
8. Modules over PID, part II. Smith Normal Form.

8.1. Proof of the Smith Normal Form theorem.

Theorem (Smith Normal Form (SNF)). Let R be a PID, k, n ∈ N and
A ∈Matk×n(R). Then A can be written as A = CDB where B ∈ GLn(R),

C ∈ GLk(R) and D ∈ Matk×n(R) is equal to



a1 0 . . . 0
0 a2 . . . 0

.

.

.
.
.
.

. . . 0
0 0 . . . am

0

0 0

 for

some m ≤ min{n, k} and nonzero a1, . . . , am with a1 | a2 | . . . | am. The
matrix D is called the Smith Normal Form of A. Its entries a1, . . . , am are
uniquely determined up to multiplication by units.

Today we will prove the existence part of this theorem. For simplcity, we
will present the proof under the extra assumption that R is a Euclidean
domain (the argument is the general case is similar).

Let us introduce the following operations on the set Matk×n(R):

(1) Eij(r), i 6= j: add jth row multiplied by r to ith row
(2) Fij(r), i 6= j: flip ith and jth rows
(3) E ′ij(r), i 6= j: add ith column multiplied by r to jth column
(4) F ′ij(r), i 6= j: flip ith and jth columns

Operations (1) and (2) will be called row reductions and operations (3) and
(4) column reductions.
It is easy to see that

• Eij(r) = multiplication on the left by Eij(r) = the matrix with 1’s
on the diagonal, r at the (i, j)-entry and 0’s everywhere else
• Fij = multiplication on the left by Fij = the matrix obtained by

flipping ith and jth rows of the identity matrix
• E ′ij(r) = multiplication on the right by Eij(r)
• Fij = multiplication on the right by Fij

Claim. Using operations (1)-(4) one can reduce any k × n matrix A to the

form diagk,n(a1, . . . , am)=



a1 0 . . . 0
0 a2 . . . 0

.

.

.
.
.
.

. . . 0
0 0 . . . am

0

0 0

 with a1 | a2 | . . . | am.

Suppose we proved the claim and A is reduced to D = diagk,n(a1, . . . , am)
using p row reductions and q column reductions for some p and q. Then
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there exist matrices C1, . . . , Cp, B1, . . . , Bq each of which is equal to Eij(r)
or Fij for some i, j & r s.t.

Cp . . . C1AB1 . . . Bq = D.

All Bk’s and Ck’s are clearly invertible, so A = CDB where C = (Cp . . . C1)−1

and B = (B1 . . . Bq)−1, as desired in the SNF Theorem.

Proof of the Claim. Recall that we consider the case R=Euclidean domain,
and let N be a Euclidean norm on R.
Initial step: Find nonzero entry of A with smallest possible norm and move
it to position (1,1) using flips, call it a1.

Case 1: All entries of A are divisible by a1.
Then using operations E1j(r) and E ′j1(r), that is, subtracting suitable

multiples of the first row (resp. column) from other rows (resp. columns),
we can put zeroes everywhere in the first row and first columnn except for

(1, 1)-entry, so our matrix is of the form

(
a1 0
0 Ã

)
. By induction the

matrix Ã can be put into SNF using reductions, so A can be reduced to the

form



a1 0 . . . 0
0 a2 . . . 0

.

.

.
.
.
.

. . . 0
0 0 . . . am

0

0 0

 with a2 | a3 | . . . | am. It remains to show

that a1 | a2.
By assumption a1 divides all entries of A. When we apply a row or col-
umn reduction, the entries of the new matrix are R-linear combinations
of the entries of the old matrix. Thus a1 divides all entries of the matrix
diagk×n(a1, . . . , am), and in particular a1 | a2.

Case 2: One of the entries of A is not divisible by a1, call it bad entry.
Subcase 1: Bad entry exists in row1: a1 - a1j for some j. Then write

a1j = qa1 + r with 0 < N(r) < N(a1). After subtracting the first column
multiplied by q from the jth column, we get r in the position (1, j). Then we
go back to the initial step. The process cannot go forever since N(r) < N(a1)
and N has values in Z≥0.

Subcase 2: Bad entry exists in column1. This is analogous to Subcase 1.
Subcase 3: All entries in row1 and column1 are divisible by a1. Then as

in Case 1 we reduce A to the form

(
a1 0
0 Ã

)
. If Ã has bad entry aij , add

ith row to the first row, which puts us back in Subcase 1. �

8.2. Using SNF Theorem for finding compatible bases in the sub-
module theorem.
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Problem. Let R be a Euclidean domain, F a f.g. free R-module and N

a submodule of F . Want: find (algorithmically) a basis {y1, . . . , yn} of
F and elements a1, . . . , am ∈ R with a1 | a2 | . . . | am and m ≤ n s.t.
{a1y1, . . . , amym} is a basis for N . The bases of F and N with this property
will be called compatible.

Of course, the existence of such bases is guaranteed by Theorem 7.1

Example 8.1: Let R = Z, F = Ze1 ⊕ Ze2 (the free Z-module with basis
{e1, e2}) and N the submodule of F generated by z1, z2, z3 where z1 =
7e1 + 3e2, z2 = 3e1 + 7e2 and z3 = 4e1 + 4e2.

Let us find compatible bases for F and N . The initial basis for F is
{e1, e2}, and the initial generating set for N is {z1, z2, z3}, and we can write z1

z2

z3

 = A
(

e1

e2

)
where A =

 7 3
3 7
4 4


Now let us put A into SNF using row and column reductions. As can be
seen from the proof of Theorem 7.1, each row reduction represents a change
of a generating set of N , and each column reduction represents a change of
basis of F , and at each stage of our process we have equality z′1

z′2
z′3

 = A′
(

e′1
e′2

)
(∗ ∗ ∗)

where {e′1, e′2} is the current basis of F , {z′1, z′2, z′3} is the current generating
set of N and A′ is the current matrix.

Note that we only need to keep track of how the basis of F changes since
the current generating set of N is determined by the current basis of F and
the current matrix via (***). Because of this, we shall try to use as few
column reductions as possible (since row reductions do not change the basis
of F ).

Let us now implement this algorithm in our example: 7 3
3 7
4 4

 E1,2(−2)
−→

 1 −11
3 7
4 4

 E2,1(−3) & E3,1(−4)
−→

 1 −11
0 40
0 48

 E ′
1,2(11)
−→

 1 0
0 40
0 48

 E3,2(−1)
−→

 1 0
0 40
0 8

 F2,3−→

 1 0
0 8
0 40

 E3,2(−5)
−→

 1 0
0 8
0 0

 .

So, we found that a1 = 1 and a2 = 8.
Our reduction of A to SNF involved only one column reduction (third

transition), so we only need to see how the basis changed at that step. The
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new basis {e′1, e′2} satisifes the matrix equation: 1 −11
0 40
0 48

( e1

e2

)
=

 1 0
0 40
0 48

( e′1
e′2

)
,

and so e′1 = e1 − 11e2 and e′2 = e2.
Thus, if we let y1 = e1−11e2 and y2 = e2, then {y1, y2} = {e1−11e2, e2}

is a basis of F and {y1, 8y2} = {e1 − 11e2, 8e2} is a basis of N .

Verification: Let us check the asnwer (in case we made a computational
mistake). It is clear that {e1 − 11e2, e2} is a basis of F , so we only need to
check that {e1 − 11e2, 8e2} is a basis of N . We need to check that

(i) e1 − 11e2 and 8e2 lie in N

(ii) Initial generators of N are linear combinations of e1 − 11e2 and 8e2

(iii) e1 − 11e2 and 8e2 are linearly independent over Z
We have

(i) e1 − 11e2 = z1 − 2z2 ∈ N and 8e2 = z2 + z3 − z1 ∈ N

(ii) z1 = 7(e1 − 11e2) + 10 · 8y2 , z2 = 3(e1 − 11e2) + 5 · 8y2, z3 =
4(e1 − 11e2) + 6 · 8y2,

(iii) is clear


