Homework #9. Due Thursday, November 11th

In problems 1 and 2, R is a commutative ring with 1, G is a group, and $D_nG = D_n(G, R)$ is the nth dimension subgroup of G. We denote by Lie (G) the Lie algebra of G with respect to the lower central series $\{\gamma_n G\}$ and by $L_D(G)$ the Lie algebra of G with respect to the dimension series $\{D_nG\}$. By $grR[G]$ we denote the graded algebra of $R[G]$ with respect to powers of the augmentation ideal I.

1. Let $\iota: L_D(G) \to grR[G]$ be the map given by $\iota(gD_{n+1}G) = (g-1) + I^{n+1}$ for $g \in D_n G$. Recall that we proved that ι is a Lie ring homomorphism. Prove that Im (*i*) generates gr $R[G]$ as an associative R-algebra (with 1). Note: In fact, if S is a generating set of G, then $\{\iota(sD_2G) : s \in S\} = \{(s-1) + I^2 : S \in S\}$ $s \in S$ will generate $grR[G]$.

2. Assume that char $R = 0$. Recall that in Problem 2 of HW#8 it was proved that $D_nF = \gamma_nF$ if F is free.

(a) Recall that there is natural map $\varphi :$ Lie $(G) \to L_D(G)$. Prove that φ is surjective. **Hint:** Choose an epimorphism $\pi : F \to G$, where F is free, and consider the following diagram

$$
\begin{array}{ccc}\n\text{Lie}(F) & \longrightarrow L_D(F) \\
\downarrow & & \downarrow \\
\text{Lie}(G) & \longrightarrow L_D(G)\n\end{array}
$$

Show that it is commutative and the vertical maps are surjective.

- (b) Prove that $D_nG \subseteq D_mG \cdot \gamma_nG$ for any $n, m \in \mathbb{N}$. **Hint:** First use (a) to prove this inclusion for $m = n + 1$.
- (c) Let A be a ring and I an ideal of A. Define the pseudo-norm N on A by $N(u) = 2^{-n(u)}$ where $n(u)$ is the largest integer such that $u \in I^{n(u)}$ (if $u \in \bigcap_{n\in\mathbb{N}} I^n$, we put $N(u) = 0$). The topology on A induced by this pseudo-norm is called the I-adic topology.

Now let $A = R[G]$ and I the augmentation ideal of $R[G]$. Use (b) to prove that $\overline{D_nG} = \overline{\gamma_nG}$ where overline denote the closure in the *I*-adic topology.

3. Fix $n, d \in \mathbb{N}$, and let $\mathcal{G}(n, d)$ be the class of all groups G which can be generated by d elements and such that $g^n = 1$ for all $g \in G$. Prove that the following statements are equivalent (each of them can be considered as a positive answer to the restricted Burnside problem).

- (i) There exists $f(n,d) \in \mathbb{N}$ such that if G is any finite group in $\mathcal{G}(n,d)$, then $|G| \leq f(n,d)$
- (ii) There exists a finite group G in $\mathcal{G}(n,d)$ such that if H is any other finite group in $\mathcal{G}(n, d)$, then H is a homomorphic image of G.
- (iii) Every residually finite group G in $\mathcal{G}(n, d)$ is finite.

Hint: Prove that (ii) " \Rightarrow "(i)" \Rightarrow "(iii) " \Rightarrow "(ii). For the implication (iii) " \Rightarrow "(ii) show that if F is the free group of rank d and N is the intersection of the kernels of all homomorphisms $F \to G$, where G is a finite group in $\mathcal{G}(n, d)$, then F/N is a residually finite group in $\mathcal{G}(n, d)$.

4. If G is a finitely generated group and p is a prime, the quotient $G/[G, G]G^p$ is a finite abelian group of exponent p (and thus can be considered as a vector space over \mathbb{F}_p). Denote by $d_p(G)$ the dimension of this space (equivalently, $d_p(G) = \log_p[G : [G, G]G^p]$. Recall that $def_p(G)$ denotes the *p*-deficiency of G.

- (a) Prove that $d_p(G) \geq def_p(G) + 1$.
- (b) Deduce that if $def_p(G) > -1$, then G has a normal subgroup of index p .
- (c) Assume that H is a normal subgroup of G of p-power index. Use Lemma 18.3 to prove that $def_p(H) \geq [G:H]def_p(G)$.
- (d) Now assume that $def_p(G) > 0$ and G is finitely presented. Use (a), (c) and Theorem 1.12 in the following paper of M. Lackenby http://arxiv.org/abs/math/0702571

to prove that G has a finite index subgroup which homomorphically maps onto a non-abelian free group.