
Math 8851. Homework #5. To be completed by 5pm on Fri, Nov 3

1. This is an expanded version of Problem 3 in HW#3. The remark

after the problem gives a corrected statement of Problem 7 in HW#3.

Let X be an infinite set, F (X) the free abstract group on X and Λ

the set of all open normal subgroups N in F (X) such that N contains

all but finitely many elements of X. The group F̂ (X)Λ (the completion

of F (X) with respect to Λ) is called the free profinite group on X. It

will be denoted by F̂ (X).

(a) Prove that |Λ| = |X|. Deduce from HW#2 that the set of open

subgroups of F̂ (X) has the same cardinality as X. In particular,

if X is countable, F̂ (X) is countably based. Note: You may

use without proof that |X ×X| = |X| for any infinite set X.

(b) Let H be a profinite group. A map f : X → H is called 1-

convergent if any open subgroup U of H contains f(x) for all

but finitely many x ∈ X. Prove that the free profinite group

F̂ (X) satisfies the following universal property: If H is a pro-

p group and f : X → H is any 1-convergent map, then there

exists a unique continuous homomorphism f∗ : F̂ (X)→ H such

that f∗ ◦ ι = f where ι : X → F̂ (X) is the canonical inclusion.

A subset X of a profinite group H is called 1-convergent if the inclusion

map X → H is 1-convergent.

(c) Deduce the following from (b). Let G be a profinite group and

X a (topological) 1-convergent generating set of G. Then there

exists a continuous epimorphism from F̂ (X) to G.

(d) Let G be a profinite group. One can show (although this is non-

trivial) that G always has a 1-convergent generating set. Denote

by ON(G) the set of open normal subgroups of G. Prove that if

G is not finitely generated, then for any 1-convergent generating

set X of G we have |X| = |ON(G)|. Hint: First prove that

|X| ≤ |ON(G)| by constructing a finite-to-one map from X to

ON(G). Then use (a) and (c) to prove that |ON(G)| ≤ |X|.
Important remark: HW#3.7 claimed that d(G) = dimH1(G,Fp)
for any pro-p group G. If G is not finitely generated, this statement

is actually incorrect (in general) if d(G) denotes the minimal size of a

generating set of G. However if for an infinitely generated G we redefine

d(G) to be the common size of its 1-convergent generating sets (thus



d(G) = |ON(G)| by (d)), then the equality becomes correct. What we

actually proved in Problem Session 3 is that if G/Φ(G) ∼= FXp (and we

know this is always true for some X), then dimH1(G,Fp) = |X|. One

can deduce the corrected version of HW#3.7 from this result and (d),

but this requires some additional work.

2. This is a corrected and expanded version of Problem 2 in HW#4.

We start with some definitions. Let A be an associative ring with 1

and M an A-bimodule. A map f : A→M is called a derivation if

(1) f(a+ b) = f(a) + f(b) for all a, b ∈ A;

(2) f(ab) = f(a).b+ a.f(b) for all a, b ∈ A.

The set of all derivations from A toM (which is clearly an abelian group

with respect to pointwise addition) will be denoted by Der(A,M).

If G is a group and M is a right G-module, a derivation from G to

M is a map f : G→M satisfying

(3) f(gh) = f(g).h+ f(g) for all g ∈ G.

Again we denote by Der(G,M) the set of all derivations from G to

M , which is still an abelian group. Recall that Der(G,M) appeared in

class in the course of the explicit description of the first cohomology,

namely

H1(G,M) = Der(G,M)/IDer(G,M)

where IDer(G,M) is the subgroup of inner derivations (maps of the

form g 7→ m−m.g
Now the actual problem begins.

(a) Let A be an associative ring with 1 and M an A-bimodule.

Prove that for every m ∈ M the map from A to M given by

a 7→ a.m − m.a is a derivation. Derivations of this form are

called inner.

(b) Let G be a group and let ε : Z[G] → Z be the unique homo-

morphism of abelian groups such that ε(g) = 1 for all g ∈ G.

Prove that ε is a ring homomorphism and its kernel is the aug-

mentation ideal ωG of Z[G] (by definition from class ωG is the

ideal generated by all elements of the form g − 1, g ∈ G).

(c) Let G be a group and M a right G-module (and hence also a

right Z[G]-module). Prove that M is actually a Z[G]-bimodule

where the left action is given by r.m = ε(r)m for all r ∈ Z[G]

and m ∈ M . Thus we can consider the spaces of derivations

Der(Z[G],M) and Der(G,M). Prove that the restriction map



R : Der(Z[G],M) → Der(G,M) is an isomorphism of abelian

groups and that a derivation D ∈ Der(Z[G],M) is inner ⇐⇒
R(D) is inner.

(d) Again let G be a group and ωG the augmentation ideal. Prove

that if X generates G as a group, then the set {x− 1 : x ∈ X}
generates ωG as a right G-module (equivalently, Z[G]-module).

(e) Now assume that G is a free group and X is a free generating

set for G. Then one can show (this is not part of the problem)

that ωG is a free right Z[G]-module, freely generated by {x−1 :

x ∈ X}, that is, for any f ∈ ωG there exist unique elements

{Dx(f)}x∈X such that

f =
∑
x∈X

(x− 1)Dx(f)

(if X is infinite, we implicitly require that only finitely many

Dx(f) are nonzero). Prove that for any x ∈ X the map ∂
∂x

:

G → Z[G] given by ∂
∂x

(g) = Dx(g − 1) is a derivation. It is

called the (right) Fox derivative with respect to x.

3. Recall that in Lecture 16 we proved the following theorem.

Theorem 1. Let G be a finitely presented pro-p group, and denote

its minimal number of generators by d(G) and its minimal number

of relators by r(G). Suppose that G has a pro-p presentation with n

generators and m relators for some n and m. Then G also has a pro-p

presentation with d(G) generators and m− (n− d(G)) relators.

Prove the following lemma which was used in the proof of Theorem 1.

Lemma 2. Let 〈X|R〉 be a pro-p presentation of a pro-p group G where

X and R are both finite (recall that this means that G ∼= F/N where

F = Fp̂(X) is the free pro-p group on X and N = 〈〈R〉〉 is the closed

normal subgroup of F generated by R). Suppose that |X| > d(G). Then

(a) At least one defining relator r ∈ R lies outside of the Frattini

subgroup Φ(F );

(b) For any r ∈ R \Φ(F ) there exists a (topological) generating set

X ′ of X such that r ∈ X ′ and |X ′| = |X| (so X ′ is of minimal

possible size). Hint: How can you construct a minimal-size

generating set for F using Φ(F )?

4. Let G be a finitely presented pro-p group, d = d(G) and r = r(G).

Thus, replacing G by an isomorphic group, we can assume that G =



F/N where F is a free pro-p group of rank d and N is (topologically)

generated by r elements as a normal subgroup of F . In class we proved

that any non-split TCE (topological central extension) of G = F/N by

Fp is equivalent to an extension of the form

EK,ι = (1→ Fp
ι−→ F/K

π−→ F/N → 1)

where

(i) K is a closed normal subgroup of F such that K ⊆ N , N/K is

a central subgroup of order p in F/K, π : F/K → F/N is the

natural projection and

(ii) ι : Fp → N/K is any isomorphism.

Prove that if EK,ι is equivalent to EK′,ι′ , then K ′ = K and ι′ = ι (this

was a key step in proving that the number of equivalence classes of

TCE’s of G by Fp is equal to pr(G)).

Hint: Suppose that EK,ι and EK′,ι′ are equivalent, and let ϕ : F/K →
F/K ′ be an isomorphism establishing the equivalence. First show that

there exists a (continuous) homomorphism ϕ̃ : F → F such that

ϕ̃(x) ≡ x mod N for all x ∈ F

and ϕ̃ induced ϕ, that is, πK′ ◦ ϕ̃ = ϕ ◦ πK where πK : F → F/K and

πK′ : F → F/K ′ are the natural projections. Then using the fact that

N ⊆ Φ(F ) = [F, F ]F p (why is this true?) show that

ϕ̃(x) ≡ x mod [F,N ]Np for all x ∈ N.

Finally deduce that K ′ = K, ϕ is the identity map and ι′ = ι (in this

order).

5. In Lecture 20 we will prove a generalization of Hilbert’s Theo-

rem 90 due to Noether which states that H1(Gal (K/F ), K×) = 0 for

any finite Galois extension K/F (as we already proved in class, once

we know this for finite Galois extensions, we get the same result for

arbitrary Galois extensions).

Assume now that K/F is cyclic, that is, Gal (K/F ) is cyclic. Prove

that in this case the above theorem is equivalent to the classical version

of Hilbert’s Theorem 90 as usually stated in Algebra-II: any element

a ∈ K of norm 1 can be written as a = b
σ(b)

for some b where b is a

fixed (in advance) generator of Gal (K/F ).


