
Math 8851. Linear groups and Expander Graphs.

Suggested problems (through Lecture 11.)

Problem 1.1. Prove that if a finitely generated group G is linear over a field
of characteristic zero, then it is actually linear over C. (We will probably
discuss this problem in class shortly).

Problem 1.2. Prove that the symmetric group Sn cannot be embedded in
GLn−2(C).

Problem 1.3. Work out the details of the counterexample to Jordan’s
theorem in characteristic p > 0 described in Lecture 1.

Problem 4.1. Let R be a finitely generated domain of characteristic 0 and
d ≥ 2 an integer. As we proved in class, the group GLd(R) (and any of its
subgroups) is virtually residually-p for every prime p outside certain finite
set B(R). For each of the rings R = Z, Z[1/2] and Z[(1 +

√
−3)/2] do the

following:

(a) Find the minimal possible set of bad primes B(R), that is, the set of
all primes p for which GLd(R) is not virtually residually-p.

(b) For each p 6∈ B(R), give an explicit estimate on the index of a residually-
p subgroup of GLd(R) which is guaranteed to be residually-p.

Problem 5.1. Recall Burnside’s irreducibility criterion: if F is an alge-
braically closed field, then a subgroup G ⊆ GLn(F ) is irreducible if and
only if FG = Matn(F ), that is, G spans Matn(F ) as F -vector space. De-
duce Burnside’s irreducibility criterion from Schur’s Lemma and the follow-
ing theorem, called Jacobson’s Density Theorem (it is directly related to
the material discussed in Algebra-III, but may not have been stated there
explicitly).

Jacobson’s Density Theorem: Let R be a ring with 1 and M an irre-
ducible left R-module. Let S = EndR(M), and note that M is naturally a
left S-module. Prove that for any a ∈ EndS(M) and any finite set of elements
m1, . . . ,md ∈M there exists r ∈ R such that ami = rmi for 1 ≤ i ≤ d.

Problem 5.2. Let F be a field which is not necessarily algebraically closed.
Prove that Burnside’s irreducibility criterion holds over F if and only if there
are no finite-dimensional division algebras over F except F itself. Do there
exist such fields which are not algebraically closed?
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Problem 5.3. Prove that a finitely generated torsion nilpotent group is
finite.

In Problems 6.1-6.3 all groups under consideration are subgroups of GLn(F )
(with F algebraically closed) with Zariski topology.

Problem 6.1. Prove that G is connected if and only if G is irreducible
(as topological space). By definition, a topological space is irreducible if it
cannot be written as a union of two proper (not necessarily disjoint) closed
subsets. This has nothing to do with irreducibility of the action of G on V .
Oultine: The backward direction is obvious. For the forward direction,
assume that G is connected. Since G is a Noetherian topological space, it is
the union of finitely many irreducible components G1, . . . , Gk (by definition
this means that Gi’s are closed irreducible subsets of G which do not contain
each other, and it is known that Gi’s are unique up to permutation). Show
that G naturally acts on the set {G1, . . . , Gk} by left multiplication and that
the stabilizer of G1 is a closed subgroup of finite index in G. Then deduce
that G1 = G.

Problem 6.2. Prove that if G and H are connected subgroups, then the
set GH = {gh : g ∈ G, h ∈ H} is connected. Deduce that the subgroup
generated by a family of connected subgroups is connected.

Problem 6.3. Let H ⊆ G be subgroups of GLn(F ), and let H be the Zariski
closure of H in GLn(F ). Note that H ∩ G is the Zariski closure of H in G.
Prove that

(i) H is a subgroup;

(ii) if H is solvable of length k, then H is also solvable of length k;

(iii) if H is connected, then H ∩G is connected;

(iv) if H is normal in G, then H ∩G is normal in G.

Note that using Problems 6.1-6.3 one can justify the definition of the solvable
radical of an algebraic group from Lecture 6. Recall that given an algebraic
group G, we defined R(G) as the subgroup generated by all connected solv-
able normal subgroups of G. We claimed that R(G) is itself connected,
solvable and normal, and moreover that R(G) is algebraic (that is, Zariski-
closed).
First note R(G) is normal by construction and connected by Problem 6.2. To
prove that it is solvable we can appeal to the following theorem of Zassenhaus:

Zassenhaus Theorem: If S is solvable subgroup of GLn(F ), then the solv-
ability length of S is bounded above by a function of n.
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However, there is a way around it. First, by Problem 6.3(i),(iii) and (iv),
we can replace every subgroup in the generating set for R(G) by its Zariski
closure (which is contained in G since G is algebraic), so R(G) is equal to the
subgroup generated by all algebraic connected solvable normal subgroups
of G. Next we can use a standard result from dimension theory of affine
varieties:

Dimension Theorem: If X and Y are irreducible affine varieties with
X ⊆ Y and X 6= Y , then dimX < dimY .

Algebraic subgroups of GLn(F ) can naturally be considered as affine vari-
eties of dimension ≤ n2. So by Dimension Theorem and Problems 6.1, 6.2
and 6.3(i)(iii), if A and B are distinct algebraic connected solvable normal
subgroups of G, then AB is also an algebraic connected solvable normal sub-
group of G of dimension strictly larger than max{dimA, dimB}. Thus, if we
take R to be an algebraic connected solvable normal subgroups of G of max-
imal possible dimension, it must contain any other group with this property
and thus must equal R(G). This also shows that R(G) is algebraic.

Using Zassenhaus Theorem and repeating the above reasoning, one can show
that every linear (not necessarily algebraic) group contains the largest normal
solvable subgroup Solv(G) (which contains any other subgroup with this
property). One can the define R(G) as the connected component of identity
in Solv(G). Note that Solv(G) is sometimes also called the solvable radical
of G.

Problem 7.1. Let V be a finite-dimensional vector space and G ⊆ GL(V ).
Prove that if χ1, . . . , χm are distinct characters of G and Vχ1 , . . . , Vχm the
corresponding weight subspaces, then the sum Vχ1 + . . .+ Vχm is direct.

Problem 7.2. Prove that if G ⊆ GL(V ) is a connected subgroup (with
respect to Zariski topology), then [G,G] is also connected. Hint: First
prove that for a fixed g ∈ G, the map x 7→ xgx−1 from G to G is continuous
and deduce that the conjugacy class of any element of G is connected.

Problem 7.3. By a theorem of Maltsev stated at the end of Lecture 7,
any solvable linear group G ⊆ GLn(F ), with F algebraically closed, has a
normal triangularizable subgroup of finite index ≤ f(n) for some function
f : N → N. Deduce the Zassenhaus theorem stated above from Maltsev’s
theorem.

Problem 7.4. Prove the following theorem of Platonov: if F is an alge-
braically closed field of characteristic zero, then any virtually solvable sub-
group G ⊆ GLn(F ) has a normal triangularizable subgroup of finite index
bounded by a function of n. Note: The proof of this theorem is given, for
instance, in Appendix B of the following paper:
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http://arxiv.org/pdf/1005.1881v1.pdf
which by the way is directly related to part 3 of our class. The proof given
there uses the fact that a reductive algebraic group is a torus, which is a
basic result in the theory of algebraic groups, but is not so easy to prove
from scratch. However, one can avoid using this fact by adapting our proof
of Lie-Kolchin theorem.

Problem 8.1. Use Problem 7.4 to prove that in characteristic zero Tits
alternative holds true for non-finitely generated groups. Also give an exam-
ple showing that in positive characteristic zero Tits alternative is false (in
general) for non-finitely generated groups.

Problem 8.2. Prove the (full version of) Claim 8.1 (in class we made an
additional assumption that g is diagonalizable).

Problem 8.3. Prove Claim 8.2.

Problem 8.4. Let g =

(
2 0
0 1/2

)
. Find f ∈ SL2(Q) and k ∈ N such that

gk and fgkf−1 generate a free subgroup. Then do the same for g =

(
2 1
1 1

)
with an additional assumption that f ∈ SL2(Z).

Problem 9.1. Prove Observation 9.0.

Problem 9.2. Let K be a local field, n a positive integer, and let Domn(K)
be the set of all n × n matrices over K with dominant eigenvalue. Prove
that Domn(K) is open in the field topology on Matn(K) (the field topology
we mean the product topology coming from identification of Matn(K) with
Kn2

).

Problem 10.1. Prove that if a linear group G is Zariski-connected, then
G×G is also Zariski-connected.

Problem 11.1. Prove that if K/E is an arbitrary field extension and n
a positive integer, then Zariski topology on En is induced from the Zariski
topology on Kn under the natural embedding of En into Kn.

Problem 11.2. Prove Lemma 11.3: If E is a finitely generated field, n a
positive integer, A ∈Matn(E) and ζ is an eigenvalue of A which is a root of
unity (possibly ζ 6∈ E), then ζN = 1 for some N which depends only on E

and n. Hint: This can be proved in three steps as follows:

(i) Reduce the problem to the case when E is purely transcendental over
the prime field E0 (we used a similar trick in one of the previous lec-
tures).

(ii) Assuming that E is purely transcendental overE0, prove that degE0
(ζ) ≤

n.
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(iii) Prove that the (multiplicative) order of ζ is bounded by a function of
its degree over E0. Consider separately the cases of zero and positive
characteristic.

The following two problems fill the missing details in the proof of Local Field
Lemma (Lemma 11.2).

Problem 11.3. Let ζ ∈ C be an algebraic integer such that |ζ| = 1 and ζ

is not a root of unity, and let m(x) be the minimal polynomial of ζ over Q.
Prove that m(x) has a root η with |η| 6= 1.

Problem 11.4. Let E be a finitely generated field of characteristic zero,
ζ ∈ E, m(x) the minimal polynomial of ζ over Q and η any complex root of
m(x). Prove that there exists an embedding ι : E → C such that ι(ζ) = η.
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