
Math 8851. Homework #4. To be completed by 5pm on Fri, Oct 20

Below [DDMS] refers to the book ‘Analytic pro-p groups’, 2nd edition

by Dixon, du Sautoy, Mann and Segal.

Before stating Problem 1 we introduce several definitions.

Definition. A supernatural number if a formal product
∏
p

pap where p

ranges over all primes and each ap is either a non-negative integer or

infinity.

Supernatural numbers form a monoid with respect to multiplication

given by ∏
p

pap ·
∏
p

pbp =
∏
p

pap+bp

where as usual we set ∞+ x = x+∞ =∞ for any x ∈ Z≥0 t {∞}.
It is not hard to show that for any non-empty set S of supernatural

numbers there are unique greatest common divisor gcd(S) (which is a

multiple of any common divisor of the elements of S) and least common

multiple LCM(S) (which divides any common multiple of the elements

of S), and morever both gcd(S) and LCM(S) are given by the standard

formulas: if S = {si}i∈I where si =
∏
p

pai,p , then gcd(S) =
∏
p

pmp and

LCM(S) =
∏
p

pMp where mp = inf{ai,p : i ∈ I} and Mp = sup{ai,p :

i ∈ I}.
If G is a profinite group, the order of G is the supernatural number

|G| defined by

|G| = LCM({|G/N | : N is an open normal subgroup of G}).

Note that G is pro-p for some prime p ⇐⇒ |G| = pa for some a ∈
Z≥0 t {∞}.

If H is a closed subgroup of G, we define the index [G : H] by

[G : H] = LCM({[G : U ]}) where U ranges over all open subgroups of

G containing H.

Definition. Let G be a profinite group and p a prime dividing |G|. A

closed subgroup H of G is called a Sylow pro-p subgroup if H is a pro-p

subgroup and [G : H] is coprime to p.



One can show that Sylow pro-p subgroups always exist and any two

Sylow pro-p subgroups of G are conjugate (see Problems 1.11 and 1.12

in [DDMS]), but this is not part of this homeowrk.

1.

(a) Prove that if G is a profinite group and H is a closed normal

subgroup of G, then |G| = |G/H| · |H|.
(b) Let G = SLn(Zp) (where as usual Zp is p-adic integers). De-

scribe explicitly a Sylow pro-p subgroup of G and prove your

answer. Hint: Problem 5 from HW#1 is relevant here.

2. We start with some definitions. Let A be an associative ring with

1 and M a right R-module. A map f : A→M is called a derivation if

(1) f(a+ b) = f(a) + f(b) for all a, b ∈ A;

(2) f(ab) = f(a).b+ f(b) for all a, b ∈ A.

The set of all derivations from A toM (which is clearly an abelian group

with respect to pointwise addition) will be denoted by Der(A,M).

If G is a group and M is a right G-module, a derivation from G to

M is a map G → M satisfying (2) above (for all a, b ∈ G). Again we

denote by Der(G,M) the set of all derivations from G to M , which is

still an abelian group. Recall that Der(G,M) appeared in class in the

course of the explicit description of the first cohomology, namely

H1(G,M) ∼= Der(G,M)/IDer(G,M)

where IDer(G,M) is the subgroup of inner derivations (maps of the

form g 7→ m−m.g for some fixed m ∈M); however, this is not directly

related to this problem. The main point of this problem is to give an

important example of a derivation in the case of a non-trivial action

(which actually arises in some proofs that I am going to discuss in

class).

Now the actual problem begins

(a) Let G be a group and M a right G-module. Prove that the

restriction map Der(Z[G],M)→ Der(G,M) is an isomorphism

of abelian groups.

(b) Again let G be a group and ωG be the augmentation ideal of

Z[G] (the ideal generated by all elements of the form g − 1,

g ∈ G). Prove that if X generates G as a group, then the set

{x−1 : x ∈ X} generates ωG as a right G-module (equivalently,

Z[G]-module).



(c) Now assume that G is a free group and X is a free generating

set for G. Then one can show (this is not part of the problem)

that ωG is a free right Z[G]-module, freely generated by {x−1 :

x ∈ X}, that is, for any f ∈ ωG there exist unique elements

{Dx(f)}x∈X such that

f =
∑
x∈X

(x− 1)Dx(f)

(if X is infinite, we implicitly require that only finitely many

Dx(f) are nonzero). Prove that for any x ∈ X the map ∂
∂x

:

G → Z[G] given by ∂
∂x

(g) = Dx(g − 1) is a derivation. It is

called the (right) Fox derivative with respect to x.

3. Let X and Y be topological spaces and C(X, Y ) the space of

continuous maps from X to Y . The compact-open topology on C(X, Y )

is the topology with subbase {UK,O} where K ⊆ X is compact, O ⊆ Y

is open and UK,O = {f ∈ C(X, Y ) : f(K) ⊆ U}.
Now letW/F be a Galois extension and consider Gal (W/F ) as a sub-

set of C(W,W ) where W is endowed with the discrete topology. Prove

that the Krull topology on Gal (W/F ) coincides with the compact-

open topology (that is, the topology induced from the compact-open

topology on C(W,W )).

4. Let W/F be a Galois extension and L a subfield of W/F .

(a) Prove that the Krull topology on Gal (W/L) is induced from

the Krull topology on Gal (W/F ).

(b) Assume now that L/F is Galois, so that Gal (W/L) is normal

in Gal (W/F ) and Gal (W/F )/Gal (W/L) is canonically isomor-

phic to Gal (L/F ). Prove that under this isomorphism, the

Krull topology on Gal (L/F ) corresponds to the quotient topol-

ogy on Gal (W/F )/Gal (W/L).

5. Let {dn}n∈N be a sequence of pairwise coprime integers and K =

Q(
√
d1,
√
d2, . . .). Define the map ι : Gal (K/Q) → F∞2 by ι(ϕ) =

(a1, a2, . . .) where ai = 0 if ϕ(
√
di) =

√
di and ai = 1 if ϕ(

√
di) = −

√
di.

Prove that ι is a group isomorphism.

6. In each part of this problem we are given a Galois extension W/F

and a closed subgroup H of G = Gal (W/F ). Find (with proof) the

fixed L ofH (equivalently, find the unique field L such that Gal (W/L) =

H). In each part we also fix a prime p.



(a) F is a finite field, W = F and H =
∏
q 6=p

Zq. (Recall that in this

case G is canonically isomorphic to Ẑ =
∏
q

Zq.

(b) F = Q, W = Q({ζn : n ∈ N}) where ζn is a primitive nth root of

unity and H =
∏
q 6=p

Z×q . (Recall that in this case G is canonically

isomorphic to Ẑ× =
∏
q

Z×q )

(c) Let F and W be as in (b), and let H be the product of
∏
q 6=p

Z×q

(the subgroup from (b)) and the subgroup (Z×p )2 consisting of

all squares in Z×p . (As stated in class, if p is odd, then Z×p ∼=
Z/(p−1)Z×Zp, so (Z×p )2 has index 2 in Z×p and Z×2 ∼= Z/2Z×Z2,

so (Z×2 )2 has index 4 in Z×2 ).

Hint: Analyzing the proofs of the isomorhisms Gal (W/F ) ∼= Ẑ in (a)

and Gal (W/F ) ∼= Ẑ× in (b) and (c) will probably be helpful for all

parts. In (c) you may be you need to use some facts not discussed in

Algebra-II to rigorously prove the answer.


