Math 8851. Homework $#9$. To be completed by Thu, Apr 13

1. Fix a prime p. Recall that given a group presentation (X, R) where X is finite and R is possibly infinite we define the p -deficiency $def_p(X, R) \in \mathbb{R} \cup \{-\infty\}$ by

$$
def_p(X, R) = |X| - 1 - \sum_{r \in R} \frac{1}{p^{\deg_{F(X)}(r)}}.
$$

Recall that $\deg_{F(X)}(r)$ is the largest $k \in \mathbb{Z}_{\geq 0}$ such that $r = u^{p^k}$ for some $u \in F(X)$.

If G is a finitely generated group, we define $def_p(G) = \sup\{def_p(X, R)\}$ where (X, R) ranges over all presentations of G by generators and relators with X finite.

Now let G^p be the subgroup generated by all p^{th} powers $\{g^p : g \in G\}$ G and consider (again assuming G is finitely generated) the quotient $G/[G, G]G^p$ where – it is a finite abelian group of exponent p and thus can be considered as a vector space over \mathbb{F}_p . Denote by $d_p(G)$ the dimension of this space (equivalently, $d_p(G) = \log_p[G : [G, G]G^p]$).

- (a) Prove that $d_p(G) \geq def_p(G) + 1$.
- (b) Deduce that if $def_p(G) > -1$, then G has a normal subgroup of index p.
- (c) Assume that H is a normal subgroup of G of p -power index. Prove that $def_p(H) \geq [G : H] def_p(G)$ (use Proposition 19.3) from class which asserts that this is true when H is normal of index p).
- (d) Now assume that $def_p(G) > 0$ and G is finitely presented. Use (a), (c) and Theorem 1.12 in the following paper of M. Lackenby <http://arxiv.org/abs/math/0702571>

to prove that G has a finite index subgroup which homomorphically maps onto a non-abelian free group.

2. Let G be a group and $\{G_n\}_{n=1}^{\infty}$ a central series of G, that is, a descending chain of normal subgroup of G where $G_1 = G$ and $[G_i, G_j] \subseteq$ G_{i+j} for all i and j. Recall the definition of the associate Lie ring $L(G)$.

As a set $L(G) = \bigoplus_{n=1}^{\infty}$ $n=1$ $L_n(G)$ where $L_n(G) = G_n/G_{n+1}$. Elements of L which lie in $L_n(G)$ for some n are called homogeneous.

The addition on each $L_n(G)$ is simply the quotient group operation (note that G_n/G_{n+1} is abelian since $[G_n, G_n] \subseteq G_{2n} \subseteq G_{n+1}$).

The Lie bracket is defined as follows. First given homogeneous elements $u \in L_n(G)$ and $v \in L_m(G)$ we choose $g \in G_n$ and $h \in G_m$ such that $u = gG_{n+1}$ and $v = hG_{m+1}$ and set $[u, v] = [g, h]G_{n+m+1}$ where $[g, h] = g^{-1}h^{-1}gh$ is the group commutator of g and h.

Given arbitrary elements $u, v \in L$, we write them as sums of homogeneous components $u = \sum u_i$ and $v = \sum v_j$ and set $[u, v] = \sum v_j$ i,j $[u_i, v_j].$

- (a) Prove that the Lie bracket is well defined, that is, in the definition of $[u, v]$ in the homogeneous case the value is independent of the choice of q and h .
- (b) Prove that $L(G)$ with the above operations is a Lie ring, that is, satisfies the following axioms:
	- (1) $(L(G),+)$ is an abelian group.
	- (2) $[x, y + z] = [x, y + z]$ and $[x + y, z] = [x, z] + [y, z]$ for all $x, y, z \in L(G)$.
	- (3) $[x, x] = 0$ for all $x \in L(G)$.
	- (4) $[[x, y], z] + [[y, z], x] + [[z, y], x] = 0$ for all $x, y, z \in L(G)$.

Hint: To prove (4) use the following group-theoretic identity called the Hall-Witt identity: $[[a, c], c^a][[c, a], b^c][[b, c], a^b] = 1$ where a, b, c are elements of some group G . You will also need to use of HW#8.2 along with the observation that $a^b = a[a, b]$ for all $a, b \in G$ to prove $(2), (3)$ and (4) .

Warning: You need to prove (2), (3) and (4) for all elements of $L(G)$, not just homogeneous ones. The reduction to the homogeneous case is straighforward for (2) and (4) , but not for (3).

3. Given $n \geq 2$ and an ordered *n*-tuple g_1, \ldots, g_n of elements of a group G, the *left-normed commutator* $[g_1, \ldots, g_n]$ is defined as follows. If $n = 2$, this is the usual commutator, and for $n \geq 3$ we define $[g_1, \ldots, g_n]$ inductively by $[g_1, ..., g_n] = [[g_1, ..., g_{n-1}], g_n]$.

- (a) Let G be a group. Prove that $\gamma_n G$ (the n^{th} term of the lower central series of G) is generated by all left-normed commutators of length n.
- (b) Again let G be a group, and let $L(G)$ be the Lie ring associated to the lower central series of G (that is, we set $G_n = \gamma_n G$ in the

definition of $L(G)$). Use (a) to prove that $L(G)$ is generated as a Lie ring by $L_1(G) = G_1/G_2$.

4. Recall from class that a group G is *residually finite* if it satisfies the following equivalent conditions:

- (1) For every $1 \neq g \in G$ there exists a finite index subgroup N of G such that $q \notin N$.
- (2) For every $1 \neq g \in G$ there exists a finite index normal subgroup N of G such that $g \notin N$.
- (3) For every $1 \neq g \in G$ there exists a finite group P and a homomorphism $\varphi: G \to P$ such that $\varphi(q) \neq 1$.
- (3') For every two distinct elements $x, y \in G$ there exists a finite group P and a homomorphism $\varphi : G \to P$ such that $\varphi(x) \neq$ $\varphi(y)$.
- (4) G is a subgroup of a direct product of some family of finite groups.

Now the actual problem.

- (a) Prove that the above conditions are indeed equivalent.
- (b) Suppose we are given a short exact sequence of groups $1 \rightarrow$ $K \to G \to Q \to 1$ where K is residually finite and Q is finite. Prove that G is residually finite.
- (c) Again assume that $1 \to K \to G \to Q \to 1$ is exact, but now K is finite and Q is residually finite. Is G residually finite? Prove or give a counterexample.