
6. Tensor, symmetric and exterior algebras

6.1. The tensor algebra of a module. Let M be an R-module. For each
k ≥ 1 let T k(M) = M ⊗R . . .⊗R M︸ ︷︷ ︸

k times

and set T 0(M) = R. Define

T (M) = R⊕ T 1(M)⊕ T 2(M)⊕ . . . = ⊕∞k=0T
k(M)

We already have an R-module structure on T (M). Define multiplication on
T (M) by setting

(m1 ⊗ . . .⊗mi) · (m′1 ⊗ . . .⊗m′j) = m1 ⊗ . . .⊗mi ⊗m′1 ⊗ . . .⊗m′j

and extending to arbitrary elements of T (M) by R-bilinearity.
That this multiplication is well defined can be proved similarly to what

we did in the case of tensor products of algebra. It is easy to see that T (M)
becomes an R-algebra. Furthermore, by construction T i(M) · T j(M) ⊆
T i+j(M), so T (M) = ⊕∞k=0T

k(M) is actually a graded R-algebra. The
algebra T (M) is called the tensor algebra of M .

Proposition 6.1 (Universal property of tensor algebras). Let M be an
R-module and A an R-algebra. Then for any R-module homomorphism
ϕ : M → A there exists unique R-algebra homomorphism Φ : T (M) → A

s.t. Φ|M = ϕ.
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Proof. Exercise (or see [DF,Theorem 31 on p.442]). �

Proposition 6.2. Let M be a free R-module of rank n with basis e1, . . . , en.
Then

(a) For any k ≥ 1, T k(M) is a free R-module of rank nk, and simple
tensors ei1 ⊗ . . .⊗ eik form a basis of T k(M).

(b) T (M) is isomorphic to R〈x1, . . . , xn〉 (polynomials in non-commuting
variables) as graded R-algebras.

Proof. (a) By Example 4.3 if M is a free R-module with basis e1, . . . , en and
N is a free R-module with basis f1, . . . , ft, then M ⊗R N is a free R-module
with basis {ei ⊗ fj}. The assertion of (a) follows from this by induction.
(b) Define Φ : R〈x1, . . . , xn〉 → T (M) by setting

Φ
(∑

r(i1,...,ik)xi1 . . . xik

)
=
∑

r(i1,...,ik)ei1 ⊗ . . .⊗ eik .
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Then Φ is an homomorphism of graded R-algebras (by definition of the
algebra structure on T (M)), and part (a) implies that Φ is bijective. �

6.2. Symmetric and exterior algebras.

Definition. Let M be an R-module, T (M) its tensor algebra and C(M)
the ideal of T (M) generated by elements of the form m1 ⊗m2 −m2 ⊗m1

for m1, m2 ∈ M . The quotient algebra S(M) = T (M)/C(M) is called the
symmetric algebra of M .

Remark: 1. For each k ≥ 1 let Sk(M) be the image of T k(M) in S(M).
The ideal C(M) is graded since it is generated by homogeneous elements,
and therefore by Proposition 5.2 S(M) is also a graded algebra with grading
S(M) = ⊕∞k=0S

k(M).
2. S(M) is a commutative R-algebra. Indeed, T (M) is generated as a

ring by T 0(M) = R and T 1(M) = M , and therefore S(M) is generated as a
ring by S0(M) and S1(M). Note that S0(M) lies in the center of S(M) (for
T 0(M) lies in the center of T (M)), and by construction any two elements of
S1(M) commute. Thus, S(M) is generated by a set of pairwise commuting
elements, and therefore S(M) is commutative.

Proposition 6.3. Let M be a free R-module of rank n with basis e1, . . . , en.
Then S(M) is isomorphic to R[x1, . . . , xn] (polynomials in commuting vari-
ables) as graded R-algebras.

Proof. Exercise. �

Definition. Let M be an R-module, T (M) its tensor algebra and A(M)
the ideal of T (M) generated by elements of the form m⊗m for m ∈M . The
quotient algebra

∧
(M) = T (M)/A(M) is called the exterior algebra of M .

The product in
∧

(M) is denoted by the symbol ∧. Thus given elements
m1, . . . ,mk ∈M we denote by m1 ∧ . . .∧mk the image of m1 ⊗ . . .⊗mk in∧

(M).
Similarly to the case of symmetric algebras, the exterior algebra

∧
(M)

has a natural grading
∧

(M) = ⊕∞k=0

∧k(M) where
∧k(M) is the image of

T k(M) in
∧

(M).

Proposition 6.4. Let M be a free R-module of rank n with basis e1, . . . , en.
The following hold:

(i)
∧

(M) is isomorphic as an R-algebra to R〈x1, . . . , xn〉/I where I is
the ideal generated by {x2

i , xixj + xjxi}. Therefore,
∧

(M) has the
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following presentation by generators and relations in the category of
R-algebras:∧

(M) = 〈e1, . . . , en | ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei for 1 ≤ i, j ≤ n〉.

(ii) Let k ≥ 1. Then
∧k(M) is a free R-module with basis {ei1∧ . . .∧eik}

where i1 < . . . < ik. In particular, rk(
∧k(M)) =

(
n
k

)
.

(iii)
∧

(M) is a finitely generated free R-module of rank 2n.

Proof. For (ii) see [DF,Corollary 37, p. 449], and (iii) follows from (ii) since∑
k≥0

(
n
k

)
= 2n. Let us prove (i).

Let Φ : R〈x1, . . . , xn〉 → T (M) be the isomorphism from Proposition 6.2.
Then

∧
(M) ∼= R〈x1, . . . , xn〉/J where J = Φ−1(A(M)) is the image of A(M)

under Φ−1. It is clear from the definition of Φ that J is the ideal generated
by {(r1x1 + . . .+rnxn)2 : ri ∈ R}. We claim that J = I, for which it suffices
to show that I contains generators of J and J contains generators of I.
The former is clear since

(r1x1 + . . . + rnxn)2 =
∑

i

r2
i x

2
i +

∑
i<j

rirj(xixj + xjxi) ∈ I

(and thus J ⊆ I). The reverse inclusion follows from the observation that
xixj + xjxi = (xi + xj)2 − x2

i − x2
j ∈ J .

This proves the first assertion of (i), and the second assertion (regarding
the presentation by generators and relations) is simply a restatement of the
first one. �

6.3. An interesting property of exterior algebras. Let M and N be R-
modules and ϕ : M → N an R-module homomorphism. By Proposition 6.1
ϕ yields a graded R-algebra homomorphism Φ : T (M) → T (N) such that
Φ(m1 ⊗ . . . ⊗ mk) = ϕ(m1) ⊗ . . . ϕ(mk). It is easy to see that Φ maps
C(M) to C(N) and A(M) to A(N), and thus Φ induces graded R-algebra
homomorphisms Φsym : S(M)→ S(N) and Φext :

∧
(M)→

∧
(N)

Now assume that R is a field, M is vector space over R of finite dimension
n and N = M , so ϕ : M →M is an R-linear transformation. For each k we
can restrict Φext to

∧k(M) to get an R-linear transformation

Φext,k :
k∧

(M)→
k∧

(M).

Consider the case k = n = dim M . Since dim
∧n(M) =

(
n
n

)
= 1 by Propo-

sition 6.4(ii), the map Φext,n is just multiplication by some scalar r(Φ) ∈ R.

Proposition 6.5. The scalar r(Φ) is equal to det ϕ.

Proof. Let us see what happens when n = 2. Let {e1, e2} be a basis of M .
Then by Proposition 6.4(b)

∧2(M) is R-spanned by the element e1 ∧ e2.
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Now let ϕ : M → M be a linear transformation, and let A =
(

a b
c d

)
be the matrix of ϕ with respect to {e1, e2}, so that ϕ(e1) = ae1 + ce2 and
ϕ(e2) = be1 + de2.

Then by our construction Φext,2(e1 ∧ e2) = (ae1 + ce2)∧ (be1 + de2), and
using anticommutativity and distributivity we get

(ae1 + ce2) ∧ (be1 + de2) = abe1 ∧ e1 + ade1 ∧ e2 + cbe2 ∧ e1 + cde2 ∧ e2 =

(ab− cd)e1 ∧ e2 = det(ϕ)e1 ∧ e2.

Generalization of this proof to arbitrary n is a homework problem. �


