is to fill in the details that we omitted in class, thus
providing a complete proof of the theorem, in the case when G is discrete (in
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general, there are several non-trivial analytical aspects that need to be taken
care of).

Below we recall the notations introduced in class, and from now on we assume
that G is discrete (thus integrals are replaced by the sums).

Let VS = L*(G/K,V) be the representation space of Ind -, that is, V¢ is
the space of functions f : G — V satisfying the K-equivariance condition

f(gk) =7n(k™")f(g) forallk € K and all g € G

and such that [|f|[y¢ < oo, where by definition

IFlve = > If @I

gKeG/K

Also recall that the inner product on V¢ is given by

Y= D (fl), F (@

gKeG/K

Similarly, let V¥ = L*(H/K,V) be the representation space of Ind 7, let
W¢ = L*(G/H,VH) = L*(G/H,L*(H/K,V)) be the representation space
of Ind (Ind 1), and let p : G — U(WE) denotes the action of G on WE.
In class we defined the map ® : V¢ — W§ by

(@(f))(g))(h) = f(gh) for all f € ViZ, g€ G, h € H,

and we claimed that ® is a unitary equivalence between the representations
Ind$ and Ind §(Ind 7). The parts that we did not explicitly verified in
class were

(a) ® intertwines the above representations, that is, for all g € G

® o Ind$7(g) = p(g) o ® as maps from V¢ to WE.

(b) @ is bijective.

Hint for (b): Let S be a left transversal (that is, a set of left coset rep-
resentatives) for K in H, and let T' be a left transversal for H in G. Then
TS ={ts:teT,s e S}isaleft transversal for K in G, and every element of
TS is uniquely represented as ts with ¢ € T and s € S. Prove that there are
natural identifications (which are actually isometries of Hilbert spaces) be-
tween V¢ and L2(TS, V) (here L? is in the usual sense) and between W< and



L*(T,L*(S,V)), and that under these identifications the map ® corresponds
to the map ¥ : L*(T'S,V) — L*(T,L*(S,V)) given by

((W()(@)(s) = f(ts)-

Thus, we are reduced to proving that ¥ is bijective, which is easy. In fact, in
the course of the proof you will automatically show that ¥ (and hence also
®) is an isometry, something that we established in class without assuming
that G is discrete (but modulo some hand-waving).

4. Let (m, V) be a unitary representation of a group G and S a subset of G.
(a) Let S7' = {s7!:s € S}. Prove that
k(G,S,m) =k(G,S™ 1) =kK(G,SUS 7).

(b) Let n € N, and let S™ be the set of elements of G which are repre-
sentable as sy ...s,, with m <n and s; € SUS~!. Prove that

k(G,S",m) <n-k(G,S, ).

5. Let @) be a compact subset of a topological group G, and suppose that
there exists € > 0 such that x(G,Q,m) > € for every non-trivial irreducible
representation 7 of G.

(a) Suppose that G is discrete (and hence @ is finite). Prove that x(G, Q,7) >

€

Ja for every completely reducible representation w of G without

nonzero invariant vectors. Hint: Consider the quantity K(G,Q,7) =
infuev20(D4c %) and note that (G, Q,7)? < K(G,Q,7) <
’Q‘ : H<G7 Qa W)Z'

(b) In the general case prove that there exists 6 > 0 such that k(G, Q,7) >
0 for every completely reducible representation 7 of G without nonzero
invariant vectors. Start by showing that if there is no such ¢, then there
actually exists a representation 7 in the above class with k(G, @, 7) = 0
and then use an idea similar to part (a) to reach a contradiction.

Remark: If G is locally compact the assertions of (a) and (b) remain true for
an arbitrary (not necessarily completely reducible) representation = without
nonzero invariant vectors, but the proof requires more advanced tools. If in
addition G is second countable and the representation space of 7 is separable,
these generalizations of (a) and (b) can be proved by essentially the same



method using decomposition of 7 into a direct integral of irreducibles (see
[BHV, F.6]).

6. In class we proved that x(G,G) > V2 for any group G. This problem
investigates how far this inequality is from being optimal.

(a) Prove that min 5 4 K(Z,Z,7) = V3 (where as usual G is the uni-
tary dual of ) and that the minimum is attained on [r] = ¢*™/% (where
we use natural identification of Z and S*).

(b) Prove that x(G,G) = +/2 for any non-compact locally compact group
G. Hint: In view of the general inequality (G, G) > v/2, it suffices
to find a representation 7 of G without nonzero invariant vectors such

that x(G,G, 7)) = V2.

(c) Prove that if G is a finite group of order n, then x(G,G) > /2%

n—1

(d) Prove that inequality in (c) is actually equality for G = Z/2Z and
G =17/3L.



