Homework #3. Due Thursday, September 23rd

1. Let A and B be groups, and let A wr B be their wreath product. Recall that

$$A wr B = A \ltimes (\bigoplus_{a \in A} B)$$

where A acts on $\bigoplus_{a \in A} B$ by $(x \cdot b)_a = b_{x^{-1}a}$ for any $b \in \bigoplus_{a \in A} B$ and $x, a \in A$ (here c_a is the a^{th} component of an element $c \in \bigoplus_{a \in A} B$). It is common to call $\bigoplus_{a \in A} B$ the passive subgroup of A wr B and A the active subgroup.

- (a) Let S be a generating set for A and T a generating set for B. Given $a \in A$, let B_a be the copy of B inside $\bigoplus_{a \in A} B$ indexed by a, and let $T_a \subseteq B_a$ be the corresponding copy of T. Prove that if we fix $x \in A$, then $T_x \cup S$ is a generating set for A wr B. Deduce that the wreath product of finitely generated groups is finitely generated. Hint: First show that $\bigcup_{a \in A} T_a \cup S$ is a generating set for A wr B.
- (b) Prove that A wr B is solvable if and only if A and B are solvable.
- (c) Prove that A wr B is polycyclic if and only if B is polycyclic and A is solvable and finite.
- **2.** Let p be a prime, and let G_p be the p-lamplighter group $\mathbb{Z} wr \mathbb{Z}/p\mathbb{Z}$.
 - (a) Prove that G_p has the following presentations by generators and relations:

(i)
$$\langle x, y \mid y^p = 1, [y, y^x] = 1, [y, y^{x^2}] = 1, [y, y^{x^3}] = 1, \dots \rangle$$

(ii) $\langle x, y \mid y^p = 1, [y, x, y] = 1, [y, x, x, y] = 1, [y, x, x, x, y] = 1, \dots$

(ii)
$$\langle x, y \mid y^p = 1, [y, x, y] = 1, [y, x, x, y] = 1, [y, x, x, x, y] = 1, \dots \rangle$$

where $a^b = a^{-1}ba$, $[a, b] = a^{-1}a^b = a^{-1}b^{-1}ab$, and left-normed commutators $[a_1, \ldots, a_k]$ are defined inductively by $[a_1, \ldots, a_k] = [[a_1, \ldots, a_{k-1}], a_k]$.

(b) Let $\mathbb{F}_{p}[t, t^{-1}]$ denote the ring of Laurent polynomials over \mathbb{F}_{p} . Construct a faithful 2-dimensional representation for G_p over $\mathbb{F}_p[t, t^{-1}]$, that is, an embedding (injective homomorphism) of G_p into $GL_2(\mathbb{F}_p[t, t^{-1}])$. **Hint:** Send the passive subgroup $\bigoplus_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ to the upper-unitriangular subgroup of $GL_2(\mathbb{F}_p[t, t^{-1}])$ and the active subgroup \mathbb{Z} to a subgroup of the diagonal subgroup of $GL_2(\mathbb{F}_p[t, t^{-1}])$. Can you replace GL_2 by SL_2 ?

- **3.** Let G be a finitely generated group.
 - (a) Prove that for any finite group H there are only finitely many homomorphisms from G to H. **Hint:** A homomorphism from G is completely determined by its values on generators.
 - (b) Prove that for any $n \in \mathbb{N}$ there are only finitely many normal subgroups of index n in G. Then deduce that G has only finitely many subgroups of index n (this was stated in class as Lemma 6.3).

4. Prove Proposition 6.2: any finitely generated residually finite group is hopfian. **Hint:** Let G be finitely generated and $\varphi : G \to G$ a surjective homomorphism. Then $G/\operatorname{Ker} \varphi \cong G$. Deduce that for any $n \in \mathbb{N}$ there is a bijection between the set of all normal subgroups of index n in G and the set of those normal sugbroups of index n in G which contain $\operatorname{Ker} \varphi$. Then use Problem 3 to show that $\operatorname{Ker} \varphi$ must lie in the intersection of all finite index subgroups of G.