
Math 8851. Homework #1. To be completed by 6pm on Thu, Feb 6

1. Let G be a group and S a generating set of G. Prove that the

following are equivalent:

(a) G is free and S is a free generating set of G. By definition this

means that every element of G can be uniquely written as a

reduced word
n∏

i=1

sεii with si ∈ S and εi = ±1 (reduced means

that si ̸= si+1 whenever εi+1 = −εi).

(b) The Cayley graph Cay(G,S) is a tree and S has no elements

of order 2.

2. A metric space (X, d) is called ultrametric if

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

Prove that an ultrametric metric space (X, d) is 0-Gromov hyperbolic,

that is, satisfies condition HypG(0):

(x|y)w ≥ min{(x|z)w, (yz)w} for all x, y, z, w ∈ X.

Recall that by definition (u|v)w = 1
2
(d(u,w) + d(v, w)− d(u, v)).

3. Let δ ≥ 0. Prove that the following two conditions on a metric

space (X, d) are equivalent:

(a) (X, d) is δ-Gromov hyperbolic, that is,

(x|y)w ≥ min{(x|z)w, (yz)w} − δ

for all x, y, z, w ∈ X.

(b) (X, d) satisfies the “4-point condition”:

d(x, y)+d(w, z) ≤ max{d(x, z)+d(y, w), d(x,w)+d(y, z)}+2δ for all x, y, z, w ∈ X.

4. Prove that the relation of being quasi-isometric is an equivalence

relation. The main thing to prove here is that if there exists a quasi-

isometry f : (X, d1) → (Y, d2), then there also exists a quasi-isometry

g : (Y, d2) → (X, d1).

5. We start with the corrected definition of quasi-geodesics. Let

λ,C ∈ R with λ ≥ 1 and C ≥ 0. Let (X, d) be a metric space. A

(possibly non-continuous) path p : I → X is called a (λ,C)-quasi-

geodesic if p is a (λ,C)-quasi-isomteric embedding of I into X, that is,

if |t′−t|
λ

− C ≤ d(p(t), p(t′)) ≤ λ|t′ − t|+ C for all t, t′ ∈ I.



(a) Let (X, dX) and (Y, dY ) be metric spaces. Suppose that f :

X → Y is a (K, ε)-quasi-isometry and p : I → X a (λ,C)-

quasi-geodesic (for some K, ε, λ, C). Prove that f ◦ p : I → Y

is a (µ,D)-quasi-geodesic for some µ and D which depend only

on K, ε, λ and C (also find an explicit formula for µ and D).

(b) Use (a) and Morse Lemma to prove the following character-

ization of hyperbolicity for geodesic metric spaces (stated as

Corollary 5.3 in class): A geodesic metric space X is hyperbolic

if and only if for any λ,C ∈ R with λ ≥ 1 and C ≥ 0 there exists

δ = δ(λ,C) such that every (λ,C)-quasi-geodesic triangle in X

is δ-slim (that is, any side lies in the closed δ-neighborhood of

the union of the other two sides).

6. Use the S̆varc̆-Milnor lemma to prove that if G is any finitely gen-

erated group and H is a finite index subgroup of G, then H and G are

quasi-isometric. Note:

(i) As usual, we consider finitely generated groups as metric spaces

with respect to the word metric associated to some finite gener-

ating set (different choices of generating sets yield quasi-isometric

spaces).

(ii) The fact that a finite index subgroup of a finitely generated

group is always finitely generated is not hard to prove directly,

but it can also be deduced from the same application of the

S̆varc̆-Milnor lemma you would use to solve Problem 6.

7. Prove that the following groups are NOT hyperbolic:

(a) Z2.

(b) (generalization of (a)) A × B where A and B are finitely gen-

erated infinite groups.

Hint for (b): Choose any finite generating sets S for A and T for B,

so that S∪T generates A×B. Show that for every K ∈ R one can find

two geodesics p and q in Cay(G,S) which share the same endpoints

such that dist(p, q) > K. Why would this imply that Cay(G,S) is not

hyperbolic?

8. Given nonzero integers integers m and n, the Baumslag-Solitar

group BS(m,n) is defined by BS(m,n) = ⟨a, b | bamb−1 = an⟩). None
of the Baumslag-Solitar groups are hyperbolic. The goal of this problem

is to show that BS(1, 2) is not hyperbolic. The same proof works for

BS(1, n) for all n > 2 (with little additional effort the proof can also

be extended to negative n).



You may use with out proof that BS(1, 2) is isomorphic to the group

of 2× 2 matrices of the form

(
2i j
0 1

)
with i, j ∈ Z where a =

(
1 1
0 1

)
and b =

(√
2 0
0 1√

2

)
. The fact that this group of matrices is a quotient

of BS(1, 2) is straightforward to check from the presentation. What

requires some work is to show that one does not need additional defining

relations for this matrix group.

Below we set S = {a, b} and define ℓS to be the corresponding word

length function on BS(1, 2).

(i) Prove the following double inequality for every j ∈ Z and i ∈
Z≥0:

max{i, |j|} ≤ ℓ(a2
i

bj) ≤ |j|+ 2i+ 1(1)

max{i, |j|} ≤ ℓ(bja2
i

) ≤ |j|+ 2i+ 1.(2)

Hint: For the upper bound find an explicit word of that length

representing the above element. For the lower bound use the

matrix representation (what can use say about the entries of a

matrix representing some element of word length m in terms of

m)?

(ii) Use (i) (both the result and the proof) to find specific λ and C

and a path pi from 1 to a2
i
which is (λ,C)-quasi-geodesic for

all i. Your path will likely be a geodesic (in the graph theory

sense) but that might require more work to prove.

(iii) Now use a simple trick to construct another (λ,C)-quasi-geodesic

p′i from 1 to a2
i
using pi and show that dist(pi, p

′
i) → ∞ as

i → ∞. Deduce that BS(1, 2) is not hyperbolic.

9. Prove that if G and H are hyperbolic groups, their free product

G ∗H is also hyperbolic.

Hint: Much of this hint is about providing technical simplification

for the argument. Let G be any finitely generated group, S a finite

generating set for G and dS the associated word metric. While (G, dS)

is technically not a geodesic metric space, one can talk about geodesics

in it in the graph theory sense (a geodesic between two vertices v and

w in a connected graph is an edge-path from v to w containing the

smallest possible number of edges). With this notion of geodesics, one

can define the condition HypS(δ) exactly as we defined it for geodesic

metric spaces, and then we will say that (G, dS) is δ-hyperbolic if it

satisfies HypS(δ). It follows immediately from the definitions that if



the Cayley graph Cay(G,S) (considered as a metric graph) satisfies

HypS(δ), then (G, dS) satisfies HypS(δ). Conversely, if (G, dS) satisfies

HypS(δ), then Cay(G,S) satisfies HypS(δ
′) for some δ′ depending only

on δ. Thus, (G, dS) is δ-hyperbolic for some δ if and only if Cay(G,S)

is hyperbolic, but (G, dS) is usually easier to work with.

Now back to Problem 9. Choose any finite generating sets S for G

and T for H, in which case S ∪ T is a generating set for G ∗ H, and

suppose that (G, dS) is δG-hyperbolic and (H, dT ) is δH-hyperbolic.

Show that every geodesic in (G ∗H, dS∪T ) can be obtained in a simple

way from geodesics in (G, dS) and (H, dT ) and deduce that (G∗H, dS∪T )

is δ-hyperbolic for δ = max{δG, δH}.
For the purposes of this problem it is convenient to think of elements

of G∗H as formal expressions of the form
∏n

i=1 gihi where each gi ∈ G,

each hi ∈ H and all gi and hi are non-trivial except possibly g1 and

hn. The product of two such expressions is concatenation followed by

“obvious” cancellations (for instance, if u ends with some h ∈ H and

v starts with h−1 for the same h, there will be a cancellation in the

product uv).


