
24. Solvability of equations by radicals and solvability of

Galois groups

The goal of this lecture is to prove the following theorem:

Theorem 24.1. Let F be a field of characteristic zero, f(x) ∈ F [x] and K
a splitting field for f(x) over F . Then the equation f(x) = 0 is solvable by
radicals ⇐⇒ Gal(K/F ) is solvable.

Informally, the equation f(x) = 0 is solvable by radicals if the roots of
f(x) can be obtained from F using four arithmetic operations and taking
roots (of arbitrary degree). The formal definition of solvability by radicals
will be given later.

24.1. Some preparations. We start with a simple observation:

Observation 24.2. Let G be a finite group. Then G is solvable if and only
if G has a chain of subgroups G = G0 ⊇ G1 ⊇ . . . ⊇ Gn = {1} where
Gi+1 / Gi and Gi/Gi+1 is cyclic.

Proof. By a standard argument any finite group G has a descending chain
{Gi} where Gi+1 / Gi and each quotient Gi/Gi+1 simple. So, for each i

either

(i) Gi/Gi+1 is cyclic of prime order or
(ii) Gi/Gi+1 is non-abelian simple

If (i) occurs for all i, then each Gi/Gi+1 is solvable, so G is solvable by
Algebra-I. If (ii) occurs for some i, then Gi/Gi+1 is not solvable, whence G
is not solvable. �

Definition. A finite extension K/F is called cyclic if K/F is Galois and
Gal(K/F ) is cyclic.

The following is a slight reformulation of Kummer’s Theorem (Theorem 23.6).

Theorem. Let F be a field containing primitive nth root of unity for some
n, and let K/F be a finite extension. The following are equivalent:

(a) K/F is cyclic with [K : F ] | n
(b) K = F ( n

√
a) for some a ∈ F .

Definition. Let F be a field of characteristic zero.
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(a) LetK/F be a finite extension. We will say thatK/F is a root extension
if there is a chain of subfields F = K0 ⊆ K1 ⊆ . . . ⊆ Kn where for
0 ≤ i ≤ n−1 we have Ki+1 = Ki( ni

√
ai) for some ai ∈ Ki and ni ∈ N.

(b) Let f(x) ∈ F [x]. We say that the equation f(x) = 0 is solvable by radicals
if a splitting field of f(x) over F is contained in some root extension
of F .

Lemma 24.3. Assume that M/F is a root extension and let L be the Galois
closure of M over F . Then L/F is also a root extension.

Proof. Exercise. The main idea is to use Problem 1(a) in HW#10 which
asserts that L is the compositum of all Galois conjugates of K. �

24.2. Proof of the Main Theorem.

Proof of Theorem 24.1. Proofs in both directions are fairly similar, so we
will only do the forward direction. Thus we are given that there is a root
extension M/F s.t. K ⊆ M . Let L be the Galois closure of M over F .
Then F ⊆ K ⊆ L with L/F and K/F both Galois, so by Proposition 21.3
Gal(K/F ) is a quotient of Gal(L/F ). Thus, to prove that Gal(K/F ) is
solvable,

it is enough to show that Gal(L/F ) is solvable.

By Lemma 24.3 L is a root extension, so there exist subfields F = L0 ⊆
L1 ⊆ . . . ⊆ Ls = L s.t. Li+1 = Li( ni

√
ai) for some ai ∈ Li and ni ∈ N.

Easy case: F contains primitive nth
i root of unity for each i. Then by

Kummer’s Theorem Li+1/Li is cyclic (in particular, Galois). Let Gi =
Gal(L/Li) and G = Gal(L/F ).

F = L0 ⊆ L1 ⊆ . . . ⊆ Ls = L

G = G0 ⊇ G1 ⊇ . . . ⊇ Gs = {1}

By Proposition 21.3 applied to the triple Li ⊆ Li+1 ⊆ L we get that Gi+1/Gi

and Gi/Gi+1
∼= Gal(Li+1/Li) is cyclic. Thus by Observation 24.2 G is

solvable.

General case: Since charF = 0, for each n ∈ N the algebraic closure of F
contains primitive nth root of unity, call it ζn (choose one).
Let E = F (ζn1 , . . . , ζns). The extension E/F is Galois since the Galois
conjugates of a root of unity are its powers. In fact, it is not hard to show
that E = F (ζn), where n = LCM(n1, . . . , ns) and Gal(E/F ) ∼= Z∗

n, so in
particular Gal(E/F ) is abelian.
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Since E/F and L/F are both Galois, by Problem 4 in HW#9 EL/F is
also Galois. Consider the chain of subfields

E = EL0 ⊆ EL1 ⊆ . . . ⊆ ELs = EL (∗ ∗ ∗)

Note that ELi+1 = ELi( ni
√
ai). Since ELi contains ζni , by Kummer’s the-

orem the extension ELi+1/ELi is cyclic.
Applying the argument from the easy case to (***) and using the fact

that EL/E is Galois (as EL/F is Galois), we deduce that Gal(EL/E) is
solvable. Using Proposition 21.3 again, we get that

Gal(EL/E) ∼= Gal(EL/F )/Gal(E/F ).

Since Gal(E/F ) is abelian (hence also solvable), we get that Gal(EL/F ) is
solvable.

Finally (again by Proposition 21.3), Gal(L/F ) is a quotient of Gal(EL/F ),
hence also solvable. �


