
9. Classification of finitely generated modules over PID.

Today we will prove two forms of the classification theorem for finitely gen-
erated modules over PIDs (stated below) – IF (invaraint factors) and ED
(elementary divisors). We shall also establish the uniqueness parts of the
submodule theorem (Theorem 7.1) and SNF Theorem (the existence parts
of which we have already proved).

Our general scheme of the proof will be as follows:

Existence : SNF Thm 1=⇒ submod. Thm 2=⇒ IF class. 3=⇒ ED class.

Uniqueness : SNF Thm 6⇐= submod. Thm 5⇐= IF class. 4⇐= ED class.

We shall prove the two boxed statements as well as implicatios (1)-(6).
Note that the first boxed statement (existence part of SNF Theorem) has
already been proved in Lecture 8 and implications 1 and 6 have been estab-
lished in Lecture 7.

Theorem 9.1 (Classification in IF form). Let R be a PID and M a f.g.
R-module. Then

M ∼= R/a1R⊕ . . .⊕R/amR⊕Rs

where a1, . . . , am are nonzero non-units and a1 | . . . | am. The integers s
and m are uniquely determined and a1, . . . , am are uniquely determined up
to multiplication by units.

Proof: IF, existence ( 2=⇒). Let {x1, . . . , xn} be a finite generating set for
M . Let F = Rn (the standard free R-module of rank n), and denote its
standard basis by {e1, . . . , en}.

Let ϕ : F → M be the unique R-module homomorphism such that
ϕ(ei) = xi. Then ϕ is surjective, and thus M ∼= F/N where N = Kerϕ.

By Theorem 7.1 applied to the pair (F,N) there exist a basis {y1, . . . , yn}
of F and nonzero elements a1, . . . , al with l ≤ n and a1 | . . . | al such that
{a1y1, . . . , alyl} is a basis of N . Then

F = Ry1 ⊕ . . .⊕Ryn and N = Ra1y1 ⊕ . . .⊕Ralyl,

and therefore 1

F/N ∼= Ry1/Ra1y1 ⊕ . . .⊕Ryl/Ralyl ⊕Rn−l.
1Here we use the fact that the ith summand in the decomposition of N lies inside the

ith summand in the decomposition of F
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It is clear that Ryi/Raiyi ∼= R/aiR and Ryi ∼= R as R-modules. If ai is a
unit for some i, then R/aiR = {0}. Removing these trivial summands, we
obtain the desired decomposition. �

Remark: This proof also establishes implication 5⇐= (check details).

Theorem 9.2 (Classification in ED form). Let R be a PID and M a f.g.
R-module. Then

M ∼= R/pα1
1 R⊕ . . .⊕R/pαk

k R⊕Rs

where p1, . . . , pk are primes (not necessarily distinct) and each αi > 0. The
integers s and k are uniquely determined, and the elements pα1

1 , . . . , pαk
k are

uniquely determined up to permutation and multiplication by units.

Proof: ED, existence ( 3=⇒). Since we already have IF decomposition, it is
enough to show that for each a ∈ R the cyclic module R/aR has ED de-
composition. Write a as a product of prime powers a = pα1

1 . . . pαk
k u where

p1, . . . , pk are pairwise non-associate and u is a unit.
By the Chinese Remainder Theorem R/aR ∼= R/pα1

1 R⊕ . . .⊕R/pαk
k R as

rings, and an explicit isomorphism if given by r + aR 7→ (r + pα1
1 R, . . . , r +

pα1
k R). But this map is clearly R-linear, and hence also an isomorphism of
R-modules. �

Proof: ED, uniqueness. Suppose that M ∼= R/pα1
1 R⊕ . . .⊕R/pαk

k R⊕Rs.
Step 1: Recovering s (from M). Let F be the field of fractions of R. What
can we say about F ⊗RM as F -vector space? Note that

(i) F ⊗R (A⊕B) ∼= F ⊗R A⊕ F ⊗R B as F -modules (generalization of
Proposition 4.3)

(ii) F ⊗R R ∼= F as F -modules (generalization of Example 4.4)
(iii) F ⊗R (R/pαi

i R) = {0} (torsion ⊗ divisible)

Thus, F ⊗RM ∼= F s. By basic linear algebra a vector space over a field has
a well defined dimension. Thus, s = dimF (F ⊗RM) is determined by M .
Step 2: Recovering primes and primary components. WOLOG we can as-
sume that for any i, j either pi = pj or pi and pj are non-associate.
For each prime p ∈ R define

Tp(M) = {m ∈M : ptm = 0 for some t ∈ N}

It is easy to see that Tp(M) ∼= ⊕pi=pR/p
αiR if p = pj for some j and

Tp(M) = {0} if p is not associate to any pj ’s. Thus M uniquely determines
the primes involved in ED decomposition, and for each such prime M de-
termines the sum of all summands involving that prime. This reduces the
problem to ED decompositions with a single prime involved.
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Step 3: The case of a single prime. Fix a prime p, and assume that

M ∼= R/pβ1R⊕ . . .⊕R/pβlR.

We want to recover βi’s from M . We shall argue by induction on
∑
βi.

Observe that pM ∼= R/pβ1−1R⊕ . . .⊕R/pβl−1R. Thus, by induction we
recover all βi which are ≥ 2. It remains to show that the number of βi’s
equal to 1 is determined by M , for which it is enough to show that l (the
total number of β’s) is determined by M .

But notice that M/pM ∼= (R/pR)l. Since M/pM is a field, we get that
l = dimR/pR(M/pM) is determined by M . �

To finish our combined proof of four theorems it remains to check implication
4⇐=. Given a PID R, there is a natural bijection

equiv. classes of possible IF decompositions ←→ equiv. classes of possible ED decompositions

which preserves isomorphism class of modules (we described this bijection
in the case of abelian groups in Algebra-I, and the general case is similar).
Thus, if some f.g. R-module had two non-equivalent IF decompositions, it
also would have had two non-equivalent ED decompositions. This proves

4⇐=.


