
Math 8851. Homework #7. To be completed by 5pm on Fri, Dec 1

We will start by discussing how the Golod-Shafarevich criterion for

pro-p groups follows from the corresponding result for algebras. This

reduction was discussed in class at the end of Lecture 24, but things

got rushed at the end, and I had to omit some details.

First we fix some notations. Let K be a field, U = {u1, . . . , ud}
a finite set and K〈〈U〉〉 the algebra of power series over K in non-

commuting variables u1, . . . , ud. Given 0 6= f ∈ K, we define deg(f)

to be the smallest degree of a monomial in U which appears in the

expansion of f with nonzero coefficient. We also set deg(0) = ∞. For

each n ∈ Z≥0 let

K〈〈U〉〉n = {f ∈ K〈〈U〉〉 : deg(f) ≥ n}.

Note that K〈〈U〉〉n is an ideal of K〈〈U〉〉.
Now let R be a subset of K〈〈U〉〉 with 0 6∈ R. Let I = ((R)) be the

closed ideal of K〈〈U〉〉 generated by R and A = K〈〈U〉〉/I, so we can

think of elements of U as generators and elements of R as relators. Let

Rn = {r ∈ R : deg(r) = n}, so R = t∞n=0Rn. As discussed in class, we

can assume that R0 = ∅ (otherwise A = 0) and each Rn is finite (this

takes a bit of work to justify).

Let rn = |Rn| and HR(t) =
∞∑
n=0

rnt
n ∈ Z[[t]] the associated Hilbert

series. Let π : K〈〈U〉〉 → A be the natural projection, An = π(K〈〈U〉〉n),

an = dimK(An/An+1) and HA(t) =
∞∑
n=0

ant
n.

Theorem 1 (Golod-Shafarevich inequality for filtered algebras). In

the above notations we have the following inequality of power series:

HA(t)(1− |U |t+HR(t))

1− t
≥ 1

1− t
(∗ ∗ ∗)

Recall that the inequality in (***) means that in each degree the

coefficient of the power series on the left-hand side is ≥ the respective

coefficient on the right-hand side.

Corollary 2. Suppose there exists τ ∈ (0, 1) such that 1 − |U |τ +

HR(τ) ≤ 0. Then the numerical series HA(τ) diverges, so in particular

A is infinite-dimensional.



Suppose now that G is a pro-p group given by a pro-p presentation

〈X|RG〉 where X = {x1, . . . , xd} is finite (the set of relators RG may

be infinite). Thus, G is isomorphic to F/N where F = Fp̂(X) is the

free pro-p group on X and N = 〈〈RG〉〉 is the closed normal subgroup

generated by RG.

As above let U = {u1, . . . , ud} and consider the subgroup Γ of

Fp〈〈U〉〉× given by

Γ = 〈1 + u1, . . . , 1 + ud〉,
the closed subgroup generated by 1 + u1, . . . , 1 + ud. As shown in

Lecture 12, Γ is isomorphic to F via the map xi 7→ 1+ui for 1 ≤ i ≤ d.

From now on we will identify Γ with F using this map.

Next let RA = {r − 1 : r ∈ RG} (viewed as a subset of Fp〈〈U〉〉),
I = ((RA)) the closed ideal of Fp〈〈U〉〉 and A = Fp〈〈U〉〉/I. As explained

in Lecture 23, the embedding Γ = F → Fp〈〈U〉〉× induces a natural map

ϕ : G→ A× such that Span(Imϕ) is dense in A, so in particular, G is

infinite whenever A is infinite.

Now define the degree function D on the free pro-p group F (still

identified with Γ) by

D(f) = deg(f − 1).

(Note that D(f) > 0 for all f since the power series expansion of f

always has constant term 1).

Thus, if we set HRG
(t) =

∑∞
i=1 t

D(r), then HRG
(t) = HRA

(t) as formal

power series. Hence Corollary 2 yields the following:

Corollary 3. Suppose that a pro-p group G has a pro-p presentation

〈X|RG〉 with X is finite and there exists τ ∈ (0, 1) such that 1−|X|τ +

HRG
(τ) ≤ 0. Then G is infinite.

We are now ready to formulate the first 2 problems.

Problem 1. Prove the following properties of the degree function D

on F :

(a) D(fg) ≥ min(D(f), D(g)) for all f, g ∈ F ;

(b) D([f, g]) ≥ D(f) +D(g) for all f, g ∈ F ;

(c) D(fp) = p ·D(f) for all f ∈ F .

Problem 2. Prove that D(f) > 1 ⇐⇒ f ∈ Φ(F ). Hint: The

backwards direction follows from the explicit formula for Φ(F ) and

Problem 1. For the forward direction first show that any element of F

can be uniquely written as
∏d

i=1 x
ai
i · y where 0 ≤ ai ≤ p− 1 for each i



and y ∈ Φ(F ) (here X = {x1, . . . , xd} is the chosen free generating set

for F , as before).

Let us now recall an important application of Problem 2 briefly dis-

cussed at the end of Lecture 24.

As a consequence of Corollary 2 we obtained the following result:

Corollary 4. Let A = K〈〈U〉〉/((R)) for some field K and finite set

U and suppose that r1 = 0 (in addition to the original hypothesis that

r0 = 0), so all relations in R have degree ≥ 2. If |U | > 0 and |R| ≤ |U |2
4

,

then A is infinite-dimensional.

Now recall that if 〈X|RG〉 is a pro-p presentation of a finitely gener-

ated pro-p groupG such that |X| = d(G), thenRG lies inside Φ(Fp̂(X)),

the Frattini subgroup of Fp̂(X) and so D(r) ≥ 2 for all r ∈ RG by Prob-

lem 2. Hence the algebra A corresponding to G satisfies the hypotheses

of Corollary 4, and we obtain the following group-theoretic counterpart

of Corollary 4:

Theorem 5. Let G be a finitely presented pro-p group and assume

that d(G) > 0 (that is, G is non-trivial) and r(G) ≤ d(G)2

4
. Then G is

infinite.

Recall that we used Theorem 5 to give a negative solution to the

class field tower problem.

The next 2 problems deal with powerful pro-p groups. Recall that a

pro-p group G is powerful if [G,G] ⊆ Gp for p > 2 and if [G,G] ⊆ G4

for p = 2.

More generally, a subgroup N of G is powerfully embedded in G

(notation N p.e. G) if [N,G] ⊆ Np for p > 2 and if [N,G] ⊆ N4 for

p = 2. Thus, G is powerful ⇐⇒ G p.e. G.

Note that a subgroup N of G is normal ⇐⇒ [N,G] ⊆ N , so any

closed powerfully embedded subgroup is automatically normal.

Problem 3. Given k, n ∈ N, let

GLk
n(Zp) = {A ∈ GLk

n(Zp) : A ≡ I mod pk},

the kth congruence subgroup of GLn(Zp).

(a) Prove that [GLk
n(Zp), GL

m
n (Zp)] ⊆ SLk+m

n (Zp) for all k,m ∈ N;

in particular, [GLk
n(Zp), GL

k
n(Zp)] ⊆ SL2k

n (Zp).

(b) Assume that p is odd. Prove that every g ∈ GL2
n(Zp) can be

written as hp for some h ∈ GL1
n(Zp). Hint: One way to prove



this is as follows. We need to show that for every A ∈Matn(Zp)

the equation (1+pX)p = 1+p2A has a solution X ∈Matn(Zp).

Expand the left-hand side and prove that the equation has a

solution mod pi for all i ∈ N by induction on i; then deduce

that there is a solution in Matn(Zp).

(c) Now prove that every g ∈ GL4
n(Z2) can be written as h4 for

some h ∈ GL2
n(Zp).

(d) Deduce from (a), (b) and (c) that GLk
n(Zp) is powerful if p > 2

(and k is arbitrary) or p = 2 and k ≥ 2.

Remark: The fact that the conclusions of (b) and (c) are seemingly

stronger than what is required to be powerful is not a coincidence.

We will prove in class that if G is a powerful pro-p group, then every

element of Gp is a pth power.

Problem 4. The following result was formulated in Lecture 25:

Lemma 6. Let G be a pro-p group, N a subgroup of G, and suppose

that N p.e. G. Then Np p.e. G.

Prove Lemma 6 for odd p using the outline below. Note that Lemma 6

is proved in Chapter 2 of [DDMS] using the same method, but the steps

are justified slightly differently there.

(a) Prove that it is sufficient to prove Lemma 6 for finite p-groups.

(b) Assume now that Lemma 6 is false for some pair (G,N) with

G finite and choose such pair with |G| smallest possible. Show

that we must have (Np)p = {1}.
(c) Let G and N be as in (b). Using the fact that inside a finite

p-group, any non-trivial normal subgroup contains a central

element of order p, show that [Np, G] must be central of order

p, so in particular [Np, G]p = [Np, G,G] = {1} (assume the

opposite and reach a contradiction with the assumption that

|G| is smallest possible).

(d) Recall the following formula from Lecture 26: for any group Γ

and any x, y ∈ Γ we have

(xy)p = xpyp[x, y](
p
2)z (∗ ∗ ∗)

where z lies in the normal subgroup generated by the length 3

commutators [[x, y], x] and [[x, y], y]. Use this formula and the

equalities [Np, G]p = [Np, G,G] = {1} from (c) to deduce that

[Np, G] = {1}, thus reaching a contradiction. Hint: You need



to show that g−1npg = np for all n ∈ N and g ∈ G. Write

g−1npg as (n[n, g])p and apply (***).


