
23. Cyclic extensions

Problem. Given a field F , describe all finite Galois extensions K/F with
Gal(K/F ) cyclic.

In this lecture we shall obtain a partial solution to this problem.

23.1. Linear independence of characters.

Definition. LetG be a group and L a field. A character of G with values in L

is a group homomorphism χ : G→ L∗

Lemma 23.1. Let G be a group and L a field. Let χ1, . . . , χn : G → L∗

be distinct characters of G with values in L. Then χ1, . . . , χn are linearly
independent over L (as functions), that is, if we are given a1, . . . , an ∈ L

s.t.
n∑
i=1

aiχi(g) = 0 for all g ∈ G,

then each ai = 0.

Proof. Suppose not, and let l1χ1 + . . .+ lmχm = 0 be a linear dependence,
with m minimal possible. Clearly, m ≥ 2 and WOLOG l1 6= 0.

Fix g ∈ G s.t. χm(g) 6= χ1(g). We have

l1χ1(x) + . . .+ lmχm(x) = 0 for all x ∈ G

l1χ1(gx) + . . .+ lmχm(gx) = 0 for all x ∈ G

Since each χi is multiplicative, the second equation can be rewritten as

l1χ1(g)χ1(x) + . . .+ lmχm(g)χm(x) = 0 for all x ∈ G (∗ ∗ ∗)

Multiplying the first equation by χm(g) on the left and subtracting from
(***), we get

m−1∑
i=1

li(χi(g)− χm(g))χi(x) = 0 for all x ∈ G.

Since l1(χ1(g)−χm(g)) 6= 0, we get a linear dependence between χ1, . . . , χm−1,
which contradicts minimality of m. �

Corollary 23.2. Let K and L be fields, and let σ1, . . . , σn be distinct em-
beddings of K into L. Then σ1, . . . , σn are linearly independent.

Proof. Apply Lemma 23.1 with G = K∗. �
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23.2. Basic facts about norms in field extensions. We recall from
Homework#9 the definition of the norm of a field extension.

Definition. Let K/F be a finite separable extension. The norm function
N = NK/F : K → F is defined by

NK/F (α) =
∏

σ∈Emb(K,F )

σ(α).

The fact that the values of N lie in F is not obvious and was proved in the
homework. Clearly, N is mulitplicative, that is,

N(αβ) = N(α)N(β).

Remark: Suppose that K/F is Galois. Then

(1) N(α) =
∏
σ∈Gal(K/F ) σ(α)

(2) For any τ ∈ Gal(K/F ) we have N(τα) = N(α). Indeed,

N(τα) =
∏

σ∈Gal(K/F )

στ(α) = N(α)

since if σ runs over all elements of Gal(K/F ), then so does στ .

Corollary 23.3. If K/F is a finite Galois extension, then for each σ ∈
Gal(K/F ) and α ∈ K∗ we have N(σαα ) = 1.

Theorem 23.4 (Hilbert’s Theorem 90). Let K/F be a finite Galois exten-
sion with Gal(K/F ) cyclic and let σ be a generator of Gal(K/F ). Then for
any β ∈ K with N(β) = 1 there exists α ∈ K s.t. β = σα

α .

Proof. Let n = [K : F ] = |Gal(K/F )| = ord(σ). Define the function ϕ :
K → K by

ϕ(x) =
x

β
+

σ(x)
βσ(β)

+ . . .+
σn−1(x)

βσ(β) . . . σn−1(β)
.

Since ord(σ) = n, we know that id, σ, . . . , σn−1 are distinct automorphisms
of K, and thus also distinct embeddings from K to K. By Corollary 23.1
ϕ 6= 0 as a function. Choose θ ∈ K s.t. ϕ(θ) 6= 0, and let α = ϕ(θ). We
claim that β = σ(α)

α , which is equivalent to showing that σ(α) = βα. Indeed,

α =
θ

β
+

σ(θ)
βσ(β)

+
σ2(θ)

βσ(β)σ2(β)
+ . . .+

σn−1(θ)
βσ(β) . . . σn−1(β)

and(23.1)

σ(α) =
σ(θ)
σ(β)

+
σ2(θ)

σ(β)σ2(β)
+ . . .+

σn(θ)
σ(β)σ2(β) . . . σn(β)

(23.2)

Note that for 1 ≤ i ≤ n−1 the ith term on the RHS of (23.2) is equal to the
(i+1)st term on the RHS of (23.1) multiplied by β. Finally, since σn(θ) = θ

and σ(β)σ2(β) . . . σn(β) = N(β) = 1, the last term on the RHS of (23.2)
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equals θ and thus equals the first term on the RHS of (23.1) multiplied by
β. Thus, we showed that σ(α) = βα, as desired. �

23.3. Primitive roots of unity.

Definition. Let F be a field and n ∈ N. An element ζ ∈ F is called a
primitive nth root of unity if ζn = 1 and ζm 6= 1 for 0 < m < n.

Example: (1) C contains primitive nth root of unity for all n. The same is
true for any algebraically closed field of characteristic zero.
(2) If charF = p > 0, there is no primitive pth root of unity in F since
ζp = 1 implies that (ζ − 1)p = 0, whence ζ = 1.

More generally, we have the following:

Claim 23.5. If F is a field and n ∈ N, then the following are equivalent:

(i) Some finite extension of F contains primitive nth root of unity
(ii) charF does not divide n.

23.4. Cyclic Galois extensions in the presence of roots of unity.

Theorem 23.6 (Kummer). Let F be a field, n ∈ N and suppose that F
contains primitive nth root of unity. The following hold:

(a) Let K/F be a Galois extension with Gal(K/F ) ∼= Z/nZ. Then K =
F ( n
√
a) for some a ∈ F . More precisely, K = F (α) for some α ∈ K

s.t. αn ∈ F .
(b) Conversely, suppose that K = F ( n

√
a) for some a ∈ F . Then K/F

is Galois and Gal(K/F ) ∼= Z/dZ for some d | n.

Remark: If F does not contain primitive nth root of unity, an extension
of the form F ( n

√
a)/F need not even be Galois.

Proof. (a) Let ζ ∈ F be primitive nth root of unity, let N : K → F be the
norm function and let σ be a generator of Gal(K/F ). Since ζ ∈ F , we have
N(ζ) = ζn = 1, so by Hilbert’s Theorem 90 there exists α ∈ K s.t. ζ = σ(α)

α .
So, σ(α) = ζα, whence σi(α) = ζiα for 0 ≤ i ≤ n − 1. Hence the orbit

of α under the action of Gal(K/F ) contains n distinct elements. Therefore,
degF (α) ≥ n = [K : F ], and we must have K = F (α).

It remains to show that αn ∈ F . We have σ(αn) = σ(α)n = ζnαn = αn.
Thus, αn is fixed by σ, whence fixed by the entire Galois group Gal(K/F ).
Therefore, by Proposition 21.1 αn ∈ F .

(b) We are given that K = F (α) s.t. a := αn ∈ F . First note that K is a
splitting field over F for xn − a = xn − αn =

∏n
i=1(x − ζiα) since ζ ∈ F .

Hence K/F is Galois.
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Any σ ∈ Gal(K/F ) must send α to a root of xn − a, so σ(α) = ζI(σ)α

for some integer I(σ) which is well defined mod n. Thus, we get a map
I : Gal(K/F ) → Z/nZ. It is straightforward to check that I is a homo-
morphism, and also I is injective as σ is completely determined by where it
sends α. Therefore, Gal(K/F ) is a subgroup of Z/nZ, so Gal(K/F ) ∼= Z/dZ
for some d | n. �


