Algebra-II, Spring 2021. Midterm #1 due by 11:59pm on Tuesday Mar 16th

Directions: Provide complete arguments (do not skip steps). State clearly any result you are referring to. Partial credit for incorrect solutions, containing steps in the right direction, may be given.

Rules: You are not allowed to discuss midterm problems with each other. You may ask me any questions about the problems (e.g. if the formulation is unclear), but as a rule I will only provide minor hints. You may freely use the following resources:

- (i) the book by Dummit and Foote
- (ii) your class notes (including notes from 7751)
- (iii) your previous assignments (homeworks and midterms)
- (iv) any materials posted on the Math 7751/7752 collab sites and any materials posted on http://people.virginia.edu/~mve2x/

The use of any other resources is prohibited and will be considered a violation of the UVA honor code.

Scoring: The exam contains 5 problems, each of which is worth 12 points. If $s_1 \ge s_2 \ge s_3 \ge s_4 \ge s_5$ are your scores on individual problems in decreasing order, your total will be $s_1 + s_2 + s_3 + s_4 + \max\{s_5 - 8, 0\}$. Thus, the maximal possible total is 52, but the score of 50 will count as 100%.

1.

- (a) Let R be a commutative domain (with 1) and F the field of fractions of R. Let M and N be F-modules, and let $\varphi : M \to N$ be an isomorphism of R-modules. Prove that φ must be an isomorphism of F-modules.
- (b) Give an example of finitely generated \mathbb{C} -modules M and N and a map $\varphi : M \to N$ such that φ is an isomorphism of \mathbb{R} -modules but not an isomorphism of \mathbb{C} -modules.
- (c) Let M and N be finitely generated \mathbb{C} -modules, and suppose that M and N are isomorphic as \mathbb{R} -modules. Prove that Mand N are isomorphic as \mathbb{C} -modules.

2. Let R be a commutative ring with 1, and let M, N and L be R-modules.

- (a) Suppose that L is a quotient module of M. Prove that $L \otimes_R N$ is (isomorphic to) a quotient module of $M \otimes_R N$. You are NOT allowed to use Dummit and Foote for this question (class and online notes should be sufficient).
- (b) Suppose that M is finitely generated and N is Noetherian. Prove that the R-module $M \otimes_R N$ is Noetherian. **Hint:** Start with the case when M is a free R-module.
- (c) Suppose that L is a submodule of M. Is it always true (for any R, M, N and L) that $M \otimes_R N$ contains a submodule isomorphic to $L \otimes_R N$? Prove or give a counterexample.

3. Let R be a commutative ring (with 1) and let M and N be R-modules.

- (a) Give an example showing that $T(M \oplus N)$ need not be isomorphic to $T(M) \otimes T(N)$ as rings. **Hint:** Look for an example where $T(M) \otimes T(N)$ satisfies certain nice algebraic property, while $T(M \oplus N)$ does not.
- (b) Prove that S(M ⊕ N) is isomorphic to S(M) ⊗ S(N) as R-algebras. Hint: Use the universal property of symmetric algebras to construct a map in one direction and results from previous homeworks to construct a map in the opposite direction. Then prove that the two maps are mutually inverse.
- (c) Now assume that R is a field and M and N are finite-dimensional over R. Prove that $\bigwedge(M \oplus N)$ is isomorphic to $\bigwedge(M) \otimes \bigwedge(N)$ as R-modules but not necessarily as rings.

4. Let V be a finite-dimensional vector space over a field F, and let $T: V \to V$ be an F-linear map. Let m be the number of invariant factors of T.

- (a) Prove that m = 1 if and only if there exists $v \in V$ such that the smallest *T*-invariant subspace of *V* containing *v* is the entire *V*.
- (b) Assume that m = 1 and $a(x) = x^6 1$ is the (unique) invariant factor of T. Find the number of distinct T-invariant subspaces of V in each of the following 4 cases: $F = \mathbb{R}, F = \mathbb{C}, F = \mathbb{F}_2$ (field with 2 elements) and $F = \mathbb{F}_3$.

2

Hint: Rephrase both (a) and (b) as questions about F[x]-modules. In (b), the answers in the 4 cases are all finite and all different.

5. Let F be an algebraically closed field, let $A \in Mat_n(F)$ for some $n \in \mathbb{N}$, and let C be the centralizer of A in $Mat_n(F)$. Prove that

$$dim_F(C) \ge n$$

Hint: First assume that A is in Jordan canonical form and has just one Jordan block; then consider the case when A is an arbitrary matrix in Jordan canonical form, and finally prove the statement for general A.