Math 8851. Homework \#4. To be completed by 5pm on Fri, Oct 20
Below [DDMS] refers to the book 'Analytic pro- p groups', 2nd edition by Dixon, du Sautoy, Mann and Segal.

Before stating Problem 1 we introduce several definitions.
Definition. A supernatural number if a formal product $\prod_{p} p^{a_{p}}$ where p ranges over all primes and each a_{p} is either a non-negative integer or infinity.

Supernatural numbers form a monoid with respect to multiplication given by

$$
\prod_{p} p^{a_{p}} \cdot \prod_{p} p^{b_{p}}=\prod_{p} p^{a_{p}+b_{p}}
$$

where as usual we set $\infty+x=x+\infty=\infty$ for any $x \in \mathbb{Z}_{\geq 0} \sqcup\{\infty\}$.
It is not hard to show that for any non-empty set S of supernatural numbers there are unique greatest common divisor $\operatorname{gcd}(S)$ (which is a multiple of any common divisor of the elements of S) and least common multiple $L C M(S)$ (which divides any common multiple of the elements of S), and morever both $\operatorname{gcd}(S)$ and $L C M(S)$ are given by the standard formulas: if $S=\left\{s_{i}\right\}_{i \in I}$ where $s_{i}=\prod_{p} p^{a_{i, p}}$, then $\operatorname{gcd}(S)=\prod_{p} p^{m_{p}}$ and $\operatorname{LCM}(S)=\prod_{p} p^{M_{p}}$ where $m_{p}=\inf \left\{a_{i, p}: i \in I\right\}$ and $M_{p}=\sup \left\{a_{i, p}:\right.$ $i \in I\}$.

If G is a profinite group, the order of G is the supernatural number $|G|$ defined by

$$
|G|=L C M(\{|G / N|: N \text { is an open normal subgroup of } G\}) .
$$

Note that G is pro- p for some prime $p \Longleftrightarrow|G|=p^{a}$ for some $a \in$ $\mathbb{Z}_{\geq 0} \sqcup\{\infty\}$.

If H is a closed subgroup of G, we define the index $[G: H]$ by $[G: H]=\operatorname{LCM}(\{[G: U]\})$ where U ranges over all open subgroups of G containing H.

Definition. Let G be a profinite group and p a prime dividing $|G|$. A closed subgroup H of G is called a Sylow pro-p subgroup if H is a pro-p subgroup and $[G: H]$ is coprime to p.

One can show that Sylow pro- p subgroups always exist and any two Sylow pro- p subgroups of G are conjugate (see Problems 1.11 and 1.12 in [DDMS]), but this is not part of this homeowrk.
1.
(a) Prove that if G is a profinite group and H is a closed normal subgroup of G, then $|G|=|G / H| \cdot|H|$.
(b) Let $G=S L_{n}\left(\mathbb{Z}_{p}\right)$ (where as usual \mathbb{Z}_{p} is p-adic integers). Describe explicitly a Sylow pro- p subgroup of G and prove your answer. Hint: Problem 5 from HW\#1 is relevant here.
2. We start with some definitions. Let A be an associative ring with 1 and M a right R-module. A map $f: A \rightarrow M$ is called a derivation if
(1) $f(a+b)=f(a)+f(b)$ for all $a, b \in A$;
(2) $f(a b)=f(a) \cdot b+f(b)$ for all $a, b \in A$.

The set of all derivations from A to M (which is clearly an abelian group with respect to pointwise addition) will be denoted by $\operatorname{Der}(A, M)$.

If G is a group and M is a right G-module, a derivation from G to M is a map $G \rightarrow M$ satisfying (2) above (for all $a, b \in G$). Again we denote by $\operatorname{Der}(G, M)$ the set of all derivations from G to M, which is still an abelian group. Recall that $\operatorname{Der}(G, M)$ appeared in class in the course of the explicit description of the first cohomology, namely

$$
H^{1}(G, M) \cong \operatorname{Der}(G, M) / I \operatorname{Der}(G, M)
$$

where $\operatorname{IDer}(G, M)$ is the subgroup of inner derivations (maps of the form $g \mapsto m-m . g$ for some fixed $m \in M$); however, this is not directly related to this problem. The main point of this problem is to give an important example of a derivation in the case of a non-trivial action (which actually arises in some proofs that I am going to discuss in class).

Now the actual problem begins
(a) Let G be a group and M a right G-module. Prove that the restriction map $\operatorname{Der}(\mathbb{Z}[G], M) \rightarrow \operatorname{Der}(G, M)$ is an isomorphism of abelian groups.
(b) Again let G be a group and ω_{G} be the augmentation ideal of $\mathbb{Z}[G]$ (the ideal generated by all elements of the form $g-1$, $g \in G)$. Prove that if X generates G as a group, then the set $\{x-1: x \in X\}$ generates ω_{G} as a right G-module (equivalently, $\mathbb{Z}[G]$-module).
(c) Now assume that G is a free group and X is a free generating set for G. Then one can show (this is not part of the problem) that ω_{G} is a free right $\mathbb{Z}[G]$-module, freely generated by $\{x-1$: $x \in X\}$, that is, for any $f \in \omega_{G}$ there exist unique elements $\left\{D_{x}(f)\right\}_{x \in X}$ such that

$$
f=\sum_{x \in X}(x-1) D_{x}(f)
$$

(if X is infinite, we implicitly require that only finitely many $D_{x}(f)$ are nonzero). Prove that for any $x \in X$ the map $\frac{\partial}{\partial x}$: $G \rightarrow \mathbb{Z}[G]$ given by $\frac{\partial}{\partial x}(g)=D_{x}(g-1)$ is a derivation. It is called the (right) Fox derivative with respect to x.
3. Let X and Y be topological spaces and $C(X, Y)$ the space of continuous maps from X to Y. The compact-open topology on $C(X, Y)$ is the topology with subbase $\left\{U_{K, O}\right\}$ where $K \subseteq X$ is compact, $O \subseteq Y$ is open and $U_{K, O}=\{f \in C(X, Y): f(K) \subseteq U\}$.

Now let W / F be a Galois extension and consider $\operatorname{Gal}(W / F)$ as a subset of $C(W, W)$ where W is endowed with the discrete topology. Prove that the Krull topology on $\operatorname{Gal}(W / F)$ coincides with the compactopen topology (that is, the topology induced from the compact-open topology on $C(W, W))$.
4. Let W / F be a Galois extension and L a subfield of W / F.
(a) Prove that the Krull topology on $\operatorname{Gal}(W / L)$ is induced from the Krull topology on $\operatorname{Gal}(W / F)$.
(b) Assume now that L / F is Galois, so that $\operatorname{Gal}(W / L)$ is normal in $\operatorname{Gal}(W / F)$ and $\operatorname{Gal}(W / F) / \operatorname{Gal}(W / L)$ is canonically isomorphic to $\operatorname{Gal}(L / F)$. Prove that under this isomorphism, the Krull topology on $\operatorname{Gal}(L / F)$ corresponds to the quotient topology on $\operatorname{Gal}(W / F) / \operatorname{Gal}(W / L)$.
5. Let $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of pairwise coprime integers and $K=$ $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots\right)$. Define the map $\iota: \operatorname{Gal}(K / \mathbb{Q}) \rightarrow \mathbb{F}_{2}^{\infty}$ by $\iota(\varphi)=$ $\left(a_{1}, a_{2}, \ldots\right)$ where $a_{i}=0$ if $\varphi\left(\sqrt{d_{i}}\right)=\sqrt{d_{i}}$ and $a_{i}=1$ if $\varphi\left(\sqrt{d_{i}}\right)=-\sqrt{d_{i}}$. Prove that ι is a group isomorphism.
6. In each part of this problem we are given a Galois extension W / F and a closed subgroup H of $G=\operatorname{Gal}(W / F)$. Find (with proof) the fixed L of H (equivalently, find the unique field L such that $\operatorname{Gal}(W / L)=$ $H)$. In each part we also fix a prime p.
(a) F is a finite field, $W=\bar{F}$ and $H=\prod_{q \neq p} \mathbb{Z}_{q}$. (Recall that in this case G is canonically isomorphic to $\widehat{\mathbb{Z}}=\prod_{q} \mathbb{Z}_{q}$.
(b) $F=\mathbb{Q}, W=\mathbb{Q}\left(\left\{\zeta_{n}: n \in \mathbb{N}\right\}\right)$ where ζ_{n} is a primitive $n^{\text {th }}$ root of unity and $H=\prod_{q \neq p} \mathbb{Z}_{q}^{\times}$. (Recall that in this case G is canonically isomorphic to $\widehat{\mathbb{Z}}^{\times}=\prod_{q} \mathbb{Z}_{q}^{\times}$)
(c) Let F and W be as in (b), and let H be the product of $\prod_{q \neq p} \mathbb{Z}_{q}^{\times}$ (the subgroup from (b)) and the subgroup $\left(\mathbb{Z}_{p}^{\times}\right)^{2}$ consisting of all squares in \mathbb{Z}_{p}^{\times}. (As stated in class, if p is odd, then $\mathbb{Z}_{p}^{\times} \cong$ $\mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}_{p}$, so $\left(\mathbb{Z}_{p}^{\times}\right)^{2}$ has index 2 in \mathbb{Z}_{p}^{\times}and $\mathbb{Z}_{2}^{\times} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}_{2}$, so $\left(\mathbb{Z}_{2}^{\times}\right)^{2}$ has index 4 in $\left.\mathbb{Z}_{2}^{\times}\right)$.
Hint: Analyzing the proofs of the isomorhisms $\operatorname{Gal}(W / F) \cong \widehat{\mathbb{Z}}$ in (a) and $\operatorname{Gal}(W / F) \cong \widehat{\mathbb{Z}}^{\times}$in (b) and (c) will probably be helpful for all parts. In (c) you may be you need to use some facts not discussed in Algebra-II to rigorously prove the answer.

