Homework Assignment $# 6$

Plan for the week of Mar 15: Normal and separable extensions (13.4, 13.5 and online lectures 17, 18).

Here and in all future assignments "online" refers to Algebra-II lectures posted on my Spring 2010 Algebra-II webpage

http://people.virginia.edu/~mve2x/7752_Spring2010/

Problems, due by 11:59pm on Friday, March 19th.

Problem 1:

- (a) Let $K = \mathbb{Q}(\sqrt{2})$ 2, $(\sqrt{2}, \sqrt{3})$. Prove that $[K : \mathbb{Q}] = 4$.
- (a) Let $\Lambda = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Prove that $\Lambda : \mathbb{Q} = 4$.
(b) Let $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Prove that $L = K$ and hence $[L : \mathbb{Q}] = 4$. by (a) .

Problem 2: Let $S = \{n_1, \ldots, n_k\}$ be a finite set of positive integers **EXECUTE:** Let $D = \{n_1, \ldots, n_k\}$
 ≥ 2 and let $K = \mathbb{Q}(\sqrt{n_1}, \ldots, \sqrt{n_k}).$

- (a) Prove that $[K : \mathbb{Q}] = 2^m$ for some $m \leq k$ and the set $P(S) =$ There that $[X : \mathcal{Q}] = 2$ for some $m \leq k$ and the set $T(S) =$
{1} ∪ { $\sqrt{n} : n$ is a product of distinct elements of S} spans K over Q.
- (b) For each $0 \leq j \leq k$ let $\mathbb{Q}_j = \mathbb{Q}(\sqrt{n_1}, \ldots, \sqrt{n_j})$ (we set $\mathbb{Q}_0 = \mathbb{Q}$). Prove that $[K : \mathbb{Q}] < 2^k$ if and only if n_1 is a complete square or there exists $2 \le i \le k$ s.t. $\sqrt{n_i} = a + b\sqrt{n_{i-1}}$ for some $a, b \in \mathbb{Q}_{i-2}.$
- (c) Assume that the elements of S are pairwise relatively prime and none of them is a complete square. Prove that $[K : \mathbb{Q}] = 2^k$. **Hint:** Use (b) and induction on $k = |S|$.

Problem 3: Let F be a field, and let α be an algebraic element of odd degree over F (recall that the degree of α over F is equal to $[F(\alpha):F]$). Prove that $F(\alpha^2) = F(\alpha)$.

Problem 4: Let K/F be a finite field extension, $n = [K : F]$, and fix some basis $\Omega = {\alpha_1, \ldots, \alpha_n}$ for K over F. For any $\alpha \in K$ define $T_{\alpha}: K \to K$ by $T_{\alpha}(\beta) = \alpha \beta$. Note that $T_{\alpha} \in End_F(K)$. Let $A_{\alpha} =$ $[T_{\alpha}]_{\Omega} \in Mat_n(F)$ be the matrix of T_{α} with respect to Ω .

- (a) (practice) Prove that the map $K \to Mat_n(F)$ given by $\alpha \mapsto A_\alpha$ is an injective ring homomorphism.
- (b) Prove that the minimal polynomial of α over F and the minimal polynomial of A_{α} coincide.

(c) Find the minimal polynomial of the matrix

$$
A = \begin{pmatrix} 0 & 3 & 5 & 0 \\ 1 & 0 & 0 & 5 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 1 & 0 \end{pmatrix}
$$

without doing extensive computations. **Hint:** Find an extension K/\mathbb{Q} of degree 4, a basis for K over \mathbb{Q} and an element $\alpha \in K$ such that $A_\alpha = A$ in the notations of part (a).

2