26. Direct and inverse limits

26.1. Direct limits.

Definition. A poset A is called a <u>directed set</u> if for any $\alpha, \beta \in A$ there exists $\gamma \in A$ s.t. $\alpha \leq \gamma$ and $\beta \leq \gamma$.

Definition. Let \mathcal{C} be a category. A direct system in \mathcal{C} consists of a directed set A, a collection of objects $\{X_{\alpha}\}_{\alpha \in A}$ of \mathcal{C} and morphisms $\iota_{\alpha\beta} : X_{\alpha} \to X_{\beta}$ for any $\alpha \leq \beta$ s.t.

- (i) $\iota_{\alpha\alpha} = id_{X_{\alpha}}$ for all $\alpha \in A$
- (ii) $\iota_{\beta\gamma} \circ \iota_{\alpha\beta} = \iota_{\alpha\gamma}$ whenever $\alpha \leq \beta \leq \gamma$.

Remark: The notions of a direct system and inverse system (defined below) make sense even if the poset A is not assumed to be directed. However many important results only hold when A is directed.

Definition. Let \mathcal{C} be a category and $(A, \{X_{\alpha}\}, \{\iota_{\alpha\beta}\})$ a direct system in \mathcal{C} . An object $X \in Ob(\mathcal{C})$ is called a <u>direct limit</u> of this system if there exist morphisms $\iota_{\alpha} : X_{\alpha} \to X$ for $\alpha \in A$ with the following property:

(i) For any $\alpha \leq \beta$ the following diagram commutes:

(ii) Given any $Y \in Ob(\mathcal{C})$ and morphisms $\varphi_{\alpha} : X_{\alpha} \to Y$ s.t. the diagram

commutes for $\alpha \leq \beta$, there exists unique morphism $\varphi : X \to Y$ s.t. the following diagram commutes for all $\alpha \in A$:

If a direct limit exists, it is unique up to C-isomorphism and is denoted by $\lim X_{\alpha}$.

Examples: 1. Let \mathcal{C} be the category of sets. The simplest example of a direct system in \mathcal{C} is a collection $\{X_{\alpha}\}$ of subsets of the same set Y which form a chain, where the maps $\iota_{\alpha\beta}$ are natural inclusions. In this case $\varinjlim X_{\alpha} = \bigcup X_{\alpha}$. The same holds in the categories of groups, abelian groups, rings etc.

2. Let \mathcal{C} be the category of sets and $(A, \{X_{\alpha}\}, \{\iota_{\alpha\beta}\})$ an arbitrary direct system in \mathcal{C} . Define the relation \sim on $\sqcup X_{\alpha}$ as follows: if $x \in X_{\alpha}$ and $y \in X_{\beta}$, then $x \sim y$ if there exists $k \in A$ s.t. $\iota_{\alpha\gamma}(x) = \iota_{\beta\gamma}(y)$ (here we identify each X_{α} with its image in $\sqcup X_{\alpha}$). Then \sim is an equivalence relation (because Ais a directed set), and one can show that

$$\varinjlim X_{\alpha} = \sqcup X_{\alpha} / \sim .$$

Remark: If A is not assumed to be directed, it is still true that $\varinjlim X_{\alpha} = \sqcup X_{\alpha} / \sim$ for certain equivalence relation, but the definition of \sim is less explicit: one defines \sim to be the smallest equivalent relation for which $x \sim \iota_{\alpha\beta}(x)$ for any $\alpha \leq \beta$ and $x \in X_{\alpha}$.

3. Let \mathcal{C} be the category of abelian groups and $(A, \{X_{\alpha}\}, \{\iota_{\alpha\beta}\})$ an arbitrary direct system in \mathcal{C} . Then $\varinjlim X_{\alpha} = \bigoplus X_{\alpha}/I$ where I is the subgroup of $\bigoplus X_{\alpha}$ generated by the set

$$\{\iota_{\alpha\beta}(x) - x \text{ where } \alpha \leq \beta, \ x \in X_{\alpha}\}.$$

Here we do not need to assume that A is directed.

26.2. Inverse limits.

Definition. Let \mathcal{C} be a category. An inverse system in \mathcal{C} consists of a directed set A, a collection of objects $\{\overline{X_{\alpha}}\}_{\alpha \in A}$ of \mathcal{C} and morphisms $\pi_{\beta\alpha}$: $X_{\beta} \to X_{\alpha}$ for any $\alpha \leq \beta$ s.t.

- (i) $\pi_{\alpha\alpha} = id_{X_{\alpha}}$ for all $\alpha \in A$
- (ii) $\pi_{\beta\alpha} \circ \pi_{\gamma\beta} = \pi_{\gamma\alpha}$ whenever $\alpha \leq \beta \leq \gamma$.

Definition. Let \mathcal{C} be a category and $(A, \{X_{\alpha}\}, \{\pi_{\beta\alpha}\})$ an inverse system in \mathcal{C} . An object $X \in Ob(\mathcal{C})$ is called an <u>inverse limit</u> of this system if there exist morphisms $\pi_{\alpha} : X \to X_{\alpha}$ for $\alpha \in A$ with the following property:

(i) For any $\alpha \leq \beta$ the following diagram commutes:

(ii) Given any $Y \in Ob(\mathcal{C})$ and morphisms $\varphi_{\alpha} : Y \to X_{\alpha}$ s.t. the diagram

commutes for $\alpha \leq \beta$, there exists unique morphism $\varphi : Y \to X$ s.t. the following diagram commutes for all $\alpha \in A$:

If an inverse limit exists, it is unique up to C-isomorphism and is denoted by $\lim X_{\alpha}$.

Easy fact: Inverse limits always exist in the categories of sets, groups, rings etc. and admit the following description:

$$\varprojlim X_{\alpha} = \{ (x_{\alpha}) \in \prod X_{\alpha} \text{ s.t. } \pi_{\beta\alpha}(x_{\beta}) = x_{\alpha} \text{ for all } \alpha \leq \beta \}.$$

26.3. Examples of inverse systems.

1. Let R be a ring with 1 and I an ideal of R. For $n \in \mathbb{N}$ let $R_n = R/I^n$. Then $\{R_n\}_{n \in \mathbb{N}}$ is an inverse system where the maps $\pi_{mn} : R_m \to R_n$ are natural projections. Then $\varprojlim R_n = \widehat{R}_I$, the *I*-adic completion of R, as proved in Algebra-I.

2. Consider the following inverse system in the category of sets. The indexing set will be \mathbb{N} (with the natural order), and each X_n is also taken to be \mathbb{N} . Define $\pi_{mn}: X_m \to X_n$ for $n \leq m$ by $\pi_{mn}(x) = x + (m - n)$. Then it is easy to see that $\lim_{n \to \infty} X_n = \emptyset$.

Remark: If $\{X_{\alpha}\}$ is an inverse system of <u>finite</u> sets, then $\varprojlim X_n$ is always non-empty. This can be proved using Tychonoff's theorem (product of compact sets is compact). The fact that the indexing set A is directed is essential for this proof.

3. Let G be a group. Let \mathfrak{A} be the set of all normal subgroups of finite index, ordered by reverse inclusion, that is, $K \leq N$ if and only if $N \subseteq K$. Then \mathfrak{A} is a directed set since if $K, N \in \mathfrak{A}$, then $K \cap N \in \mathfrak{A}$ as well. Consider the inverse system $\{G/N\}_{N \in \mathfrak{A}}$ where the maps $\pi_{K,N} : G/K \to G/N$ are natural projections. The inverse limit $\lim_{K \to \infty} G/N$ is called the profinite completion of G and is commonly denoted by \widehat{G} .