Homework #2. Due Thursday, September 16th, by 4pm

1. Let X be a set and F = F(X) the free group on X. The goal of this problem is to prove that for any non-trivial element $f \in F$ the centralizer $C_F(f)$ is cyclic.

Recall that an element $f \in F$ is called cyclically reduced (with respect to X) if the reduced word representing f is of the form $x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n}$ (with $x_i \in X$, $\varepsilon_i = \pm 1$) where $x_n^{\varepsilon_n} \neq (x_1^{\varepsilon_1})^{-1}$. Note that any element of $f \in F$ is conjugate to a cyclically reduced element.

- (a) Prove that if $f \in F$ and $n \in \mathbb{N}$, then f^n is cyclically reduced if and only if f is cyclically reduced.
- (b) Prove that if $f, g \in F$ and $f^n = g^n$ for some $n \in \mathbb{N}$, then f = g.
- (c) Now prove that if $f, g \in F$ and $f^n = g^m$ for some $n, m \in \mathbb{N}$, then f and g commute. **Hint:** Apply (b) twice.
- (d) Deduce that $C_F(f)$ is cyclic for any $f \in F \setminus \{1\}$.

2. Let F = F(x, y) be the free group on two generators, and realize F as the fundamental group of a graph Γ with 1 vertex and 2 loops. For each of the following subgroups H of F (which already appeared in Homework#1) draw the covering space $\widetilde{\Gamma}$ of Γ constructed in the proof of Theorem 2.1. Also explicitly identify the paths in $\widetilde{\Gamma}$ corresponding to the Schreier generators of H (from the conclusion of Theorem 2.1).

- (a) H = [F, F], the commutator subgroup of F
- (b) $H = \text{Ker } \pi$ where π is the epimorphism from F onto S_3 (symmetric group on 3 letters) which sends x to (12) and y to (23).

3. Let G be a finitely presented group. Define the deficiency of G, denoted by def(G), to be the supremum of the quantity |X| - |R| where (X, R) runs over all presentations of G by generators and relators.

(a) Prove that $def(G) \leq d(G^{ab})$ where $G^{ab} = G/[G, G]$ is the abelianization of G and, as usual, $d(\cdot)$ denoted the minimal number of generators. In particular, this implies that $def(G) < \infty$.

- (b) Let H be a subgroup of G of index n. Prove that $def(H) \ge 1 + (def(G) 1) \cdot n$.
- (c) Let k = def(G), and suppose that k > 0. Prove that G has a presentation $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$ such that n - m = k, and for each $1 \le i \le k$ and each $1 \le j \le m$ the total sum of exponents with which x_i appears in r_j is equal to 0.

4. Let (P) be some property of groups. A group G is called *locally* (P) if any finitely generated subgroup of G has (P). For instance, if G is a direct sum of a countable collection of finite groups, then G is locally finite, but not finite. The additive group of rationals \mathbb{Q} is locally free, but not free.

Construct a non-abelian locally free group which is not free. **Hint:** Let F_2 be a free group on two generators, and choose any injective, non-surjective homomorphism $\phi : F_2 \to F_2$. Use it to construct a group G which is representable as $\bigcup_{n=1}^{\infty} G_n$ where $G_1 \subset G_2 \subset \ldots$ is a strictly ascending chain of subgroups each which is isomorphic to F_2 . Then argue that G is locally free, but not free.