Today: R denotes a commutative ring.

4. Tensor products and bilinear maps

Definition. Let M and N be R -modules and L an abelian group.

- (a) A map $\varphi : M \times N \to L$ is called R-balanced if
	- (i) $\varphi(m_1 + m_2, n) = \varphi(m_1, n) + \varphi(m_2, n)$
	- (ii) $\varphi(m, n_1 + n_2) = \varphi(m, n_1) + \varphi(m, n_2)$
	- (iii) $\varphi(m, rn) = \varphi(rm, n)$ for any $r \in R$, $m \in M$, $n \in N$
- (b) Now suppose that L is also an R-module. Then a map $\varphi : M \times N \to$ L is called R-bilinear if φ is R-balanced and $\varphi(m, rn) = r\varphi(m, n)$.

Example 4.1: The map $\iota : M \times N \to M \otimes_R N$ given by $\iota(m, n) = m \otimes n$ is R-bilinear. This follows from defining relations of tensor products.

Example 4.2: Suppose M and N are finitely generated free R -modules. Let ${x_1, \ldots, x_k}$ be a basis of M and ${y_1, \ldots, y_t}$ be a basis of N.

Let L be another R-module, and choose arbitrary elements $l_{ij} \in L$, with $1 \leq i \leq k$ and $1 \leq j \leq t$. Then there exists unique R-bilinear map φ : $M \times N \to L$ such that $\varphi(x_i, y_j) = l_{ij}$. In fact, φ is given by the formula

$$
\varphi(\sum r_i x_i, \sum s_j y_j) = \sum_{i,j} r_i s_j l_{ij}.
$$

Theorem 4.1. Let M and N be R-modules and L an abelian group. Then there is a bijection

$$
\Omega = \left\{ \begin{array}{c} R\text{-balanced maps} \\ \varphi : M \times N \to L \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} group \ homomorphisms \\ \Phi : M \otimes_R N \to L \end{array} \right\} = \Delta
$$

which maps an R-balanced map $\varphi \in \Omega$ to a group homomorphism $\Phi \in \Delta$ such that $\Phi(m \otimes n) = \varphi(m, n)$ for any $m \in M$, $n \in N$

Proof. "→" (a map $f : \Omega \to \Delta$). Recall that $M \otimes_R N = F/I$ where F is the free abelian group on $M \times N$ and I is the subgroup generated by $\{(m, n_1+n_2)-(m, n_1)-(m, n_2) \text{ etc. }\}$

Now let $\varphi: M \times N \to L$ be R-balanced. Since F is a free Z-module on $M \times N$, there is a group homomorphism $\widetilde{\Phi}: F \to L$ such that $\widetilde{\Phi}((m, n)) = \varphi(m, n)$. Then $I \subset \text{Ker } \Phi$ precisely because φ is R-balanced. For instance,

$$
\widetilde{\Phi}((m, n_1+n_2)-(m, n_1)-(m, n_2)) = \widetilde{\Phi}((m, n_1+n_2)) - \widetilde{\Phi}((m, n_1)) - \widetilde{\Phi}((m, n_2)))
$$

= $\varphi(m, n_1+n_2) - \varphi(m, n_1) - \varphi(m, n_2) = 0,$

where the first equality holds since $\widetilde{\Phi}$ is a group homomorphism and the last equality holds since φ is R-balanced.

Thus, Φ induces a group homomorhism $\Phi : M \otimes_R N = F/I \to L$ such that $\Phi(m \otimes n) = \varphi(m, n)$. We set $f(\varphi) = \Phi$.

"←" (a map from $g : \Delta \to \Omega$). This is easy – just set

 $(a(\Phi))(m, n) = \Phi(m \otimes n).$

Then $g(\Phi)$ is R-balanced by defining relations in $M \otimes_R N$.

Thus, we defined two maps $f : \Omega \to \Delta$ and $g : \Delta \to \Omega$, and it remains to check that f and g are mutually inverse.

By construction for any $\varphi \in \Omega$ we have

$$
g(f(\varphi))(m, n) = f(\varphi)(m \otimes n) = \varphi(m, n).
$$

Thus $g \circ f = id_{\Omega}$. Similarly, $f(g(\Phi))(m \otimes n) = \Phi(m \otimes n)$. Since a group homomorphism $M \otimes_R N \to L$ is uniquely determined by its values on simple tensors, we must have $f \circ g = id_{\Delta}$

Here is the variation of Theorem 4.1 dealing with bilinear maps.

Theorem 4.2. Let M and N be R-modules and L another R-module. Then there is a bijection

$$
\Omega = \left\{ \begin{array}{ll} R \text{-bilinear maps} \\ \varphi: M \times N \rightarrow L \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{ll} R \text{-module homomorphisms} \\ \Phi: M \otimes_R N \rightarrow L \end{array} \right\} = \Delta
$$

which maps a R-bilinear map $\varphi \in \Omega$ to an R-module homomorphism $\Phi \in \Delta$. such that $\Phi(m \otimes n) = \varphi(m, n)$ for any $m \in M$, $n \in N$

Proof. Very similar to that of Theorem 4.1.

4.1. Applications of Theorem 4.2.

Example 4.3: Let M, N be finitely generated free R-modules, $X = \{x_1, \ldots, x_k\}$ a basis of M and $Y = \{y_1, \ldots, y_t\}$ a basis of N. Then $\{x_i \otimes y_j\}$ is a basis of $M\otimes_R N$.

Remark: Finite generation assumption is not essential.

Proof. We know from Example 3.2 that $\{x_i \otimes y_j\}$ generates $M \otimes_R N$, so we only need to check linear independence. Suppose that $\sum_{i,j} r_{ij} x_i \otimes y_j = 0$ where $r_{ij} \in R$ and not all r_{ij} are zero.

WOLOG $r_{11} \neq 0$. By Example 4.2 there exists an R-bilinear map φ : $M \times N \to R$ such that $\varphi((x_1, y_1)) = 1$ and $\varphi((x_i, y_j)) = 0$ if $(i, j) \neq (1, 1)$. By Theorem 4.2 there is an R-module homomorphism $\Phi : M \otimes N \to R$ such that $\Phi(x_i \otimes y_j) = \varphi((x_i, y_j))$. Then

$$
\Phi(\sum_{i,j} r_{ij} x_i \otimes y_j) = \sum_{i,j} r_{ij} \varphi(x_i, y_j) = r_{11} \neq 0,
$$

which is a contradiction. \Box

Example 4.4: Prove that for any R-module M we have $R \otimes_R M \cong M$ (as R-modules).

Claim. Any element of $R \otimes_R M$ is equal to $1 \otimes m$ for some $m \in M$.

Proof of the claim. Any element of $R \otimes_R M$ can be written as

$$
\sum r_i \otimes m_i = \sum (1 \cdot r_i) \otimes m_i = \sum 1 \otimes r_i m_i = 1 \otimes \sum r_i m_i.
$$

Proof of Example 4.4: Define the map $\Phi : M \to R \otimes_R M$ by $\Phi(m) = 1 \otimes m$. Clearly, Φ is an R-module homomorphism, and Φ is surjective by the Claim. To prove that Φ is injective it is enough to show that $1 \otimes m \neq 0$ for $m \neq 0$. By Theorem 4.2 it is enough to find an R-bilinear map $\varphi: R \times M \to M$ such that $\varphi(1, m) \neq 0$. The map $\varphi(r, m) = rm$ has such property.

Proposition 4.3. Let M, N, P be R-modules. Then there exist natural Rmodule isomorphisms

- (i) $M \otimes N \cong N \otimes M$;
- (ii) $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$
- (iii) $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$

Proof. We shall prove (i); see [DF] for (ii) and (iii). Consider the map φ : $M \times N \to N \otimes M$ given by $\varphi(m,n) = n \otimes m$. The map φ is clearly R-bilinear, and thus there exists an R-module homomorphism $f : M \otimes N \to N \otimes M$ such that $f(m \otimes n) = n \otimes m$ for each $m \in M$, $n \in N$. Similarly, there is an R-module homomorphism $g : N \otimes M \to M \otimes N$ such that $g(n \otimes m) = m \otimes n$. The composition $gf : M \otimes N \to M \otimes N$ is an R-module homomorphism, which fixes all simple tensors and hence fixes everything. So $gf = id_M$, and similarly $fg = id_N$

4.2. Generalizations of Theorems 4.1 and 4.2. Theorems 4.1 and 4.2 have natural generalizations dealing with multilinear maps. For instance, here is the generalization of Theorem 4.2.

Definition. Let $k \geq 2$ and let M_1, \ldots, M_k and L be R-modules. A map $\varphi: M_1 \times \ldots \times M_k \to L$ is called <u>R-multilinear</u> if for any $1 \leq i \leq k$ we have

$$
\varphi(m_1, \dots, m_{i-1}, m_i + rm'_i, m_{i+1}, \dots, m_k) =
$$

$$
\varphi(m_1, \dots, m_{i-1}, m_i, m_{i+1}, \dots, m_k) + r\varphi(m_1, \dots, m_{i-1}, m'_i, m_{i+1}, \dots, m_k)
$$

for all $m_j \in M_j, 1 \le j \le k, m'_i \in M_i$ and $r \in R$.

Theorem 4.2'. Then there is a bijection $\varphi \leftrightarrow \Phi$ between

 R-multilinear maps $\varphi: M_1 \times M_2 \times \ldots \times M_k \to L$ $\Big\}$ and $\Big\{$ R-module homomorphisms $\Phi: M_1 \otimes M_2 \otimes \ldots \otimes M_k \to L$ \mathcal{L} s.t. $\Phi(m_1 \otimes m_2 \otimes \ldots \otimes m_k) = \varphi(m_1, m_2, \ldots, m_k)$ for all $m_i \in M_i, 1 \leq i \leq k$.