25. SOME CATEGORY THEORY

25.1. Categories. A category C consists of the following data:

e objects Ob(C)
e forany X,Y € Ob(C) aset Mor(X,Y) = Mor¢(X,Y) called morphisms from X to Y
e for any triple X,Y, Z € Ob(C) a map

Mor(X,Y) x Mor(Y,Z) — Mor(X, Z)
(f,9) = gof

called the composition law of morphisms.
The following axioms must be satisfied:
(1) The sets Mor(X,Y) and Mor(X’,Y’) are disjoint unless X = X’
and Y =Y.

(2) Composition of morphisms is associative, that is, for any f € Mor(X,Y),
g€ Mor(Y,Z) and h € Mor(Z,W) we have

ho(gof)=(hog)of.

(3) For any X € Ob(C) there is identity morphism 1x € Mor(X, X)
with the following property: if Y is any object of C, then folx = f
for any f € Mor(X,Y) and 1x o g =g for any g € Mor(Y, X).

Notation: We will often write f: X — Y instead of f € Mor(X,Y).
Here are some basic examples of categories.

Examples: (1) C = SET, the category of sets. Objects of C are arbitrary sets
and Mor(X,Y) = Func(X,Y), all functions from X to Y. The composition
of morphisms is the usual composition of functions.

(2) C = GRP, the category of groups. Objects are all groups, Mor(X,Y)
is the set of groups homomorphisms from X to Y, the composition of mor-

phisms is the usual composition of functions.

(3) C = TOP, the category of topological spaces. Objects are topological
spaces, Mor(X,Y) is the set of continuous functions from X to Y, the

composition of morphisms is the usual composition of functions.

Here is an example of rather different kind.
(4) Let A be a poset with partial order relation <. Then we can consider

the following category C. The objects of C are simply elements of A, and
1



2

morphisms are defined by setting

0 ifx Ly

Mor(z,y) = { The one element set consisting of the pair (z,y) if z <y.

The composition of morphisms Mor(z,y) x Mor(y,z) — Mor(x,z) is de-

fined as follows:

(i) If 2 £ y or y £ 2, then Mor(z,y) x Mor(y,z) = 0, so there exists
unique map Mor(x,y) x Mor(y,z) — Mor(x, z) (the “do nothing”
map)

(ii) If x < y and y < z, then = < z by transitivity, so |Mor(z,y)| =
|Mor(y,z)| = |Mor(x,z)] = 1. Again there exists unique map
Mor(z,y)x Mor(y,z) — Mor(x, z) given by ((z,v), (y,2)) — (z, 2).

Finally, associativity of composition is automatic and identity morphisms

1, exist since x < x.
25.2. Products and coproducts.

Definition. Let C be a category and {X,} a collection of objects of C.
An object X € Ob(C) is called a product of {X,} denoted [[. X, if there
exist morphisms 7, : X — X, for each a s.t. for any Y € Ob(C) and any

morphisms ¢, : Y — X, there is unique morphism ¢ : ¥ — X s.t. for each

a we have ¢, = T, or equivalently, the following diagram is commutative:

X

99/1
v To
v

Y = Xa

A standard argument shows that if a product [ [, X, exists, it is unique

up to C-isomorphism; however, a product need not exist in general.

Examples: (1) Let C be the category of sets (resp. groups, abelian groups,
rings). Then [[. X, always exists and coincides with the usual direct prod-
uct of sets (resp. groups, abelian groups, rings).

(2) Let C be the category of fields (with morphisms being field embeddings).

Then products in C do not always exist (in fact, almost never exist).

Coproducts are defined in the same way as products with all arrows

reversed:

Definition. Let C be a category and {X,} a collection of objects of C.
An object X € Ob(C) is called a coproduct of {X,} denoted LicX, if there
exist morphisms ¢, : X, — X for each a s.t. for any Y € Ob(C) and any

morphisms ¢, : X, — Y there is unique morphisms ¢ : X — Y s.t. for



each a we have @i, = 4, that is, the following diagram is commutative:

Unlike products, coproducts in familiar categories have rather different de-

scriptions.

Examples: (1) Let C be the category of sets. Then U¢X, is the disjoint

union of {X,} (as the notation suggests).

(2) Let C be the category of groups. Then U¢X, = xX,, the free product
of {X,}. Informally, this means that given o’ # «, there are no relations

between the images of X, and X,/ inside xX.

(3) Let C be the category of abelian groups. Then ¢ X, = ®X,, the direct
sum of {X,}

(4) Let R be a commutative ring with 1, and let C = R — COMMALG be
the category of commutative R-algebras. Then Lic X, = ®X,, the tensor
product of {X,}.

25.3. Motivating direct limits. Let Y be a set and let {X,}aca be a
collection of subsets of Y which form a chain, that is, for any «a, 3 we have
X0 € Xgor Xg C X,. Then we can consider X = UX,, the union of X,
as subsets of Y. Our goal is to find a characterization of X similar to that
of the disjoint union LX,.

Let < be the order relation on the index set A defined by o < ( if and
only if X, C Xj. Note that < is a total order on A since {X,} is a chain.

For each o, 3 € A with a < 3 let 1o 3 : Xo — X be the inclusion map.

Note that for any a < 8 < v the following diagram is commutative:

Xa

L
La,ﬁl \’Y

XﬂHX’Y

LBy

Now suppose we are given another set Y and maps ¢, : X, — Y for each

a € A. The natural question is

when does there exist a map ¢ : X =UX, — Y s.t. o)x, = ¢q for a € A?



Clearly, such ¢ exists if and only if (pg)x, = @a for any a < 8. Equiv-
alently, ¢ exists if and only if for any o < § the following diagram is com-
mutative:

Xa

-\

Xo 5= X

Thus the union X = UX,, satisfies certain universal property similar to the
one in the definition of coproduct, except that instead of considering arbi-
trary collections of morphisms ¢, : X, — Y (where Y is another set), one
only considers the collections satisfying the compatibility condition (25.3).
This analysis provides a motivation for the concept of direct limit, which

will be given in the next lecture.



