Homework Assignment # 3.
Plan for next week: Modules over PID continued (12.1, online lectures
7-9).
Problems, to be submitted by Thu, February 9th.
Problem 1. The main goal of this problem is to classify 2-dimensional

R-algebras (R=reals), that is, R-algebras which are 2-dimensional as vector

spaces over R. Note that the idea of solution was discussed in the last lecture
of Algebra-I.

Let F be a field with char(F') # 2, and let A be a 2-dimensional F-algebra
(as always, with 1).

(a) Let u € A be any element which is not an F-multiple of 1. Prove that

(i) w generates A as an F-algebra, that is, the minimal F-subalgebra
of A containing v and 1 is A itself.

(ii) w satisfies a quadratic equation au®+bu+c = 0 for some a, b, c € F
with a # 0.

(b) Show that there exists v € A such that v* € F. Hint: take any u as
in (a), and look for v of the form v + § with g € F.

(c) Deduce from (b) that A is isomorphic as an F-algebra to F[x]/(z? — ¢)
for some c € F.

(d) Prove that if ¢ = d? for some d € F, then F[z]/(z* —¢) X F x F.

(e) Now let I = R (real numbers). Prove that in (¢) one can choose
¢ =0,10r —1. Then prove that the algebras R[z]/(z*+1), R[z]/(2z*—1)
and R[x]/z? are pairwise non-isomorphic. Hint: the algebras can be
distinguished from each other by simple abstract properties.

Problem 2. Let R be a commutative ring with 1. A left R-module M is
called Noetherian if it satisfies the ascending chain condition on submodules
and Artinian if it satisfies the descending chain condition on submodules.
Assume that an R-module M is both Artinian and Noetherian. (For example,
R might be a field, and M might be a finite-dimensional vector space over

R). Let T': M — M be an R-module homomorphism.



(a) Prove that there exists k € N s.t. Ker (T%) = Ker (T%) and Im(T*) =
Im(72).

(b) Prove that if k is as in part (a), then M = Ker (T%) & Im(T*)

(c¢) Deduce from (a) and (b) that there exist submodules My and M; of M
s.t. M = My ® My, Tjy, is nilpotent and T}y, is invertible (as a map
from M1 to Ml)

Problem 3. Let V and W be finite dimensional vector spaces over a field
F,let {vq,...,v,} be a basis of V and {wy, ..., w,} a basis of W.

Let ¢ : V@r W — Mat,xm(F) be the F-linear transformation such that
o(v; ® wj) = e;; where e;; is the matrix whose (7, j)-entry is equal to 1
and all other entries are equal to 0 (note that such transformation exists
and is unique because {v; ® w; : 1 < i < n,1 < j < m} is a basis for
V ®@p W; furthermore, ¢ is an isomorphism since matrices {e;;} form a basis
of Mat,xm(F)).

Prove that for a matrix A € Mat,,x,,(F') the following are equivalent:

(a) A = p(v®w) for some v € V;w € W (note: v and w need not be
elements of the above bases)

(b) rk(A) < 1.

Note that this problem yields a one-line solution to Problem 5 from HW#2.

Problem 4 (practice). Let R = &;° (R, be a graded ring. An element
r € R is called homogeneous if r € R,, for some n.

Any r € R can be uniquely written as r = >~ r, where r, € R,
and only finitely many r,’s are nonzero. The elements {r,} are called the
homogeneous components of r.

(a) Let I be an ideal of R. Prove that the following are equivalent:

(i) I is a graded ideal, that is, I = @2 I N R,
(ii) For each r € I all homogeneous components of r also lie in [

(b) Let I be an ideal of R generated by homogeneous elements (possibly of
different degrees). Prove that I is graded.

Problem 5.

(a) Let R be a commutative ring with 1 and M an R — module. Let
my,...,my be elements of M and o € S, a permutation. Prove that
mo(l) VANPIIAN ma(k) = (—1)07711 oM.
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(b) Use (a) to prove Proposition 6.5 from the online version of Lecture 6.



