
Today: R denotes a commutative ring.

4. Tensor products and bilinear maps

Definition. Let M and N be R-modules and L an abelian group.

(a) A map ϕ : M ×N → L is called R-balanced if
(i) ϕ(m1 +m2, n) = ϕ(m1, n) + ϕ(m2, n)

(ii) ϕ(m,n1 + n2) = ϕ(m,n1) + ϕ(m,n2)
(iii) ϕ(m, rn) = ϕ(rm, n) for any r ∈ R, m ∈M , n ∈ N

(b) Now suppose that L is also an R-module. Then a map ϕ : M×N →
L is called R-bilinear if ϕ is R-balanced and ϕ(m, rn) = rϕ(m,n).

Example 4.1: The map ι : M ×N → M ⊗R N given by ι(m,n) = m⊗ n is
R-bilinear. This follows from defining relations of tensor products.
Example 4.2: Suppose M and N are finitely generated free R-modules. Let
{x1, . . . , xk} be a basis of M and {y1, . . . , yt} be a basis of N .
Let L be another R-module, and choose arbitrary elements lij ∈ L, with
1 ≤ i ≤ k and 1 ≤ j ≤ t. Then there exists unique R-bilinear map ϕ :
M ×N → L such that ϕ(xi, yj) = lij . In fact, ϕ is given by the formula

ϕ(
∑

rixi,
∑

sjyj) =
∑
i,j

risjlij .

Theorem 4.1. Let M and N be R-modules and L an abelian group. Then
there is a bijection

Ω =
{
R-balanced maps
ϕ : M ×N → L

}
←→

{
group homomorphisms
Φ : M ⊗R N → L

}
= ∆

which maps an R-balanced map ϕ ∈ Ω to a group homomorphism Φ ∈ ∆
such that Φ(m⊗ n) = ϕ(m,n) for any m ∈M , n ∈ N

Proof. “−→” (a map f : Ω → ∆). Recall that M ⊗R N = F/I where F
is the free abelian group on M × N and I is the subgroup generated by
{(m,n1 + n2)− (m,n1)− (m,n2) etc. }
Now let ϕ : M×N → L be R-balanced. Since F is a free Z-module onM×N ,
there is a group homomorphism Φ̃ : F → L such that Φ̃((m,n)) = ϕ(m,n).
Then I ⊂ Ker Φ̃ precisely because ϕ is R-balanced. For instance,

Φ̃((m,n1+n2)−(m,n1)−(m,n2)) = Φ̃((m,n1+n2))−Φ̃((m,n1))−Φ̃((m,n2)))

= ϕ(m,n1 + n2)− ϕ(m,n1)− ϕ(m,n2) = 0,
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where the first equality holds since Φ̃ is a group homomorphism and the last
equality holds since ϕ is R-balanced.
Thus, Φ̃ induces a group homomorhism Φ : M ⊗R N = F/I → L such that
Φ(m⊗ n) = ϕ(m,n). We set f(ϕ) = Φ.

“←−” (a map from g : ∆→ Ω). This is easy – just set

(g(Φ))(m,n) = Φ(m⊗ n).

Then g(Φ) is R-balanced by defining relations in M ⊗R N .

Thus, we defined two maps f : Ω→ ∆ and g : ∆→ Ω, and it remains to
check that f and g are mutually inverse.

By construction for any ϕ ∈ Ω we have

g(f(ϕ))(m,n) = f(ϕ)(m⊗ n) = ϕ(m,n).

Thus g ◦ f = idΩ. Similarly, f(g(Φ))(m ⊗ n) = Φ(m ⊗ n). Since a group
homomorphism M⊗RN → L is uniquely determined by its values on simple
tensors, we must have f ◦ g = id∆ �

Here is the variation of Theorem 4.1 dealing with bilinear maps.

Theorem 4.2. Let M and N be R-modules and L another R-module. Then
there is a bijection

Ω =
{
R-bilinear maps
ϕ : M ×N → L

}
←→

{
R-module homomorphisms
Φ : M ⊗R N → L

}
= ∆

which maps a R-bilinear map ϕ ∈ Ω to an R-module homomorphism Φ ∈ ∆.
such that Φ(m⊗ n) = ϕ(m,n) for any m ∈M , n ∈ N

Proof. Very similar to that of Theorem 4.1. �

4.1. Applications of Theorem 4.2.
Example 4.3: LetM,N be finitely generated freeR-modules, X = {x1, . . . , xk}
a basis of M and Y = {y1, . . . , yt} a basis of N . Then {xi⊗ yj} is a basis of
M ⊗R N .

Remark: Finite generation assumption is not essential.

Proof. We know from Example 3.2 that {xi⊗ yj} generates M ⊗R N , so we
only need to check linear independence. Suppose that

∑
i,j rijxi ⊗ yj = 0

where rij ∈ R and not all rij are zero.
WOLOG r11 6= 0. By Example 4.2 there exists an R-bilinear map ϕ :

M ×N → R such that ϕ((x1, y1)) = 1 and ϕ((xi, yj)) = 0 if (i, j) 6= (1, 1).
By Theorem 4.2 there is an R-module homomorphism Φ : M ⊗N → R such
that Φ(xi ⊗ yj) = ϕ((xi, yj)). Then

Φ(
∑
i,j

rijxi ⊗ yj) =
∑
i,j

rijϕ(xi, yj) = r11 6= 0,
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which is a contradiction. �

Example 4.4: Prove that for any R-module M we have R ⊗R M ∼= M (as
R-modules).

Claim. Any element of R⊗R M is equal to 1⊗m for some m ∈M .

Proof of the claim. Any element of R⊗R M can be written as∑
ri ⊗mi =

∑
(1 · ri)⊗mi =

∑
1⊗ rimi = 1⊗

∑
rimi.

�

Proof of Example 4.4: Define the map Φ : M → R⊗RM by Φ(m) = 1⊗m.
Clearly, Φ is an R-module homomorphism, and Φ is surjective by the Claim.
To prove that Φ is injective it is enough to show that 1⊗m 6= 0 for m 6= 0.
By Theorem 4.2 it is enough to find an R-bilinear map ϕ : R ×M → M

such that ϕ(1,m) 6= 0. The map ϕ(r,m) = rm has such property. �

Proposition 4.3. Let M,N,P be R-modules. Then there exist natural R-
module isomorphisms

(i) M ⊗N ∼= N ⊗M ;
(ii) (M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P )
(iii) (M ⊕N)⊗ P ∼= (M ⊗ P )⊕ (N ⊗ P )

Proof. We shall prove (i); see [DF] for (ii) and (iii). Consider the map ϕ :
M×N → N⊗M given by ϕ(m,n) = n⊗m. The map ϕ is clearly R-bilinear,
and thus there exists an R-module homomorphism f : M ⊗ N → N ⊗M
such that f(m⊗ n) = n⊗m for each m ∈M , n ∈ N . Similarly, there is an
R-module homomorphism g : N⊗M →M⊗N such that g(n⊗m) = m⊗n.
The composition gf : M ⊗ N → M ⊗ N is an R-module homomorphism,
which fixes all simple tensors and hence fixes everything. So gf = idM , and
similarly fg = idN �

4.2. Generalizations of Theorems 4.1 and 4.2. Theorems 4.1 and 4.2
have natural generalizations dealing with multilinear maps. For instance,
here is the generalization of Theorem 4.2.

Definition. Let k ≥ 2 and let M1, . . . ,Mk and L be R-modules. A map
ϕ : M1 × . . .×Mk → L is called R-multilinear if for any 1 ≤ i ≤ k we have

ϕ(m1, . . . ,mi−1,mi + rm′i,mi+1, . . . ,mk) =

ϕ(m1, . . . ,mi−1,mi,mi+1, . . . ,mk) + rϕ(m1, . . . ,mi−1,m
′
i,mi+1, . . . ,mk)

for all mj ∈Mj , 1 ≤ j ≤ k,m′i ∈Mi and r ∈ R.
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Theorem 4.2’. Then there is a bijection ϕ↔ Φ between{
R-multilinear maps
ϕ : M1 ×M2 × . . .×Mk → L

}
and

{
R-module homomorphisms
Φ : M1 ⊗M2 ⊗ . . .⊗Mk → L

}
s.t. Φ(m1⊗m2⊗ . . .⊗mk) = ϕ(m1,m2, . . . ,mk) for all mi ∈Mi, 1 ≤ i ≤ k.


