
Addendum to Lecture 2.

Definition. Let R be a ring and X a set. The free R-module on X is the
set of formal linear combinations

∑
x∈X rxx where rx ∈ R and only finitely

many rx are nonzero. We will denote it by FR(X).

Clearly, X is a basis of FR(X), so FR(X) is free according to definition from
Lecture 2.

3. Tensor products of modules

In this lecture we shall define two types of tensor products of modules. In
fact, both types are special cases of a more general construction, but they
are usually applied for different purposes.

3.1. Basic motivation (vector space case).
1. Let F ⊂ K be two fields and V an F -vector space. We want to define a
K-vector space K ⊗F V which consists of “linear combinations of elements
of V with coefficients from K”.

2. Suppose F is a field, V,W vector spaces over F . Then

dim(V ⊕W ) = dim(V ) + dim(W ).

We want to define another F -vector space V ⊗F W s.t.

dim(V ⊗F W ) = dim(V ) · dim(W ).

One way to do it is the following – pick a basis {eα} of V , a basis {fβ} of
W , and let V ⊗F W be the set of formal linear combinations of symbols
{eα ⊗ fβ} with coefficients from F .

We are looking for the definition of V ⊗F W which does not involve a
choice of bases and also generalizes to modules over rings which are not
fields.

3.2. Tensor products of type I (extension of scalars). Suppose we are
given two rings R and S, with R ⊆ S and an R-module M . We shall define
certain S-module S ⊗R M .

First we define S ⊗R M as an abelian group. Let X = S ×M be the set
of pairs {(s, m) : s ∈ S, m ∈ M}, and let F be the free abelian group on X

(= free Z-module on X).
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Define S⊗RM to be the quotient F/I where I is the subgroup of F generated
by the elements

(s1 + s2, m)− (s1, m)− (s2, m) s, s1, s2 ∈ S,

(s, m1 + m2)− (s, m1)− (s, m2) m, m1, m2 ∈M

(sr, m)− (s, rm) r ∈ R

Denote the image of (s, m) in F/I = S ⊗R M by s⊗m.
Thus, S ⊗R M can also be defined as an abelian group with generators

{s⊗m, s ∈ S, m ∈M} and relations

(s1+s2)⊗m = s1⊗m+s2⊗m; s⊗(m1+m2) = s⊗m1+s⊗m2; (sr)⊗m = s⊗rm

Every element of S ⊗R M can be written as a finite sum
∑

si ⊗mi (such
representation is NOT unique).

Informally, we can think of s⊗m as “scalar s times vector m.”

Now we define the S-module structure on S ⊗R M . Note that

(1) First note that the abelian group F has a natural structure of an
S-module where S-action (denoted by ∗ below) is given by

s ∗
∑
±(si, mi) =

∑
±(ssi, mi).

(2) The subgroup I defined above is clearly an S-submodule

Thus, S ⊗R M = F/I can be given the structure of a quotient S-module.
The action of S on S ⊗R M is explicitly given by

s(
∑

si ⊗mi) =
∑

ssi ⊗mi. (∗ ∗ ∗)

Remark: We can use (***) as the definition of S-action, but then we would

have to prove that this action is well defined.

3.3. Tensor products of type II (regular tensor products). Let R be
a commutative ring, and let M and N be R-modules. Define the R-module
M ⊗R N as follows.
Let X = {(m, n) : m ∈ M,n ∈ N}, F the free abelian group on X and I

the subgroup of I generated by the elements

(m1 + m2, n)− (m1, n)− (m2, n) m, m1, m2 ∈M,

(m, n1 + n2)− (m, n1)− (m, n2) n, n1, n2 ∈ N

(rm1, m2)− (m1, rm2) r ∈ R

Define M ⊗R N = F/I, and set m⊗ n be the image of (m, n) in M ⊗R N .
Finally, turn M ⊗R N into an R-module by setting

r(
∑

mi ⊗ ni) = rmi ⊗ ni.
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This action is well defined by the same argument as with type I tensor
products.

Definition. Elements of M⊗RN of the form m⊗n are called simple tensors.

As with type I tensor products we have the following relations between
simple tensors (in fact, these are defining relations):

(m1 + m2)⊗ n = m1 ⊗ n + m2 ⊗ n m, m1, m2 ∈M,

m⊗ (n1 + n2) = m⊗ n1 + m⊗ n2 n, n1, n2 ∈ N

(rm1)⊗m2 = m1 ⊗ rm2 = r(m1 ⊗m2) r ∈ R

Remember this:

(i) Every element of M ⊗R N can be written as
∑k

i=1 mi ⊗ ni. In
particular, M ⊗R N is generated by the simple tensors.

(ii) In most cases, NOT every element of M ⊗R N is a simple tensor.

Remark: 1. If R is not commutative, one can still define type II tensor
product M ⊗R N , but this time we have to assume that M is a right R-
module and N is a left R-module. Of course, when we define the subgroup
I, the third family of elements changes to {(m1r, m2)− (m1, rm2)}.
2. If S is a ring containing R, we can consider S as a right R-module with
action given by right multiplication. Thus, if M is a left R-module, we can
define type II tensor product S ⊗R M (which is an R-module).

We also have type I tensor product S ⊗R M which is an S-module and
hence also an R-module. Fortunately, this does not cause a confusion since in
both cases we get the same R-module (which is easily seen from definitions).

3.4. Computing in tensor products.
Example 3.1: Let k ∈ Z, k ≥ 2. Prove that Z/kZ⊗Z Q = {0}.
Proof: For each x ∈ Z/kZ and y ∈ Q we have

x⊗ y = x⊗ (k · y
k

) = kx⊗ y

k
= 0⊗ y

k
= 0.

Since Z/kZ⊗Q is generated by simple tensors x⊗y, we get Z/kZ⊗ZQ = {0}.

Example 3.2: Let R be a commutative ring, and let M and N be R-modules.
Let X be a generating set of M and Y a generating set of N . Prove that
Z = {x⊗ y : x ∈ X, y ∈ Y } is a generating set of M ⊗N .
Proof: Let L = RZ be the submodule generated by Z. It is enough to show
that L contains every simple tensor m⊗ n.
Take any m ∈ M, n ∈ N . By assumption we can write m =

∑
rixi and

n =
∑

siyi (both sums are finite) where xi ∈ X, yi ∈ Y and ri, si ∈ R.
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Then

m⊗ n = (
∑

rixi)⊗ (
∑

sjyj) =
∑
i,j

(rixi)⊗ (sjyj) =

∑
i,j

(risjxi)⊗ yj =
∑
i,j

risj(xi ⊗ yj) ∈ RZ = L.


