Homework Assignment # 12

Plan for the week of May 3-7. Exact sequences. Injective, projective and flat modules (section 10.5 in DF).

Here and in all future assignments "online" or "online notes" refers to Algebra-II lectures posted on my Spring 2010 Algebra-II webpage

http://people.virginia.edu/~mve2x/7752_Spring2010/

Problems, due by 11:59pm on Friday, April 30th.

Problem 1: This is a continuation of Problem 5 from Midterm#2. Let p be a prime, with $p \equiv 3 \mod 4$, $\omega = e^{2\pi i/p}$, $K = \mathbb{Q}(\omega)$ and L the unique subfield of K with $[L : \mathbb{Q}] = 2$. Let S be the set of elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ representable as squares and T the set of elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ not representable as squares.

- (a) Prove that any $\alpha \in K$ can be uniquely represented as $\alpha = \sum_{s \in S} b_s \omega^s + \sum_{t \in T} c_t \omega^t$, with $b_s, c_t \in \mathbb{Q}$.
- (b) Let $\alpha \in K$. Prove that $\alpha \in L$ if and only if in the above decomposition of α all b_s are the same and all c_t are the same.
- (c) Let $\zeta = \sum_{s \in S} \omega^s$, $\eta = \zeta \overline{\zeta}$, and write $\eta = \sum_{s \in S} b_s \omega^s + \sum_{t \in T} c_t \omega^t$ as in (a). Prove that

(i) there exists $d \in \mathbb{Q}$ such that $b_s = c_t = d$ for all s and t and (ii) $\sum_{s \in S} b_s + \sum_{t \in T} c_t = \frac{(p-1)^2}{4} - \frac{p \cdot (p-1)}{2} = -\frac{(p-1)(p+1)}{4}$

(d) Use (c) to prove that $\eta = \frac{p+1}{4}$ and deduce that $L = \mathbb{Q}(\sqrt{-p})$.

Problem 2: Let I be a poset. Let $\{j_n\}_{n\in\mathbb{N}}$ be an infinite strictly increasing sequence in I, that is, $j_n < j_{n+1}$ for all n. We will say that $\{j_n\}$ is *dominant* if for every $i \in I$ there exists $n \in \mathbb{N}$ such that $i \leq j_n$ (note that the existence of such a sequence ensures that I is a directed set).

Suppose now that I is a poset which contains a dominant strictly increasing sequence $\{j_n\}_{n\in\mathbb{N}}$, let $\{X_i\}_{i\in I}$ be an inverse system of sets, groups or rings, and let $\{X_{j_n}\}_{n\in\mathbb{N}}$ be the subsystem consisting of objects index by elements of $\{j_n\}$ (with the same transition maps). Prove that

$$\varprojlim_{i\in\mathbb{N}} X_i \cong \varprojlim_{n\in\mathbb{N}} X_{j_n}.$$
(***)

Note that the limit on the right-hand side can be described more explicitly using HW#11.5(a) (this is an explanation of why the statement

of Problem 2 is useful, rather than a hint on how to prove the isomorphism). **Hint:** It is probably most convenient to define a natural morphism from LHS to RHS in (***) (this can be done for any sequence $\{j_n\}$) and then prove that the map is bijective (using the fact that $\{j_n\}_{n\in\mathbb{N}}$ is strictly increasing and dominant).

Problem 3: Let $\widehat{\mathbb{Z}}$ be the profinite completion of \mathbb{Z} . It is defined as the inverse limit $\lim_{i \in \mathbb{N}} \mathbb{Z}/i\mathbb{Z}$ where \mathbb{N} is considered as a poset with respect to the divisibility partial order $(i \leq j \iff i \mid j)$ and the maps $\pi_{ij} : \mathbb{Z}/j\mathbb{Z} \to \mathbb{Z}/i\mathbb{Z}$ (with $i \mid j$) are natural projections. Also recall that for each prime p the ring of p-adic integers $\mathbb{Z}_{\hat{p}}$ is defined as the inverse limit $\lim_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ (this time \mathbb{N} is a poset with the usual order and the transition maps are the same). Prove the following isomorphism of

the transition maps are the same). Prove the following isomorphism of rings:

$$\widehat{\mathbb{Z}}\cong\prod_p\mathbb{Z}_{\widehat{p}}$$

where the product is taken over all primes. This result can be thought of as the "profinite Chinese Remainder Theorem". **Hint:** This can be proved in many different ways. One possible approach is to choose a dominant strictly increasing sequence in \mathbb{N} with divisibility partial order, and then use the isomorphism from Problem 2 in conjunction with the usual Chinese Remainder Theorem.

Problem 4: Let $P = \{p_1 < p_2 < \ldots\}$ be the set of all prime numbers enumerated in increasing order, let $K = \mathbb{Q}(\{\sqrt{p} : p \in P\})$.

(a) Prove that $G = \operatorname{Gal}(K/\mathbb{Q})$ is isomorphic to \mathbb{Z}_2^{∞} (product of countably many copies of \mathbb{Z}_2) via the map $\sigma \mapsto (\varepsilon_1(\sigma), \varepsilon_2(\sigma), \ldots)$ where

$$\varepsilon_i(\sigma) = \begin{cases} 0 & \text{if } \sigma(\sqrt{p_i}) = \sqrt{p_i} \\ 1 & \text{if } \sigma(\sqrt{p_i}) = -\sqrt{p_i}. \end{cases}$$

Note: You can use the representation of $\operatorname{Gal}(K/\mathbb{Q})$ as an inverse limit of finite groups (as in HW#11.3) in conjunction with Problem 2, but you can also give a direct argument.

- (b) Describe explicitly all closed subgroups of index 2 in G and their fixed subfields (you can start with subfields and then use the Galois correspondence to describe the subgroups, but you also do things in the opposite order).
- (c) Now prove that G has a non-closed subgroup of index 2. Hint: G has exponent 2, so you can think of it as vector space over F₂.