23. CYCLIC EXTENSIONS

Problem. Given a field F, describe all finite Galois extensions K/F with
Gal(K/F) cyclic.

In this lecture we shall obtain a partial solution to this problem.
23.1. Linear independence of characters.

Definition. Let G be a group and L a field. A character of G with values in L

is a group homomorphism x : G — L*

Lemma 23.1. Let G be a group and L a field. Let x1,...,xn : G — L*

be distinct characters of G with values in L. Then x1,...,Xn are linearly
independent over L (as functions), that is, if we are given ay,...,a, € L
s.t.

Zaixi(g) =0 forall g € G,
i=1
then each a; = 0.

Proof. Suppose not, and let l1x1 + ...+ Linxm = 0 be a linear dependence,
with m minimal possible. Clearly, m > 2 and WOLOG [; # 0.
Fix g € G s.t. xm(9) # x1(g). We have

hxi(@) + ...+ lpxm(z) =0for all z € G
lixi(gz) 4+ ...+ lnxm(gz) =0 for all x € G

Since each y; is multiplicative, the second equation can be rewritten as

hxi(g)xi(z)+ ...+ lmxm(g)xm(z) =0 for all z € G (% * %)

Multiplying the first equation by x,,(g) on the left and subtracting from
(+55), we get
m—1

Li(xi(9) — xm(9))xi(x) =0 for all x € G.

=1

Since 11 (x1(9)—xm(g)) # 0, we get a linear dependence between 1, ..., Xm—1,
which contradicts minimality of m. ([

Corollary 23.2. Let K and L be fields, and let o1,...,0, be distinct em-
beddings of K into L. Then o1,...,0, are linearly independent.

Proof. Apply Lemma 23.1 with G = K*. O
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23.2. Basic facts about norms in field extensions. We recall from

Homework#9 the definition of the norm of a field extension.

Definition. Let K/F be a finite separable extension. The norm function
N = Nk : K — F is defined by

Ngp(a) = H o(a).
o€ Emb(K,F)

The fact that the values of N lie in F' is not obvious and was proved in the

homework. Clearly, N is mulitplicative, that is,
N(af) = N(a)N(B).
Remark: Suppose that K/F is Galois. Then

(1) N(a) = HaeGal(K/F) o(a)
(2) For any 7 € Gal(K/F) we have N(7a) = N(«). Indeed,

N(ra) = H o7(a) = N(«)
oeGal(K/F)

since if o runs over all elements of Gal(K/F'), then so does o7.

Corollary 23.3. If K/F is a finite Galois extension, then for each o €
Gal(K/F) and o € K* we have N(%¥) = 1.

Theorem 23.4 (Hilbert’s Theorem 90). Let K/F' be a finite Galois exten-
sion with Gal(K/F) cyclic and let o be a generator of Gal(K/F'). Then for
any B € K with N(B) =1 there exists o € K s.t. = 22,

Proof. Let n = [K : F] = |Gal(K/F)| = ord(c). Define the function ¢ :
K — K by

=2y o@® o ")
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Since ord(c) = n, we know that id, o,...,0" ! are distinct automorphisms

of K, and thus also distinct embeddings from K to K. By Corollary 23.1
¢ # 0 as a function. Choose 6 € K s.t. ¢(0) # 0, and let « = p(f). We
claim that 8 = %a), which is equivalent to showing that o(a) = fa. Indeed,

0. o) () O,

(231) a = ﬂ_'_,BO'(ﬂ) +60'(,8)0'2(B) ++ﬂ0(5)0n_1(ﬂ) d
o o2 o"

(23.2) o) = 0 - "
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Note that for 1 < i < n—1 the i*® term on the RHS of (23.2) is equal to the
(i+1)%* term on the RHS of (23.1) multiplied by 3. Finally, since o"(6) = 6
and o(B)o?(B)...0"(B) = N(B) = 1, the last term on the RHS of (23.2)



equals 6 and thus equals the first term on the RHS of (23.1) multiplied by
B. Thus, we showed that o(«) = Sa, as desired. ([

23.3. Primitive roots of unity.

Definition. Let F be a field and n € N. An element { € F is called a
primitive n*® root of unity if (" =1 and ¢"™ # 1 for 0 < m < n.

th root of unity for all n. The same is

Example: (1) C contains primitive n
true for any algebraically closed field of characteristic zero.

(2) If char F = p > 0, there is no primitive p'" root of unity in F since
(P =1 implies that (¢ — 1)? = 0, whence ¢ = 1.

More generally, we have the following:

Claim 23.5. If F' is a field and n € N, then the following are equivalent:

(i) Some finite extension of F contains primitive n'

(ii) char F' does not divide n.

root of unity

23.4. Cyclic Galois extensions in the presence of roots of unity.

Theorem 23.6 (Kummer). Let F be a field, n € N and suppose that F

contains primitive n™ root of unity. The following hold:

(a) Let K/F be a Galois extension with Gal(K/F) = Z/nZ. Then K =
F(/a) for some a € F. More precisely, K = F(«) for some a € K
s.t. o™ e F.

(b) Conversely, suppose that K = F({/a) for some a € F. Then K/F
is Galois and Gal(K/F) = Z/dZ for some d | n.

Remark: If F does not contain primitive n'®

of the form F({/a)/F need not even be Galois.

root of unity, an extension

Proof. (a) Let ¢ € F be primitive n*' root of unity, let N : K — F be the
norm function and let o be a generator of Gal(K/F'). Since ¢ € F, we have
N(¢) = (™ =1, so by Hilbert’s Theorem 90 there exists a € K s.t. {( = @

So, o(a) = Ca, whence o'(a) = (‘a for 0 < i < n — 1. Hence the orbit
of o under the action of Gal(K/F') contains n distinct elements. Therefore,
degp(a) > n = [K : F], and we must have K = F(«).

It remains to show that o € F. We have o(a") = o(a)” = ("a™ = a".
Thus, o™ is fixed by o, whence fixed by the entire Galois group Gal(K/F).

Therefore, by Proposition 21.1 o™ € F.

(b) We are given that K = F(a) s.t. a := o™ € F. First note that K is a
splitting field over F for 2" —a = 2" — o = [[;(z — (‘«) since ¢ € F.
Hence K/F is Galois.



Any o € Gal(K/F) must send o to a root of 2" — a, so o(a) = ¢{(Da
for some integer I(o) which is well defined mod n. Thus, we get a map
I: Gal(K/F) — Z/nZ. 1t is straightforward to check that I is a homo-
morphism, and also I is injective as o is completely determined by where it
sends a. Therefore, Gal(K/F) is a subgroup of Z/nZ, so Gal(K/F) = Z/dZ

for some d | n. O



