Math 8851. Homework #7. To be completed by 5pm on Fri, Dec 1

We will start by discussing how the Golod-Shafarevich criterion for
pro-p groups follows from the corresponding result for algebras. This
reduction was discussed in class at the end of Lecture 24, but things
got rushed at the end, and I had to omit some details.

First we fix some notations. Let K be a field, U = {uy,...,uq}
a finite set and K{((U)) the algebra of power series over K in non-
commuting variables uy, ..., us. Given 0 # f € K, we define deg(f)
to be the smallest degree of a monomial in U which appears in the
expansion of f with nonzero coefficient. We also set deg(0) = oo. For
each n € Zx¢ let

K(U), ={f € K(U)) : deg(f) = n}.

Note that K(U)), is an ideal of K({(U)).

Now let R be a subset of K({(U)) with 0 ¢ R. Let I = ((R)) be the
closed ideal of K((U)) generated by R and A = K({U))/I, so we can
think of elements of U as generators and elements of R as relators. Let
R, ={r € R:deg(r) =n}, so R =012 ,R,. As discussed in class, we
can assume that Ry = () (otherwise A = 0) and each R, is finite (this
takes a bit of work to justify).

Let r, = |R,| and Hg(t) = > rpt" € Z[[t]] the associated Hilbert
n=0
series. Let m: K((U)) — A be the natural projection, A4, = n(K(U),,),
a, = dimg (A, /A1) and Ha(t) = > a,t™.
n=0

Theorem 1 (Golod-Shafarevich inequality for filtered algebras). In
the above notations we have the following inequality of power series:

HA(t)(1—|U|t+HR(t))> 1
1—t —1-t

(5 * *)

Recall that the inequality in (***) means that in each degree the
coefficient of the power series on the left-hand side is > the respective

coefficient on the right-hand side.

Corollary 2. Suppose there exists T € (0,1) such that 1 — |U|T +
Hg(1) < 0. Then the numerical series H4(T) diverges, so in particular
A is infinite-dimensional.



Suppose now that G is a pro-p group given by a pro-p presentation
(X|Rg) where X = {z1,..., x4} is finite (the set of relators Rg may
be infinite). Thus, G is isomorphic to F//N where F' = F3(X) is the
free pro-p group on X and N = ((Rg)) is the closed normal subgroup
generated by Rg.

As above let U = {uy,...,uq} and consider the subgroup I' of
F,(U)* given by

F=0+wu,...,1+ug,

the closed subgroup generated by 1 + uy,...,1 + ug. As shown in
Lecture 12, I' is isomorphic to F via the map z; — 1+wu; for 1 < i < d.
From now on we will identify I with F' using this map.

Next let Ry = {r —1:r € Rg} (viewed as a subset of F,(U))),
I = ((Ra4)) the closed ideal of F,((U)) and A =F,(U))/I. As explained
in Lecture 23, the embedding I' = F — F,((U)” induces a natural map
¢ : G — A* such that Span(Im ) is dense in A, so in particular, G is
infinite whenever A is infinite.

Now define the degree function D on the free pro-p group F (still
identified with T') by

D(f) = deg(f —1).
(Note that D(f) > 0 for all f since the power series expansion of f
always has constant term 1).
Thus, if we set Hg,,(t) = > o0, tP™) then Hg, (t) = Hg,(t) as formal
power series. Hence Corollary 2 yields the following:

Corollary 3. Suppose that a pro-p group G has a pro-p presentation
(X|Rg) with X is finite and there exists T € (0,1) such that 1 —|X |7+
Hp. (1) <0. Then G is infinite.

We are now ready to formulate the first 2 problems.

Problem 1. Prove the following properties of the degree function D
on F"

(a) D(fg) = min(D(f), D(g)) for all f,g € F;
(b) D([f, ])Z D(f) + D(g) for all f,g € F;

(c) D(f?) =p-D(f) for all f € F.

Problem 2. Prove that D(f) > 1 <= f € ®(F). Hint: The
backwards direction follows from the explicit formula for ®(F') and
Problem 1. For the forward direction first show that any element of F’

can be uniquely written as H -y where 0 < a; < p—1 for each ¢

zlz



and y € ®(F) (here X = {z1,..., 24} is the chosen free generating set
for F, as before).

Let us now recall an important application of Problem 2 briefly dis-
cussed at the end of Lecture 24.

As a consequence of Corollary 2 we obtained the following result:

Corollary 4. Let A = K{U))/((R)) for some field K and finite set
U and suppose that 1y = 0 (in addition to the original hypothesis that
ro = 0), so all relations in R have degree > 2. If|U| > 0 and |R| < |U|
then A is infinite-dimensional.

Now recall that if (X|R¢) is a pro-p presentation of a finitely gener-
ated pro-p group G such that | X | = d(G), then R lies inside ®(F5( X)),
the Frattini subgroup of F;(X) and so D(r) > 2 for all r € R by Prob-
lem 2. Hence the algebra A corresponding to G satisfies the hypotheses
of Corollary 4, and we obtain the following group-theoretic counterpart
of Corollary 4:

Theorem 5. Let G be a finitely presented pro-p group and assume
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that d(G) > 0 (that is, G is non-trivial) and r(G) < @. Then G is

infinite.

Recall that we used Theorem 5 to give a negative solution to the
class field tower problem.

The next 2 problems deal with powerful pro-p groups. Recall that a
pro-p group G is powerful if m C GP for p > 2 and if m C Gt
for p = 2.

More generally, a subgroup N of G is powerfully embedded in G
(notation N p.e. G) if [N,G] € NP for p > 2 and if [N,G] C N* for
p = 2. Thus, G is powerful < G p.e. G.

Note that a subgroup N of G is normal <= [N,G] C N, so any
closed powerfully embedded subgroup is automatically normal.

Problem 3. Given k,n € N, let
GLE(z,) ={AcGLE(Z

=1 mod p*},

p) - A
the k™ congruence subgroup of GL,(Z,).
(a) Prove that [GL%(Z,), GL™(Z,)] C SL¥™(Z,) for all k,m € N;
in particular, [GLE(Z,), GLE(Z,)] C SL?**(Z,).
(b) Assume that p is odd. Prove that every g € GL2(Z,) can be
written as h? for some h € GL!(Z,). Hint: One way to prove



(c)
(d)

this is as follows. We need to show that for every A € Mat,(Z,)
the equation (1+pX)? = 1+p?A has a solution X € Mat,(Z,).
Expand the left-hand side and prove that the equation has a
solution mod p’ for all i+ € N by induction on i; then deduce
that there is a solution in Mat,,(Z,).

Now prove that every g € GL!(Zy) can be written as h* for
some h € GL2(Z,).

Deduce from (a), (b) and (c) that GLF(Z,) is powerful if p > 2
(and k is arbitrary) or p = 2 and k > 2.

Remark: The fact that the conclusions of (b) and (c) are seemingly

stronger than what is required to be powerful is not a coincidence.

We will prove in class that if G' is a powerful pro-p group, then every

element of GP is a p'™ power.

Problem 4. The following result was formulated in Lecture 25:

Lemma 6. Let G be a pro-p group, N a subgroup of G, and suppose
that N p.e. G. Then N? p.e. G.

Prove Lemma 6 for odd p using the outline below. Note that Lemma 6
is proved in Chapter 2 of [DDMS] using the same method, but the steps
are justified slightly differently there.

(a)
(b)

(c)

Prove that it is sufficient to prove Lemma 6 for finite p-groups.
Assume now that Lemma 6 is false for some pair (G, N) with
G finite and choose such pair with |G| smallest possible. Show
that we must have (N?)? = {1}.

Let G and N be as in (b). Using the fact that inside a finite
p-group, any non-trivial normal subgroup contains a central
element of order p, show that [N?, G] must be central of order
p, so in particular [N?, GJ? = [N?,G,G| = {1} (assume the
opposite and reach a contradiction with the assumption that
|G| is smallest possible).

Recall the following formula from Lecture 26: for any group I'
and any z,y € I' we have

(ay)? = e[, y)8)2 (% % %)

where z lies in the normal subgroup generated by the length 3
commutators [[z,y], z] and [[z,y],y]. Use this formula and the
equalities [N?, G|P = [N?,G,G] = {1} from (c) to deduce that
[N?,G] = {1}, thus reaching a contradiction. Hint: You need



to show that g7'nPg = nP? for all n € N and g € G. Write
g 'nPg as (n[n, g])? and apply (¥**).



