Math 8851. Homework \#7. To be completed by 5pm on Fri, Dec 1
We will start by discussing how the Golod-Shafarevich criterion for pro-p groups follows from the corresponding result for algebras. This reduction was discussed in class at the end of Lecture 24, but things got rushed at the end, and I had to omit some details.

First we fix some notations. Let K be a field, $U=\left\{u_{1}, \ldots, u_{d}\right\}$ a finite set and $K\langle\langle U\rangle\rangle$ the algebra of power series over K in noncommuting variables u_{1}, \ldots, u_{d}. Given $0 \neq f \in K$, we define $\operatorname{deg}(f)$ to be the smallest degree of a monomial in U which appears in the expansion of f with nonzero coefficient. We also set $\operatorname{deg}(0)=\infty$. For each $n \in \mathbb{Z}_{\geq 0}$ let

$$
K\langle\langle U\rangle\rangle_{n}=\{f \in K\langle\langle U\rangle\rangle: \operatorname{deg}(f) \geq n\} .
$$

Note that $K\langle\langle U\rangle\rangle_{n}$ is an ideal of $K\langle\langle U\rangle\rangle$.
Now let R be a subset of $K\langle\langle U\rangle\rangle$ with $0 \notin R$. Let $I=((R))$ be the closed ideal of $K\langle\langle U\rangle\rangle$ generated by R and $A=K\langle\langle U\rangle\rangle / I$, so we can think of elements of U as generators and elements of R as relators. Let $R_{n}=\{r \in R: \operatorname{deg}(r)=n\}$, so $R=\sqcup_{n=0}^{\infty} R_{n}$. As discussed in class, we can assume that $R_{0}=\emptyset$ (otherwise $A=0$) and each R_{n} is finite (this takes a bit of work to justify).

Let $r_{n}=\left|R_{n}\right|$ and $H_{R}(t)=\sum_{n=0}^{\infty} r_{n} t^{n} \in \mathbb{Z}[[t]]$ the associated Hilbert series. Let $\pi: K\langle\langle U\rangle\rangle \rightarrow A$ be the natural projection, $A_{n}=\pi\left(K\langle\langle U\rangle\rangle_{n}\right)$, $a_{n}=\operatorname{dim}_{K}\left(A_{n} / A_{n+1}\right)$ and $H_{A}(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$.

Theorem 1 (Golod-Shafarevich inequality for filtered algebras). In the above notations we have the following inequality of power series:

$$
\frac{H_{A}(t)\left(1-|U| t+H_{R}(t)\right)}{1-t} \geq \frac{1}{1-t} \quad(* * *)
$$

Recall that the inequality in $\left({ }^{* * *}\right)$ means that in each degree the coefficient of the power series on the left-hand side is \geq the respective coefficient on the right-hand side.

Corollary 2. Suppose there exists $\tau \in(0,1)$ such that $1-|U| \tau+$ $H_{R}(\tau) \leq 0$. Then the numerical series $H_{A}(\tau)$ diverges, so in particular A is infinite-dimensional.

Suppose now that G is a pro- p group given by a pro- p presentation $\left\langle X \mid R_{G}\right\rangle$ where $X=\left\{x_{1}, \ldots, x_{d}\right\}$ is finite (the set of relators R_{G} may be infinite). Thus, G is isomorphic to F / N where $F=F_{\widehat{p}}(X)$ is the free pro- p group on X and $N=\left\langle\left\langle R_{G}\right\rangle\right\rangle$ is the closed normal subgroup generated by R_{G}.

As above let $U=\left\{u_{1}, \ldots, u_{d}\right\}$ and consider the subgroup Γ of $\mathbb{F}_{p}\langle\langle U\rangle\rangle^{\times}$given by

$$
\Gamma=\overline{\left\langle 1+u_{1}, \ldots, 1+u_{d}\right\rangle},
$$

the closed subgroup generated by $1+u_{1}, \ldots, 1+u_{d}$. As shown in Lecture 12, Γ is isomorphic to F via the map $x_{i} \mapsto 1+u_{i}$ for $1 \leq i \leq d$. From now on we will identify Γ with F using this map.

Next let $R_{A}=\left\{r-1: r \in R_{G}\right\}$ (viewed as a subset of $\mathbb{F}_{p}\langle\langle U\rangle\rangle$), $I=\left(\left(R_{A}\right)\right)$ the closed ideal of $\mathbb{F}_{p}\langle\langle U\rangle\rangle$ and $A=\mathbb{F}_{p}\langle\langle U\rangle\rangle / I$. As explained in Lecture 23, the embedding $\Gamma=F \rightarrow \mathbb{F}_{p}\langle\langle U\rangle\rangle^{\times}$induces a natural map $\varphi: G \rightarrow A^{\times}$such that $\operatorname{Span}(\operatorname{Im} \varphi)$ is dense in A, so in particular, G is infinite whenever A is infinite.

Now define the degree function D on the free pro- p group F (still identified with Γ) by

$$
D(f)=\operatorname{deg}(f-1) .
$$

(Note that $D(f)>0$ for all f since the power series expansion of f always has constant term 1).

Thus, if we set $H_{R_{G}}(t)=\sum_{i=1}^{\infty} t^{D(r)}$, then $H_{R_{G}}(t)=H_{R_{A}}(t)$ as formal power series. Hence Corollary 2 yields the following:

Corollary 3. Suppose that a pro-p group G has a pro-p presentation $\left\langle X \mid R_{G}\right\rangle$ with X is finite and there exists $\tau \in(0,1)$ such that $1-|X| \tau+$ $H_{R_{G}}(\tau) \leq 0$. Then G is infinite.

We are now ready to formulate the first 2 problems.
Problem 1. Prove the following properties of the degree function D on F :
(a) $D(f g) \geq \min (D(f), D(g))$ for all $f, g \in F$;
(b) $D([f, g]) \geq D(f)+D(g)$ for all $f, g \in F$;
(c) $D\left(f^{p}\right)=p \cdot D(f)$ for all $f \in F$.

Problem 2. Prove that $D(f)>1 \Longleftrightarrow f \in \Phi(F)$. Hint: The backwards direction follows from the explicit formula for $\Phi(F)$ and Problem 1. For the forward direction first show that any element of F can be uniquely written as $\prod_{i=1}^{d} x_{i}^{a_{i}} \cdot y$ where $0 \leq a_{i} \leq p-1$ for each i
and $y \in \Phi(F)$ (here $X=\left\{x_{1}, \ldots, x_{d}\right\}$ is the chosen free generating set for F, as before).

Let us now recall an important application of Problem 2 briefly discussed at the end of Lecture 24.

As a consequence of Corollary 2 we obtained the following result:
Corollary 4. Let $A=K\langle\langle U\rangle\rangle /((R))$ for some field K and finite set U and suppose that $r_{1}=0$ (in addition to the original hypothesis that $r_{0}=0$), so all relations in R have degree ≥ 2. If $|U|>0$ and $|R| \leq \frac{|U|^{2}}{4}$, then A is infinite-dimensional.

Now recall that if $\left\langle X \mid R_{G}\right\rangle$ is a pro- p presentation of a finitely generated pro- p group G such that $|X|=d(G)$, then R_{G} lies inside $\Phi\left(F_{\widehat{p}}(X)\right)$, the Frattini subgroup of $F_{\hat{p}}(X)$ and so $D(r) \geq 2$ for all $r \in R_{G}$ by Problem 2. Hence the algebra A corresponding to G satisfies the hypotheses of Corollary 4, and we obtain the following group-theoretic counterpart of Corollary 4:

Theorem 5. Let G be a finitely presented pro-p group and assume that $d(G)>0$ (that is, G is non-trivial) and $r(G) \leq \frac{d(G)^{2}}{4}$. Then G is infinite.

Recall that we used Theorem 5 to give a negative solution to the class field tower problem.

The next 2 problems deal with powerful pro- p groups. Recall that a pro-p group G is powerful if $\overline{[G, G]} \subseteq \overline{G^{p}}$ for $p>2$ and if $\overline{[G, G]} \subseteq \overline{G^{4}}$ for $p=2$.

More generally, a subgroup N of G is powerfully embedded in G (notation N p.e. G) if $\overline{[N, G]} \subseteq \overline{N^{p}}$ for $p>2$ and if $\overline{[N, G]} \subseteq \overline{N^{4}}$ for $p=2$. Thus, G is powerful $\Longleftrightarrow G$ p.e. G.

Note that a subgroup N of G is normal $\Longleftrightarrow[N, G] \subseteq N$, so any closed powerfully embedded subgroup is automatically normal.
Problem 3. Given $k, n \in \mathbb{N}$, let

$$
G L_{n}^{k}\left(\mathbb{Z}_{p}\right)=\left\{A \in G L_{n}^{k}\left(\mathbb{Z}_{p}\right): A \equiv I \quad \bmod p^{k}\right\}
$$

the $k^{\text {th }}$ congruence subgroup of $G L_{n}\left(\mathbb{Z}_{p}\right)$.
(a) Prove that $\left[G L_{n}^{k}\left(\mathbb{Z}_{p}\right), G L_{n}^{m}\left(\mathbb{Z}_{p}\right)\right] \subseteq S L_{n}^{k+m}\left(\mathbb{Z}_{p}\right)$ for all $k, m \in \mathbb{N}$; in particular, $\left[G L_{n}^{k}\left(\mathbb{Z}_{p}\right), G L_{n}^{k}\left(\mathbb{Z}_{p}\right)\right] \subseteq S L_{n}^{2 k}\left(\mathbb{Z}_{p}\right)$.
(b) Assume that p is odd. Prove that every $g \in G L_{n}^{2}\left(\mathbb{Z}_{p}\right)$ can be written as h^{p} for some $h \in G L_{n}^{1}\left(\mathbb{Z}_{p}\right)$. Hint: One way to prove
this is as follows. We need to show that for every $A \in \operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)$ the equation $(1+p X)^{p}=1+p^{2} A$ has a solution $X \in \operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)$. Expand the left-hand side and prove that the equation has a solution $\bmod p^{i}$ for all $i \in \mathbb{N}$ by induction on i; then deduce that there is a solution in $\operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)$.
(c) Now prove that every $g \in G L_{n}^{4}\left(\mathbb{Z}_{2}\right)$ can be written as h^{4} for some $h \in G L_{n}^{2}\left(\mathbb{Z}_{p}\right)$.
(d) Deduce from (a), (b) and (c) that $G L_{n}^{k}\left(\mathbb{Z}_{p}\right)$ is powerful if $p>2$ (and k is arbitrary) or $p=2$ and $k \geq 2$.
Remark: The fact that the conclusions of (b) and (c) are seemingly stronger than what is required to be powerful is not a coincidence. We will prove in class that if G is a powerful pro- p group, then every element of G^{p} is a $p^{\text {th }}$ power.
Problem 4. The following result was formulated in Lecture 25:
Lemma 6. Let G be a pro-p group, N a subgroup of G, and suppose that N p.e. G. Then N^{p} p.e. G.

Prove Lemma 6 for odd p using the outline below. Note that Lemma 6 is proved in Chapter 2 of [DDMS] using the same method, but the steps are justified slightly differently there.
(a) Prove that it is sufficient to prove Lemma 6 for finite p-groups.
(b) Assume now that Lemma 6 is false for some pair (G, N) with G finite and choose such pair with $|G|$ smallest possible. Show that we must have $\left(N^{p}\right)^{p}=\{1\}$.
(c) Let G and N be as in (b). Using the fact that inside a finite p-group, any non-trivial normal subgroup contains a central element of order p, show that $\left[N^{p}, G\right]$ must be central of order p, so in particular $\left[N^{p}, G\right]^{p}=\left[N^{p}, G, G\right]=\{1\}$ (assume the opposite and reach a contradiction with the assumption that $|G|$ is smallest possible).
(d) Recall the following formula from Lecture 26: for any group Γ and any $x, y \in \Gamma$ we have

$$
\begin{equation*}
(x y)^{p}=x^{p} y^{p}[x, y]^{\binom{p}{2}} z \tag{***}
\end{equation*}
$$

where z lies in the normal subgroup generated by the length 3 commutators $[[x, y], x]$ and $[[x, y], y]$. Use this formula and the equalities $\left[N^{p}, G\right]^{p}=\left[N^{p}, G, G\right]=\{1\}$ from (c) to deduce that $\left[N^{p}, G\right]=\{1\}$, thus reaching a contradiction. Hint: You need
to show that $g^{-1} n^{p} g=n^{p}$ for all $n \in N$ and $g \in G$. Write $g^{-1} n^{p} g$ as $(n[n, g])^{p}$ and apply (***).

