
Math 8851. Homework #5. To be completed by 6pm on Thu, Apr 10

1. Problem 6 from HW#4.

2. Problem 7 from HW#4.

Recall that in Lecture 23 we proved that for any hyperbolic group

G, any torsion subgroup T of G is finite and moreover is conjugate to

a subgroup of a ball of a fixed radius (in fact, the radius only depends

on the hyperbolicity constant of G). That proof was fairly long and

quite technical. If we only wanted to prove that any finite subgroup of

G is conjugate to a subgroup of a ball of a fixed radius, that could be

done with much less work. The next two problems outline a simpler

proof of the latter fact.

We start with the definition of a center of a bounded subset. Let

X be a proper metric space and A a bounded subset of X. For any

x ∈ X let rA(x) be the minimum r ∈ R such that A is contained in

Br(x), the ball of radius r centered at x (it is easy to see that such

minimum always exists). Then rA(x) considered as a function of x is

continuous and goes to ∞ if x → ∞, so by properness of X, it attains

a minimum which we denote by rA and call the radius of A. A center

of A is any point such that rA(x) = rA. The set of centers of A is

denoted by Cent(A) (note that a set can have more than one center).

3. LetX be a proper hyperbolic geodedic space satisfyingHypslim(δ),

and let A be a bounded subset of X. Prove that for any x, y ∈ Cent(A)

we have d(x, y) ≤ 4δ.

Hint: choose a geodesic [x, y], and let m be its midpoint. By def-

inition of rA, there exists a ∈ A such that d(a,m) ≥ rA. Consider a

geodesic triangle [x, y, a] and apply Hypslim(δ) condition to the point

m ∈ [x, y]. After some calculations you should be able to prove that

either d(x,m) ≤ 2δ or d(y,m) ≤ 2δ (depending on whether m is closer

to [x, a] or [y, a]). Since m is the midpoint of [x, y], either inequality

implies that d(x, y) ≤ 4δ.

4. Now let G be a hyperbolic group, S some finite generating set of

G, and suppose that X = Cay(G,S) satisfies Hypslim(δ). Prove that

F is conjugate to a subgroup of B4δ+1(e).

Hint: Let x be any center of F in X (it need not be a vertex) and

choose g ∈ G such that d(g, x) ≤ 1
2
. Let A = g−1F and H = g−1Fg.

Prove that



(i) A has a center y with d(y, e) ≤ 1
2

(ii) the set Cent(A) is invariant under left-multiplication by any

h ∈ H.

Then deduce from (i),(ii) and Problem 3 that H ⊆ B4δ+1(e).

The next problem deals with the topology on the boundary of a

hyperbolic space X. We start by recalling some notations from class.

Fix a base point p ∈ X. Let Geop(X) denote the set consisting of all

geodesic rays γ : [0,∞) → X and all geodesic paths γ : [0, T ] → X

with γ(0) = p, all parameterized with respect to arc length. Extend

each geodesic path γ : [0, T ] → X to a map defined on [0,∞) by setting

γ(t) = γ(T ) for all t > T .

Next fix K > 2δ. Given γ ∈ Geop(X) and n ∈ N, define Vn(γ) to be

the set of all α ∈ Geop(X) such that d(γ(n), α(n)) < K. Lemma 25.5

from class (which we did not prove) asserts that for a fixed γ, the

images of the sets Vn(γ), n ∈ N, in ∂X, form a base of (not necessarily

open) neighborhoods of γ(∞) in ∂X.

Note that Vn(γ) is clearly open in Geop(X), so if the relation ∼ on

Geop(X) is trivial (which is the case in both examples in Problem 5

below), the image of Vn(γ) in ∂X is also open.

5.

(a) Let X = H2 in the upper half-plane model, p = (1, 0) and γ the

geodesic ray starting at p and going straight down (the bound-

ary point represented by γ is (0, 0)). Set K = 2 (this satisfies

K > 2δ, but in fact when there are no equivalent geodesics,

any K > 0 could be used). For each n ∈ N compute the set

Vn(γ) ∩ ∂H2 – drawing the picture will likely be helpful. You

may use without proof that any circle in H2 is also a Euclidean

circle (albeit with a different center).

(b) Now let X = Td, the regular tree of degree d ≥ 3. Fix a vertex p

of X, and as in class, view X as a tree rooted at p, drawn upside

down, withe the root at the top. Thus, elements of Geop(X)

are precisely downwards paths (finite or infinite). Since δ = 0

in this example, we can assume that K < 1. Describe explicitly

the sets Vn(γ) for a geodesic ray γ.

(c) Now use your answer in (b) and Lemma 25.5 from class to

prove that ∂Td is homeomorphic to a countable product of finite

sets of cardinality ≥ 2 (it is known that any such product is

homeomorphic to the Cantor set).



6. Let G be a hyperbolic group and g ∈ G an element of infinite order.

Prove that

(a) the elementary subgroup E(g) is self-normalizing in G, that is,

if hE(g)h−1 = E(g) for some h ∈ G, then h ∈ E(g). Hint: Use

the fact that ⟨g⟩ has finite index in E(g).

(b) Prove that hE(g)h−1 = E(hgh−1) for any h ∈ G.

As an immediate consequence of (b), we deduce that for any infinite

hyperbolic group G, either G is equal to E(g) for some g (and hence G

is virtually cyclic) or G contains infinite order elements g and k such

that E(g) ̸= E(k).

7. Use boundaries to show that a free group or any rank cannot be

quasi-isometric to any surface group

Sg = ⟨a1, b1, . . . , ag, bg |
g∏

i=1

[ai, bi] = 1⟩.


