25. Some category theory

25.1. Categories. A category $\mathcal C$ consists of the following data:

- objects $Ob(\mathcal{C})$
- for any $X, Y \in Ob(\mathcal{C})$ a set $Mor(X, Y) = Mor_{\mathcal{C}}(X, Y)$ called morphisms from X to Y
- for any triple $X, Y, Z \in Ob(\mathcal{C})$ a map

$$
Mor(X, Y) \times Mor(Y, Z) \to Mor(X, Z)
$$

$$
(f, g) \mapsto g \circ f
$$

called the composition law of morphisms.

The following axioms must be satisfied:

- (1) The sets $Mor(X, Y)$ and $Mor(X', Y')$ are disjoint unless $X = X'$ and $Y = Y'$.
- (2) Composition of morphisms is associative, that is, for any $f \in Mor(X, Y)$, $g \in Mor(Y, Z)$ and $h \in Mor(Z, W)$ we have

$$
h\circ (g\circ f)=(h\circ g)\circ f.
$$

(3) For any $X \in Ob(\mathcal{C})$ there is identity morphism $1_X \in Mor(X, X)$ with the following property: if Y is any object of C, then $f \circ 1_X = f$ for any $f \in Mor(X, Y)$ and $1_X \circ g = g$ for any $g \in Mor(Y, X)$.

Notation: We will often write $f : X \to Y$ instead of $f \in Mor(X, Y)$.

Here are some basic examples of categories.

Examples: (1) $\mathcal{C} = SET$, the category of sets. Objects of C are arbitrary sets and $Mor(X, Y) = Func(X, Y)$, all functions from X to Y. The composition of morphisms is the usual composition of functions.

(2) $C = GRP$, the category of groups. Objects are all groups, $Mor(X, Y)$ is the set of groups homomorphisms from X to Y , the composition of morphisms is the usual composition of functions.

(3) $C = TOP$, the category of topological spaces. Objects are topological spaces, $Mor(X, Y)$ is the set of continuous functions from X to Y, the composition of morphisms is the usual composition of functions.

Here is an example of rather different kind.

(4) Let A be a poset with partial order relation \leq . Then we can consider the following category $\mathcal C$. The objects of $\mathcal C$ are simply elements of A , and

morphisms are defined by setting

 $Mor(x, y) = \begin{cases} \emptyset & \text{if } x \not\leq y \\ \text{The one element set consisting of the pair } (x, y) & \text{if } x \leq y \end{cases}$ The one element set consisting of the pair (x, y) if $x \leq y$. The composition of morphisms $Mor(x, y) \times Mor(y, z) \rightarrow Mor(x, z)$ is defined as follows:

- (i) If $x \nleq y$ or $y \nleq z$, then $Mor(x, y) \times Mor(y, z) = \emptyset$, so there exists unique map $Mor(x, y) \times Mor(y, z) \rightarrow Mor(x, z)$ (the "do nothing" map)
- (ii) If $x \leq y$ and $y \leq z$, then $x \leq z$ by transitivity, so $|Mor(x, y)| =$ $|Mor(y, z)| = |Mor(x, z)| = 1.$ Again there exists unique map $Mor(x, y) \times Mor(y, z) \rightarrow Mor(x, z)$ given by $((x, y), (y, z)) \mapsto (x, z)$.

Finally, associativity of composition is automatic and identity morphisms 1_x exist since $x \leq x$.

25.2. Products and coproducts.

Definition. Let C be a category and $\{X_{\alpha}\}\$ a collection of objects of C. An object $X \in Ob(\mathcal{C})$ is called a product of $\{X_{\alpha}\}\)$ denoted $\prod_{\mathcal{C}} X_{\alpha}$ if there exist morphisms $\pi_{\alpha}: X \to X_{\alpha}$ for each α s.t. for any $Y \in Ob(\mathcal{C})$ and any morphisms $\varphi_{\alpha}: Y \to X_{\alpha}$ there is unique morphism $\varphi: Y \to X$ s.t. for each α we have $\varphi_{\alpha} = \pi_{\alpha}\varphi$, or equivalently, the following diagram is commutative:

A standard argument shows that if a product $\prod_{\mathcal{C}} X_{\alpha}$ exists, it is unique up to C-isomorphism; however, a product need not exist in general.

Examples: (1) Let $\mathcal C$ be the category of sets (resp. groups, abelian groups, rings). Then $\prod_{\mathcal{C}} X_{\alpha}$ always exists and coincides with the usual direct product of sets (resp. groups, abelian groups, rings).

(2) Let $\mathcal C$ be the category of fields (with morphisms being field embeddings). Then products in $\mathcal C$ do not always exist (in fact, almost never exist).

Coproducts are defined in the same way as products with all arrows reversed:

Definition. Let C be a category and $\{X_{\alpha}\}\$ a collection of objects of C. An object $X \in Ob(\mathcal{C})$ is called a coproduct of $\{X_{\alpha}\}\$ denoted $\Box_{\mathcal{C}}X_{\alpha}$ if there exist morphisms $\iota_{\alpha}: X_{\alpha} \to X$ for each α s.t. for any $Y \in Ob(\mathcal{C})$ and any morphisms $\varphi_{\alpha}: X_{\alpha} \to Y$ there is unique morphisms $\varphi: X \to Y$ s.t. for each α we have $\varphi \iota_{\alpha} = \varphi_{\alpha}$, that is, the following diagram is commutative:

Unlike products, coproducts in familiar categories have rather different descriptions.

Examples: (1) Let C be the category of sets. Then $\Box_{\mathcal{C}} X_{\alpha}$ is the disjoint union of $\{X_{\alpha}\}\$ (as the notation suggests).

(2) Let C be the category of groups. Then $\Box_C X_\alpha = \star X_\alpha$, the free product of $\{X_{\alpha}\}\$. Informally, this means that given $\alpha' \neq \alpha$, there are no relations between the images of X_{α} and $X_{\alpha'}$ inside $\star X_{\alpha}$.

(3) Let C be the category of abelian groups. Then $\bigcup_{\mathcal{C}} X_{\alpha} = \bigoplus X_{\alpha}$, the direct sum of $\{X_\alpha\}$

(4) Let R be a commutative ring with 1, and let $C = R - \text{COMMALG}$ be the category of commutative R-algebras. Then $\Box_{\mathcal{C}} X_{\alpha} = \otimes X_{\alpha}$, the tensor product of $\{X_{\alpha}\}.$

25.3. Motivating direct limits. Let Y be a set and let ${X_\alpha}_{\alpha\in A}$ be a collection of subsets of Y which form a chain, that is, for any α, β we have $X_{\alpha} \subseteq X_{\beta}$ or $X_{\beta} \subseteq X_{\alpha}$. Then we can consider $X = \cup X_{\alpha}$, the union of X_{α} as subsets of Y . Our goal is to find a characterization of X similar to that of the disjoint union $\sqcup X_\alpha$.

Let \leq be the order relation on the index set A defined by $\alpha \leq \beta$ if and only if $X_{\alpha} \subseteq X_{\beta}$. Note that \leq is a total order on A since $\{X_{\alpha}\}\)$ is a chain.

For each $\alpha, \beta \in A$ with $\alpha \leq \beta$ let $\iota_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$ be the inclusion map. Note that for any $\alpha \leq \beta \leq \gamma$ the following diagram is commutative:

Now suppose we are given another set Y and maps $\varphi_{\alpha}: X_{\alpha} \to Y$ for each $\alpha \in A$. The natural question is

when does there exist a map $\varphi: X = \bigcup X_\alpha \to Y$ s.t. $\varphi_{|X_\alpha} = \varphi_\alpha$ for $\alpha \in A$?

Clearly, such φ exists if and only if $(\varphi_{\beta})_{|X_{\alpha}} = \varphi_{\alpha}$ for any $\alpha \leq \beta$. Equivalently, φ exists if and only if for any $\alpha \leq \beta$ the following diagram is commutative:

Thus the union $X = \bigcup X_\alpha$ satisfies certain universal property similar to the one in the definition of coproduct, except that instead of considering arbitrary collections of morphisms $\varphi_{\alpha}: X_{\alpha} \to Y$ (where Y is another set), one only considers the collections satisfying the compatibility condition (25.3). This analysis provides a motivation for the concept of direct limit, which will be given in the next lecture.