
25. Some category theory

25.1. Categories. A category C consists of the following data:

• objects Ob(C)
• for anyX,Y ∈ Ob(C) a setMor(X,Y ) = MorC(X,Y ) called morphisms from X to Y
• for any triple X,Y, Z ∈ Ob(C) a map

Mor(X,Y )×Mor(Y,Z)→Mor(X,Z)

(f, g) 7→ g ◦ f

called the composition law of morphisms.

The following axioms must be satisfied:

(1) The sets Mor(X,Y ) and Mor(X ′, Y ′) are disjoint unless X = X ′

and Y = Y ′.
(2) Composition of morphisms is associative, that is, for any f ∈Mor(X,Y ),

g ∈Mor(Y, Z) and h ∈Mor(Z,W ) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(3) For any X ∈ Ob(C) there is identity morphism 1X ∈ Mor(X,X)
with the following property: if Y is any object of C, then f ◦ 1X = f

for any f ∈Mor(X,Y ) and 1X ◦ g = g for any g ∈Mor(Y,X).

Notation: We will often write f : X → Y instead of f ∈Mor(X,Y ).

Here are some basic examples of categories.

Examples: (1) C = SET , the category of sets. Objects of C are arbitrary sets
and Mor(X,Y ) = Func(X,Y ), all functions from X to Y . The composition
of morphisms is the usual composition of functions.

(2) C = GRP , the category of groups. Objects are all groups, Mor(X,Y )
is the set of groups homomorphisms from X to Y , the composition of mor-
phisms is the usual composition of functions.

(3) C = TOP , the category of topological spaces. Objects are topological
spaces, Mor(X,Y ) is the set of continuous functions from X to Y , the
composition of morphisms is the usual composition of functions.

Here is an example of rather different kind.
(4) Let A be a poset with partial order relation ≤. Then we can consider
the following category C. The objects of C are simply elements of A, and
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morphisms are defined by setting

Mor(x, y) =
{
∅ if x 6≤ y
The one element set consisting of the pair (x, y) if x ≤ y.

The composition of morphisms Mor(x, y) ×Mor(y, z) → Mor(x, z) is de-
fined as follows:

(i) If x 6≤ y or y 6≤ z, then Mor(x, y) ×Mor(y, z) = ∅, so there exists
unique map Mor(x, y)×Mor(y, z)→ Mor(x, z) (the “do nothing”
map)

(ii) If x ≤ y and y ≤ z, then x ≤ z by transitivity, so |Mor(x, y)| =
|Mor(y, z)| = |Mor(x, z)| = 1. Again there exists unique map
Mor(x, y)×Mor(y, z)→Mor(x, z) given by ((x, y), (y, z)) 7→ (x, z).

Finally, associativity of composition is automatic and identity morphisms
1x exist since x ≤ x.

25.2. Products and coproducts.

Definition. Let C be a category and {Xα} a collection of objects of C.
An object X ∈ Ob(C) is called a product of {Xα} denoted

∏
C Xα if there

exist morphisms πα : X → Xα for each α s.t. for any Y ∈ Ob(C) and any
morphisms ϕα : Y → Xα there is unique morphism ϕ : Y → X s.t. for each
α we have ϕα = παϕ, or equivalently, the following diagram is commutative:

X

πα
��

Y ϕα
//

ϕ
>>|

|
|

|
Xα

A standard argument shows that if a product
∏
C Xα exists, it is unique

up to C-isomorphism; however, a product need not exist in general.

Examples: (1) Let C be the category of sets (resp. groups, abelian groups,
rings). Then

∏
C Xα always exists and coincides with the usual direct prod-

uct of sets (resp. groups, abelian groups, rings).

(2) Let C be the category of fields (with morphisms being field embeddings).
Then products in C do not always exist (in fact, almost never exist).

Coproducts are defined in the same way as products with all arrows
reversed:

Definition. Let C be a category and {Xα} a collection of objects of C.
An object X ∈ Ob(C) is called a coproduct of {Xα} denoted tCXα if there
exist morphisms ια : Xα → X for each α s.t. for any Y ∈ Ob(C) and any
morphisms ϕα : Xα → Y there is unique morphisms ϕ : X → Y s.t. for
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each α we have ϕια = ϕα, that is, the following diagram is commutative:

Y

Xα ια
//

ϕα
==||||||||
X

ϕ

OO�
�
�

Unlike products, coproducts in familiar categories have rather different de-
scriptions.

Examples: (1) Let C be the category of sets. Then tCXα is the disjoint
union of {Xα} (as the notation suggests).

(2) Let C be the category of groups. Then tCXα = ?Xα, the free product
of {Xα}. Informally, this means that given α′ 6= α, there are no relations
between the images of Xα and Xα′ inside ?Xα.

(3) Let C be the category of abelian groups. Then tCXα = ⊕Xα, the direct
sum of {Xα}

(4) Let R be a commutative ring with 1, and let C = R − COMMALG be
the category of commutative R-algebras. Then tCXα = ⊗Xα, the tensor
product of {Xα}.

25.3. Motivating direct limits. Let Y be a set and let {Xα}α∈A be a
collection of subsets of Y which form a chain, that is, for any α, β we have
Xα ⊆ Xβ or Xβ ⊆ Xα. Then we can consider X = ∪Xα, the union of Xα

as subsets of Y . Our goal is to find a characterization of X similar to that
of the disjoint union tXα.

Let ≤ be the order relation on the index set A defined by α ≤ β if and
only if Xα ⊆ Xβ. Note that ≤ is a total order on A since {Xα} is a chain.

For each α, β ∈ A with α ≤ β let ια,β : Xα → Xβ be the inclusion map.
Note that for any α ≤ β ≤ γ the following diagram is commutative:

Xα

ια,γ

!!BBBBBBBB
ια,β
��

Xβ ιβ,γ
// Xγ

Now suppose we are given another set Y and maps ϕα : Xα → Y for each
α ∈ A. The natural question is

when does there exist a map ϕ : X = ∪Xα → Y s.t. ϕ|Xα = ϕα for α ∈ A?
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Clearly, such ϕ exists if and only if (ϕβ)|Xα = ϕα for any α ≤ β. Equiv-
alently, ϕ exists if and only if for any α ≤ β the following diagram is com-
mutative:

Xα

ϕα

  AAAAAAAA
ια,β
��

Xβ ϕβ
// X

Thus the union X = ∪Xα satisfies certain universal property similar to the
one in the definition of coproduct, except that instead of considering arbi-
trary collections of morphisms ϕα : Xα → Y (where Y is another set), one
only considers the collections satisfying the compatibility condition (25.3).
This analysis provides a motivation for the concept of direct limit, which
will be given in the next lecture.


