
Math 8851. Homework #6. To be completed by 5pm on Fri, Nov 17

1. Let K/F be a Galois extension and p a prime. Prove that the

following are equivalent:

(i) K/F is a p-extension as defined in class, that is, K/F is a

compositum of finite Galois extensions Ki/F with [Ki : F ] a

power of p.

(ii) Gal (K/F ) is a pro-p group.

2.

(a) Let K/F and L/F be p-extensions. Prove that KL/F is also a

p-extension.

(b) Suppose K/L and L/F are both p-extensions, and let M be

the Galois closure of K over F (note: we do not know whether

K/F is Galois or not). Prove that M/F is also a p-extension.

Hint: first use (a) to show that M/L is a p-extension.

(c) As in class, given a number field K and a prime p, denote

by Kun(p) the maximal unramified p-extension of K. Prove

that if L/K is an unramified p-extension of number fields, then

Kun(p) = Lun(p) (equality is unambiguous here as we can think

of both Kun(p) and Lun(p) as subfields of the field of algebraic

numbers).

Note: There are two general approaches to solving (a) and (b). One

can first prove (a) and (b) for finite p-extensions and then extend both

results to arbitrary p-extensions. Alternatively, it is possible to prove

(a) and (b) directly for arbitrary p-extensions.

3. Let F be a field of characteristic p. A polynomial of the form

f(x) = xp − x− a with a ∈ F is called an Artin-Schreier polynomial.

(a) Let f(x) ∈ F [x] be an Artin-Schreier polynomial. Prove the

following dichotomy: either f(x) splits completely over F or

f(x) is irreducible in F [x], and if α ∈ F is any root of f(x),

then F (α)/F is Galois with Galois group cyclic of order p.

(b) Let K be the maximal p-extension of F . Use Problem 2 and

part (a) to prove that any Artin-Schreier polynomial over K

has a root in K (and hence splits over K by (a)). Equivalently,

the map x 7→ xp− x from K to K is surjective. Recall that the



latter fact was used to prove that the Galois group Gal (K/F )

is free pro-p.

4. Let q1, . . . , qn be a sequence of odd integers (not necessarily positive)

such that qi ≡ 1 mod 4 for all i and |q1|, . . . , |qn| are distinct primes.

Let m =
∏n

i=1 qi, K = Q(
√
q) and L = Q(

√
q1, . . . ,

√
qn). Prove that

the extension L/K is unramified (this was Claim 22.2 from class). You

can use the following properties of ramification without proof. Below

by a prime of a number field M we mean a nonzero prime ideal of OM .

(a) Let d ∈ Z, and assume that d is square-free. Then the set of

primes which ramify in the extension Q(
√
d)/Q is

– exactly the set of prime of divisors of d if d ≡ 1 mod 4;

– {prime divisors of d} ∪ {2} if d ≡ 2, 3 mod 4.

(b) Let K1/F and K2/F be extensions of number fields. Then a

prime of F ramifies in the extension K1K2/F if and only if it

ramifies in K1/F or in K2/F .

(c) Let E/F be an extension of number fields and M another num-

ber field. If a prime p of F does not ramify in E/F , then any

prime P of M which lies over p (that is, such that p = P ∩OF )

does not ramify in the extension ME/M .

5. Let G be a finitely presented pro-p group such that d(G) > r(G).

Prove that the abelianization Gab = G/[G,G] is infinite. Hint: Let

〈X|R〉 be a pro-p presentation of G with |X| = d(G) and |R| = r(G).

Show that Gab ∼= Zd(G)
p /I where Zd(G)

p is the product of d(G) copies of

Zp and I is the subgroup of Zd(G)
p generated by r(G) elements.

6. Let X be an infinite set, and let I be the set of all finite subsets of

X. Note that if I is partially ordered by inclusion, then I is a directed

set. For each Y ∈ I let F̂ (Y ) be the free profinite group on Y . Given

Y, Z ∈ I with Y ⊆ Z, define πZ,Y : F̂ (Z) → F̂ (Y ) be the unique

continuous homomorphism such that πZ,Y (z) = z for all z ∈ Y and

πZ,Y (z) = 1 for all z ∈ Z \ {1}. Clearly ({F̂ (Y )}, {πZ,Y }) is an inverse

system. Prove that proj limY ∈I F̂ (Y ) is isomorphic to the free profinite

group on X, as defined in HW#5.1.

Remark: The result of Problem 6 is one of several ways to argue why

the definition of free profinite groups given in HW#5.1 is the “right”

one. (This assetion would be false if we defined free profinite groups

on arbitrary sets simply as profinite completions of the corresponding



abstract groups). Other nice consequences of the definition we are

using (which would otherwise be false) include the following:

(2) Every countably based profinite (resp. pro-p) group is a (contin-

uous) quoitent of a free profinite (resp. pro-p) group of count-

able rank.

(3) Closed subgroups of free pro-p groups are free pro-p (for profi-

nite groups this is false already in rank 1 as Zp is a closed

subgroup of Ẑ).

(4) A pro-p group G is free ⇐⇒ H2(G,Fp) = 0.


