Homework #10. Due Thursday, November 18th

1. Let G be a finitely generated group, and suppose that the quotient $\gamma_n G/\gamma_{n+1}G$ is finite for some n. Prove that $\gamma_m G/\gamma_{m+1}G$ is finite for all $m \ge n$. Hint: Use the Lie ring Lie $(G) = \bigoplus_{n=1}^{\infty} \gamma_n G/\gamma_{n+1}G$ and some facts we proved in Lecture 16.

2. Let K be a field, U a finite set, R a subset of $K\langle\!\langle U \rangle\!\rangle$ consisting of elements of positive degree, I the ideal of $K\langle\!\langle U \rangle\!\rangle$ generated by R and $A = K\langle\!\langle U \rangle\!\rangle/I$. Let M be the ideal of $K\langle\!\langle U \rangle\!\rangle$ generated by U, let A_n be the image of M^n in A, and let $a_n = \dim_K A_n/A_{n+1}$.

- (a) Prove that $a_{n+m} \leq a_n a_m$ for all m, n. **Hint:** Show that A_{n+m} is K-spanned by elements of the form uv where $u \in A_n$ and $v \in A_m$.
- (b) Deduce that $\lim_{n\to\infty} \sqrt[n]{a_n}$ exists (and finite).
- (c) Now assume that the Golod-Shafarevich condition holds:

 $1 - dt_0 + H_R(t_0) < 0$ for some $t_0 \in (0, 1)$.

Prove that $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$, so that the sequence $\{a_n\}$ grows exponentially.

3. Let *H* be a group, *R* a subset of *H* and *N* the normal subgroup of *H* generated by *R*. Let *K* be a field and I_R the ideal of the group algebra K[H] generated by $\{r-1: r \in R\}$. Prove that there is a canonical isomorphism

$$K[H/N] \cong K[H]/I_R.$$

4. Let G be a group which has a presentation $\langle X|R\rangle$ with $|X|<\infty$ such that

- (i) All elements of R lie in [F(X), F(X)], the commutator subgroup of F(X);
- (ii) $|R| < |X|^2/4$.

Prove that G is Golod-Shafarevich (GS) in any characteristic. 5. Let p be a prime.

- (a) Let F be a free group. Prove that $\deg_p(f^{p^n}) \ge p^n$ for any $f \in F$ and $n \in \mathbb{N}$ (where \deg_p is defined as in Lecture 20).
- (b) Let G be a GS group in characteristic p. Use (a) and an idea introduced in Lecture 18 to prove that G has a quotient G' which is p-torsion (that is, every element has p-power order) and is also a GS group in characteristic p (and hence infinite). Thus any such G' gives a counterexample to the general Burnside problem.