
5. Algebras over commutative rings

5.1. Two definition of R-algebras.

Definition 1. Let R be a commutative ring. An R-algebra is a ring A (with
1) together with a ring homomorphism f : R→ A such that

(i) f(1R) = 1A;
(ii) f(R) ⊆ Z(A), where Z(A) is the center of A.

The pair (A, f) will also be called an R-algebra.

Example 5.1 (main): Let A be any ring and R a subring of Z(A). Then
(A, ι) is an R-algebra, where ι : R→ A is the inclusion mapping.

Example 5.2: Any ring A is a Z-algebra (in a unique way). The map f :
Z→ A is given by f(n) = nA where nA = 1 + . . .+ 1︸ ︷︷ ︸

n times

.

Definition 2. Let R be a commutative ring. An R-algebra is a ring A

which is also an R-module such that the multiplication map A× A→ A is
R-bilinear, that is,

r ∗ (ab) = (r ∗ a) · b = a · (r ∗ b) for any a, b ∈ A, r ∈ R, (∗ ∗ ∗)

where ∗ denotes the R-action on A.

Theorem 5.1. Definitions 1 and 2 are equivalent. More precisely, given
a commutative ring R and a ring A there is a natural bijection between R-
algebra structures on A according to Definition 1 and R-algebra structures
on A according to Definition 2.

Proof. “−→” Let ∗ be an R-module structure on A. Define f : R → A by
f(r) = r ∗ 1A. Then

(i) f is a ring homomorphism since

f(r)f(s) = (r∗1A)·(s∗1A) = 1A·(r∗(s∗1A)) = 1A·(rs∗1A) = 1A·f(rs) = f(rs)

(ii) f(1R) = 1R ∗ 1A = 1A by module axioms
(iii) f(R) ⊂ Z(A): for any a ∈ A and r ∈ R we have

a · f(r) = a · (r ∗ 1A) = r ∗ (a · 1A) = r ∗ (1A · a) = (r ∗ 1A) · a = f(r) · a.

“←−” Suppose that f : R → A is a ring homomomorphism such that
f(1R) = 1A and f(R) ⊆ Z(A). Define the R-action on A by r ∗ a = f(r) · a.
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Verification of R-module axioms is straightforward. Let us check that mul-
tiplication on A is R-bilinear:

r ∗ (ab) = f(r)ab

(r ∗ a) · b = (f(r)a) · b = f(r)ab

a · (r ∗ b) = a · (f(r)b) = f(r)ab since f(r) ∈ Z(A).

Exercise: check that the correspondence we constructed is indeed bijective.
�

Definition. Let A and B be R-algebras. A map f : A → B is called an
R-algebra homomorphism if

(i) f is a ring homomorphism and f(1A) = 1B.
(ii) f is an R-module homomorphism.

5.2. Examples of R-algebras.
Example 5.3: If A and B are R-algebras, then A ⊕ B is an R-algebra (in a
natural way) – use Definition 2.

Example 5.4: If A is an R-algebra and I an ideal of A, then A/I is an
R-algebra (in a natural way) – use Definition 1.

Example 5.5: Let X = {x1, . . . , xn} be a finite set and A = R〈x1, . . . , xn〉 the
ring of polynomials over R in non-commuting variables x1, . . . , xn. Then A

is a free R-algebra on X in the following sense: for any R-algebra S any map
f : X → S uniquely extends to an R-algebra homomorphism f∗ : A→ S.

Example 5.6: Let X = {x1, . . . , xn} be a finite set and A = R[x1, . . . , xn] the
ring of polynomials over R in commuting variables x1, . . . , xn. Then A is
a free commutative R-algebra on X. Exercise: formulate the corresponding
universal property.

5.3. Tensor product of algebras. Let A and B be two R-algebras. We
have already defined the R-module A⊗RB. To turn A⊗RB into R-algebra
we define muliplication on A⊗RB by setting (a1⊗b1)·(a2⊗b2) = a1a2⊗b1b2
and extending to arbitrary elements of A⊗R B by distributivity.
Things to check:

(1) multiplication on A⊗R B is well defined
(2) multiplication on A⊗R B is bilinear

(2) is an easy exercise. (1) can be done going back to the definition of tensor
products, but this is boring. An elegant way to prove this is as follows:
Define the multilinear map m : A×B×A×B → A⊗B by m(a1, b1, a2, b2) =
a1a2 ⊗ b1b2. Then m is clearly R-multilinear. Thus by Theorem 4.2’ there
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exists an R-module homomorphism µ : A⊗B ⊗A⊗B → A⊗B such that
µ(a1 ⊗ b1 ⊗ a2 ⊗ b2) = a1a2 ⊗ b1b2.
Since A ⊗ B ⊗ A ⊗ B is naturally isomorphic to (A ⊗ B) ⊗ (A ⊗ B), the
map µ yields an R-blinear map m̃ : (A⊗B)× (A⊗B)→ A⊗B such that
m̃(a1 ⊗ b1, a2 ⊗ b2) = a1a2 ⊗ b1b2. Then m̃ is the multiplcation map whose
existence we wanted to show.

5.4. Graded algebras.

Definition. (a) Let A be an R-algebra. A grading of A is a collection of
R-submodules {An}∞n=0 such that A = ⊕∞n=0An and An ·Am ⊆ Am+n for all
m,n.
(b) A graded R-algebra is an R-algebra with a chosen grading.

Example 5.7: Let A = R[x1, . . . , xk]. Then A has a natural grading where

An = {homogeneous polynomials of degree n} ∪ {0}.

The algebra R〈x1, . . . , xk〉 admits analogous grading.

Definition. Let A = ⊕∞n=0An be a graded R-algebra. An ideal I of A is
called graded if I = ⊕∞n=0(I ∩An)

Example 5.8: (a) Let A = R[x] and I = (x + 1). Then I is not graded.
Indeed, it is easy to see that I contains no monomials, and therefore

⊕∞n=0(I ∩R[x]n) = {0} 6= I.

(b) Let A = ⊕∞n=0An be any graded R-algebra and I an ideal of A, generated
by homogeneous elements. Then I is graded.

Proposition 5.2. Let A = ⊕∞n=0An be a graded R-algebra and I a graded
ideal of A. Let (A/I)n = (An + I)/I be the image of An in A/I. Then
A/I = ⊕∞n=0(A/I)n, so A/I is also a graded R-algebra in a natural way.
Note that (A/I)n

∼= An/I ∩An as R-modules.

Proof. Exercise or see [DF, Proposition 33] on p. 444. �

Definition. Let A = ⊕∞n=0An and B = ⊕∞n=0Bn be R-algebras. A map
ϕ : A → B is called a homomorphism of graded R-algebras if ϕ is a homo-
morphism of R-algebras and ϕ respects the grading, that is, ϕ(An) ⊆ Bn

for each n.


