6. Tensor, symmetric and exterior algebras

6.1. The tensor algebra of a module. Let M be an R-module. For each $k \ge 1$ let $T^k(M) = \underbrace{M \otimes_R \ldots \otimes_R M}_{m \in R}$ and set $T^0(M) = R$. Define

$$k \text{ times}$$

 $T(M) = R \oplus T^1(M) \oplus T^2(M) \oplus \ldots = \oplus_{k=0}^{\infty} T^k(M)$

We already have an *R*-module structure on T(M). Define multiplication on T(M) by setting

 $(m_1 \otimes \ldots \otimes m_i) \cdot (m'_1 \otimes \ldots \otimes m'_j) = m_1 \otimes \ldots \otimes m_i \otimes m'_1 \otimes \ldots \otimes m'_j$

and extending to arbitrary elements of T(M) by *R*-bilinearity.

That this multiplication is well defined can be proved similarly to what we did in the case of tensor products of algebra. It is easy to see that T(M)becomes an *R*-algebra. Furthermore, by construction $T^i(M) \cdot T^j(M) \subseteq$ $T^{i+j}(M)$, so $T(M) = \bigoplus_{k=0}^{\infty} T^k(M)$ is actually a graded *R*-algebra. The algebra T(M) is called the tensor algebra of M.

Proposition 6.1 (Universal property of tensor algebras). Let M be an R-module and A an R-algebra. Then for any R-module homomorphism $\varphi : M \to A$ there exists unique R-algebra homomorphism $\Phi : T(M) \to A$ s.t. $\Phi_{|M} = \varphi$.

Proof. Exercise (or see [DF,Theorem 31 on p.442]).

Proposition 6.2. Let M be a free R-module of rank n with basis e_1, \ldots, e_n . Then

- (a) For any $k \ge 1$, $T^k(M)$ is a free *R*-module of rank n^k , and simple tensors $e_{i_1} \otimes \ldots \otimes e_{i_k}$ form a basis of $T^k(M)$.
- (b) T(M) is isomorphic to $R\langle x_1, \ldots, x_n \rangle$ (polynomials in non-commuting variables) as graded *R*-algebras.

Proof. (a) By Example 4.3 if M is a free R-module with basis e_1, \ldots, e_n and N is a free R-module with basis f_1, \ldots, f_t , then $M \otimes_R N$ is a free R-module with basis $\{e_i \otimes f_j\}$. The assertion of (a) follows from this by induction. (b) Define $\Phi : R\langle x_1, \ldots, x_n \rangle \to T(M)$ by setting

$$\Phi\left(\sum r_{(i_1,\ldots,i_k)}x_{i_1}\ldots x_{i_k}\right) = \sum r_{(i_1,\ldots,i_k)}e_{i_1}\otimes\ldots\otimes e_{i_k}$$

Then Φ is an homomorphism of graded *R*-algebras (by definition of the algebra structure on T(M)), and part (a) implies that Φ is bijective. \Box

6.2. Symmetric and exterior algebras.

Definition. Let M be an R-module, T(M) its tensor algebra and C(M) the ideal of T(M) generated by elements of the form $m_1 \otimes m_2 - m_2 \otimes m_1$ for $m_1, m_2 \in M$. The quotient algebra S(M) = T(M)/C(M) is called the symmetric algebra of M.

<u>Remark</u>: 1. For each $k \ge 1$ let $S^k(M)$ be the image of $T^k(M)$ in S(M). The ideal C(M) is graded since it is generated by homogeneous elements, and therefore by Proposition 5.2 S(M) is also a graded algebra with grading $S(M) = \bigoplus_{k=0}^{\infty} S^k(M)$.

2. S(M) is a commutative *R*-algebra. Indeed, T(M) is generated as a ring by $T^0(M) = R$ and $T^1(M) = M$, and therefore S(M) is generated as a ring by $S^0(M)$ and $S^1(M)$. Note that $S^0(M)$ lies in the center of S(M) (for $T^0(M)$ lies in the center of T(M)), and by construction any two elements of $S^1(M)$ commute. Thus, S(M) is generated by a set of pairwise commuting elements, and therefore S(M) is commutative.

Proposition 6.3. Let M be a free R-module of rank n with basis e_1, \ldots, e_n . Then S(M) is isomorphic to $R[x_1, \ldots, x_n]$ (polynomials in commuting variables) as graded R-algebras.

Proof. Exercise.

Definition. Let M be an R-module, T(M) its tensor algebra and A(M) the ideal of T(M) generated by elements of the form $m \otimes m$ for $m \in M$. The quotient algebra $\bigwedge(M) = T(M)/A(M)$ is called the <u>exterior algebra of M</u>.

The product in $\bigwedge(M)$ is denoted by the symbol \land . Thus given elements $m_1, \ldots, m_k \in M$ we denote by $m_1 \land \ldots \land m_k$ the image of $m_1 \otimes \ldots \otimes m_k$ in $\bigwedge(M)$.

Similarly to the case of symmetric algebras, the exterior algebra $\bigwedge(M)$ has a natural grading $\bigwedge(M) = \bigoplus_{k=0}^{\infty} \bigwedge^k(M)$ where $\bigwedge^k(M)$ is the image of $T^k(M)$ in $\bigwedge(M)$.

Proposition 6.4. Let M be a free R-module of rank n with basis e_1, \ldots, e_n . The following hold:

(i) $\bigwedge(M)$ is isomorphic as an *R*-algebra to $R\langle x_1, \ldots, x_n \rangle/I$ where *I* is the ideal generated by $\{x_i^2, x_i x_j + x_j x_i\}$. Therefore, $\bigwedge(M)$ has the following presentation by generators and relations in the category of R-algebras:

$$\bigwedge(M) = \langle e_1, \dots, e_n \mid e_i \land e_i = 0 \text{ and } e_i \land e_j = -e_j \land e_i \text{ for } 1 \le i, j \le n \rangle.$$

- (ii) Let $k \ge 1$. Then $\bigwedge^k(M)$ is a free *R*-module with basis $\{e_{i_1} \land \ldots \land e_{i_k}\}$ where $i_1 < \ldots < i_k$. In particular, $rk(\bigwedge^k(M)) = \binom{n}{k}$.
- (iii) $\bigwedge(M)$ is a finitely generated free R-module of rank 2^n .

Proof. For (ii) see [DF,Corollary 37, p. 449], and (iii) follows from (ii) since $\sum_{k>0} {n \choose k} = 2^n$. Let us prove (i).

Let $\Phi : R\langle x_1, \ldots, x_n \rangle \to T(M)$ be the isomorphism from Proposition 6.2. Then $\bigwedge(M) \cong R\langle x_1, \ldots, x_n \rangle / J$ where $J = \Phi^{-1}(A(M))$ is the image of A(M)under Φ^{-1} . It is clear from the definition of Φ that J is the ideal generated by $\{(r_1x_1 + \ldots + r_nx_n)^2 : r_i \in R\}$. We claim that J = I, for which it suffices to show that I contains generators of J and J contains generators of I. The former is clear since

$$(r_1x_1 + \ldots + r_nx_n)^2 = \sum_i r_i^2 x_i^2 + \sum_{i < j} r_i r_j (x_i x_j + x_j x_i) \in I$$

(and thus $J \subseteq I$). The reverse inclusion follows from the observation that $x_i x_j + x_j x_i = (x_i + x_j)^2 - x_i^2 - x_i^2 \in J$.

This proves the first assertion of (i), and the second assertion (regarding the presentation by generators and relations) is simply a restatement of the first one. \Box

6.3. An interesting property of exterior algebras. Let M and N be Rmodules and $\varphi: M \to N$ an R-module homomorphism. By Proposition 6.1 φ yields a graded R-algebra homomorphism $\Phi: T(M) \to T(N)$ such that $\Phi(m_1 \otimes \ldots \otimes m_k) = \varphi(m_1) \otimes \ldots \varphi(m_k)$. It is easy to see that Φ maps C(M) to C(N) and A(M) to A(N), and thus Φ induces graded R-algebra homomorphisms $\Phi_{sym}: S(M) \to S(N)$ and $\Phi_{ext}: \Lambda(M) \to \Lambda(N)$

Now assume that R is a field, M is vector space over R of finite dimension n and N = M, so $\varphi : M \to M$ is an R-linear transformation. For each k we can restrict Φ_{ext} to $\bigwedge^k(M)$ to get an R-linear transformation

$$\Phi_{ext,k}: \bigwedge^k(M) \to \bigwedge^k(M).$$

Consider the case $k = n = \dim M$. Since $\dim \bigwedge^n(M) = \binom{n}{n} = 1$ by Proposition 6.4(ii), the map $\Phi_{ext,n}$ is just multiplication by some scalar $r(\Phi) \in R$.

Proposition 6.5. The scalar $r(\Phi)$ is equal to det φ .

Proof. Let us see what happens when n = 2. Let $\{e_1, e_2\}$ be a basis of M. Then by Proposition 6.4(b) $\bigwedge^2(M)$ is R-spanned by the element $e_1 \land e_2$. Now let $\varphi : M \to M$ be a linear transformation, and let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be the matrix of φ with respect to $\{e_1, e_2\}$, so that $\varphi(e_1) = ae_1 + ce_2$ and $\varphi(e_2) = be_1 + de_2$.

Then by our construction $\Phi_{ext,2}(e_1 \wedge e_2) = (ae_1 + ce_2) \wedge (be_1 + de_2)$, and using anticommutativity and distributivity we get

$$(ae_1 + ce_2) \wedge (be_1 + de_2) = abe_1 \wedge e_1 + ade_1 \wedge e_2 + cbe_2 \wedge e_1 + cde_2 \wedge e_2 = (ab - cd)e_1 \wedge e_2 = \det(\varphi)e_1 \wedge e_2.$$

Generalization of this proof to arbitrary n is a homework problem. \Box