Today: R denotes a commutative ring.

4. TENSOR PRODUCTS AND BILINEAR MAPS

Definition. Let M and N be R-modules and L an abelian group.

(a) Amap p: M x N — L is called R-balanced if
(i) @(m1 +ma,n) = e(m1,n) + p(mz,n)
(ii) @(m,n1 + n2) = (m,n1) + p(m, n2)
(iii) ¢(m,rn) = @(rm,n) for any r € R, m€ M, n € N
(b) Now suppose that L is also an R-module. Then a map ¢ : M x N —
L is called R-bilinear if ¢ is R-balanced and ¢(m,rn) = ro(m,n).

Example 4.1: The map ¢: M x N — M ®g N given by «(m,n) = m®n is
R-bilinear. This follows from defining relations of tensor products.
Example 4.2: Suppose M and N are finitely generated free R-modules. Let
{z1,...,xr} be a basis of M and {y1,...,y:} be a basis of N.
Let L be another R-module, and choose arbitrary elements [;; € L, with
1 <i<kand1l < j <t Then there exists unique R-bilinear map ¢ :
M x N — L such that ¢(z;,y;) = l;;. In fact, ¢ is given by the formula
gp(z Tiki, Z sjY;) = Z 785l
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Theorem 4.1. Let M and N be R-modules and L an abelian group. Then
there is a bijection
| R-balanced maps group homomorphisms _

Q_{go:MxN—>L }<_’{<1>;M®RN—>L =4
which maps an R-balanced map ¢ € Q) to a group homomorphism ® € A
such that ®(m @ n) = p(m,n) for any m € M, n € N

Proof. “—" (a map f : Q& — A). Recall that M ®r N = F/I where F
is the free abelian group on M x N and [ is the subgroup generated by
{(m,n1 +n2) — (m,n1) — (m,n2) etc. }

Now let ¢ : M x N — L be R-balanced. Since F'is a free Z-module on M x N,
there is a group homomorphism ® : F — L such that ®((m,n)) = ¢(m,n).

Then I C Ker ® precisely because ¢ is R-balanced. For instance,

B((m, n1+nz) — (m, ny)—(m,ns)) = B((m, n1-+n2))~B((m, n1))~B((m, n2)))

= ()O(m7 ny + TlQ) - QO(m, 7’11) - Sp(mv n?) = 07
1
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where the first equality holds since disa group homomorphism and the last
equality holds since ¢ is R-balanced.

Thus, ® induces a group homomorhism ® : M ® g N = F'//I — L such that
d(m@n) =p(m,n). We set f(¢) = .

13 ”

«—" (amap from g : A — ). This is easy — just set
(9(®))(m,n) = B(m @ ).
Then g(®) is R-balanced by defining relations in M ®p N.
Thus, we defined two maps f:  — A and ¢ : A — Q, and it remains to

check that f and g are mutually inverse.

By construction for any ¢ € {2 we have

9(f())(m,n) = f(p)(m & n) = ¢(m,n).
Thus g o f = idg. Similarly, f(g(®))(m ® n) = ®(m ® n). Since a group
homomorphism M ®r N — L is uniquely determined by its values on simple

tensors, we must have f o g = ida ([
Here is the variation of Theorem 4.1 dealing with bilinear maps.

Theorem 4.2. Let M and N be R-modules and L another R-module. Then
there is a bijection
O { R-bilinear maps } - { R-module homomorphisms } A
p:MxN—L ®: M®rN — L
which maps a R-bilinear map ¢ € Q to an R-module homomorphism ® € A.
such that ®(m @ n) = p(m,n) for anym € M, n € N

Proof. Very similar to that of Theorem 4.1. U

4.1. Applications of Theorem 4.2.

Example 4.3: Let M, N be finitely generated free R-modules, X = {x1,..., 2}
a basis of M and Y = {y1,...,y:} a basis of N. Then {z; ® y;} is a basis of
M ®gr N.

Remark: Finite generation assumption is not essential.

Proof. We know from Example 3.2 that {z; ® y;} generates M ®r N, so we
only need to check linear independence. Suppose that Zu rijTi @y; =0
where 7;; € R and not all r;; are zero.

WOLOG 711 # 0. By Example 4.2 there exists an R-bilinear map ¢ :
M x N — R such that ¢((z1,y1)) = 1 and ¢((z;,y;)) = 0 if (¢,5) # (1,1).
By Theorem 4.2 there is an R-module homomorphism ® : M ® N — R such
that ®(z; ® y;) = ¢((xi,y;)). Then

O rijzi©y;) =) rige(wi,y) = ru #0,

1, ,J



which is a contradiction. O

Example 4.4: Prove that for any R-module M we have R @ g M = M (as
R-modules).

Claim. Any element of R®@p M is equal to 1 @ m for some m € M.

Proof of the claim. Any element of R @z M can be written as

Zn‘@mi:Z(l-m)@)mi:Zl@mmi:1®Zn~mi.

O

Proof of Example 4.4: Define the map ® : M — R®pr M by ®(m) =1 m.
Clearly, @ is an R-module homomorphism, and @ is surjective by the Claim.
To prove that ® is injective it is enough to show that 1 ® m # 0 for m # 0.
By Theorem 4.2 it is enough to find an R-bilinear map ¢ : Rx M — M
such that ¢(1,m) # 0. The map ¢(r, m) = rm has such property. O

Proposition 4.3. Let M, N, P be R-modules. Then there exist natural R-
module isomorphisms
(i) MN=N®M;
(i) M®N)P=2M® (N ®P)
(ii) M&N) P2 (M®P)® (N®P)

Proof. We shall prove (i); see [DF] for (ii) and (iii). Consider the map ¢ :
M xN — N®M given by p(m,n) = n®m. The map ¢ is clearly R-bilinear,
and thus there exists an R-module homomorphism f: M @ N - N ® M
such that f(m ®n) =n ® m for each m € M, n € N. Similarly, there is an
R-module homomorphism g : N@ M — M ® N such that g(n®@m) = m®n.
The composition gf : M @ N — M ® N is an R-module homomorphism,
which fixes all simple tensors and hence fixes everything. So gf = idys, and

similarly fg = idy (]

4.2. Generalizations of Theorems 4.1 and 4.2. Theorems 4.1 and 4.2
have natural generalizations dealing with multilinear maps. For instance,

here is the generalization of Theorem 4.2.

Definition. Let & > 2 and let My,..., My and L be R-modules. A map
@: M X ...xX My — L is called R-multilinear if for any 1 < ¢ < k we have

/
o(my,...,mi_1,mi +rmi, miy1,...,mg) =
/
cp(ml, ey TG 1, TG, T 1y - - - ,mk) —|—7"g0(m1, N ,mi_l,mi,mi_,_l,. . .,mk)

forallijMj,lgjgk,mgeMi and r € R.
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Theorem 4.2°. Then there is a bijection ¢ «— ® between

R-multilinear maps d R-module homomorphisms
My xMyx ... x My, —L [ "V @:Mio@M®...9M, — L

s.t. P(mi@mo®...0myg) = @(my,ma,...,myg) for allm; € M;,1 <i<k.



