23. Cyclic extensions

Problem. Given a field F, describe all finite Galois extensions K/F with Gal(K/F) cyclic.

In this lecture we shall obtain a partial solution to this problem.

23.1. Linear independence of characters.

Definition. Let G be a group and L a field. A <u>character of G with values in L</u> is a group homomorphism $\chi : G \to L^*$

Lemma 23.1. Let G be a group and L a field. Let $\chi_1, \ldots, \chi_n : G \to L^*$ be <u>distinct</u> characters of G with values in L. Then χ_1, \ldots, χ_n are linearly independent over L (as functions), that is, if we are given $a_1, \ldots, a_n \in L$ s.t.

$$\sum_{i=1}^{n} a_i \chi_i(g) = 0 \text{ for all } g \in G,$$

then each $a_i = 0$.

Proof. Suppose not, and let $l_1\chi_1 + \ldots + l_m\chi_m = 0$ be a linear dependence, with m minimal possible. Clearly, $m \ge 2$ and WOLOG $l_1 \ne 0$.

Fix $g \in G$ s.t. $\chi_m(g) \neq \chi_1(g)$. We have

$$l_1\chi_1(x) + \ldots + l_m\chi_m(x) = 0 \text{ for all } x \in G$$
$$l_1\chi_1(gx) + \ldots + l_m\chi_m(gx) = 0 \text{ for all } x \in G$$

Since each χ_i is multiplicative, the second equation can be rewritten as

$$l_1\chi_1(g)\chi_1(x) + \ldots + l_m\chi_m(g)\chi_m(x) = 0 \text{ for all } x \in G \qquad (***)$$

Multiplying the first equation by $\chi_m(g)$ on the left and subtracting from $(^{***})$, we get

$$\sum_{i=1}^{m-1} l_i(\chi_i(g) - \chi_m(g))\chi_i(x) = 0 \text{ for all } x \in G.$$

Since $l_1(\chi_1(g) - \chi_m(g)) \neq 0$, we get a linear dependence between $\chi_1, \ldots, \chi_{m-1}$, which contradicts minimality of m.

Corollary 23.2. Let K and L be fields, and let $\sigma_1, \ldots, \sigma_n$ be distinct embeddings of K into L. Then $\sigma_1, \ldots, \sigma_n$ are linearly independent.

Proof. Apply Lemma 23.1 with $G = K^*$.

23.2. Basic facts about norms in field extensions. We recall from Homework#9 the definition of the norm of a field extension.

Definition. Let K/F be a finite separable extension. The norm function $N = N_{K/F} : K \to F$ is defined by

$$N_{K/F}(\alpha) = \prod_{\sigma \in Emb(K,\overline{F})} \sigma(\alpha)$$

The fact that the values of N lie in F is not obvious and was proved in the homework. Clearly, N is multiplicative, that is,

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Remark: Suppose that K/F is Galois. Then

(1) $N(\alpha) = \prod_{\sigma \in \text{Gal}(K/F)} \sigma(\alpha)$ (2) For any $\tau \in \text{Gal}(K/F)$ we have $N(\tau\alpha) = N(\alpha)$. Indeed,

$$N(\tau \alpha) = \prod_{\sigma \in \operatorname{Gal}(K/F)} \sigma \tau(\alpha) = N(\alpha)$$

since if σ runs over all elements of $\operatorname{Gal}(K/F)$, then so does $\sigma\tau$.

Corollary 23.3. If K/F is a finite Galois extension, then for each $\sigma \in \text{Gal}(K/F)$ and $\alpha \in K^*$ we have $N(\frac{\sigma\alpha}{\alpha}) = 1$.

Theorem 23.4 (Hilbert's Theorem 90). Let K/F be a finite Galois extension with $\operatorname{Gal}(K/F)$ cyclic and let σ be a generator of $\operatorname{Gal}(K/F)$. Then for any $\beta \in K$ with $N(\beta) = 1$ there exists $\alpha \in K$ s.t. $\beta = \frac{\sigma \alpha}{\alpha}$.

Proof. Let $n = [K : F] = |Gal(K/F)| = ord(\sigma)$. Define the function $\varphi : K \to K$ by

$$\varphi(x) = \frac{x}{\beta} + \frac{\sigma(x)}{\beta\sigma(\beta)} + \ldots + \frac{\sigma^{n-1}(x)}{\beta\sigma(\beta)\ldots\sigma^{n-1}(\beta)}$$

Since $ord(\sigma) = n$, we know that $id, \sigma, \ldots, \sigma^{n-1}$ are distinct automorphisms of K, and thus also distinct embeddings from K to K. By Corollary 23.1 $\varphi \neq 0$ as a function. Choose $\theta \in K$ s.t. $\varphi(\theta) \neq 0$, and let $\alpha = \varphi(\theta)$. We claim that $\beta = \frac{\sigma(\alpha)}{\alpha}$, which is equivalent to showing that $\sigma(\alpha) = \beta \alpha$. Indeed,

(23.1)
$$\alpha = \frac{\theta}{\beta} + \frac{\sigma(\theta)}{\beta\sigma(\beta)} + \frac{\sigma^2(\theta)}{\beta\sigma(\beta)\sigma^2(\beta)} + \dots + \frac{\sigma^{n-1}(\theta)}{\beta\sigma(\beta)\dots\sigma^{n-1}(\beta)} \text{ and}$$

(23.2)
$$\sigma(\alpha) = \frac{\sigma(\theta)}{\sigma(\beta)} + \frac{\sigma^2(\theta)}{\sigma(\beta)\sigma^2(\beta)} + \ldots + \frac{\sigma^n(\theta)}{\sigma(\beta)\sigma^2(\beta)\ldots\sigma^n(\beta)}$$

Note that for $1 \leq i \leq n-1$ the *i*th term on the RHS of (23.2) is equal to the $(i+1)^{\text{st}}$ term on the RHS of (23.1) multiplied by β . Finally, since $\sigma^n(\theta) = \theta$ and $\sigma(\beta)\sigma^2(\beta)\ldots\sigma^n(\beta) = N(\beta) = 1$, the last term on the RHS of (23.2)

equals θ and thus equals the first term on the RHS of (23.1) multiplied by β . Thus, we showed that $\sigma(\alpha) = \beta \alpha$, as desired.

23.3. Primitive roots of unity.

Definition. Let F be a field and $n \in \mathbb{N}$. An element $\zeta \in F$ is called a primitive n^{th} root of unity if $\zeta^n = 1$ and $\zeta^m \neq 1$ for 0 < m < n.

Example: (1) \mathbb{C} contains primitive n^{th} root of unity for all n. The same is true for any algebraically closed field of characteristic zero.

(2) If char F = p > 0, there is no primitive p^{th} root of unity in F since $\zeta^p = 1$ implies that $(\zeta - 1)^p = 0$, whence $\zeta = 1$.

More generally, we have the following:

Claim 23.5. If F is a field and $n \in \mathbb{N}$, then the following are equivalent:

- (i) Some finite extension of F contains primitive n^{th} root of unity
- (ii) char F does not divide n.

23.4. Cyclic Galois extensions in the presence of roots of unity.

Theorem 23.6 (Kummer). Let F be a field, $n \in \mathbb{N}$ and suppose that F contains primitive n^{th} root of unity. The following hold:

- (a) Let K/F be a Galois extension with $\operatorname{Gal}(K/F) \cong \mathbb{Z}/n\mathbb{Z}$. Then $K = F(\sqrt[n]{a})$ for some $a \in F$. More precisely, $K = F(\alpha)$ for some $\alpha \in K$ s.t. $\alpha^n \in F$.
- (b) Conversely, suppose that K = F(ⁿ√a) for some a ∈ F. Then K/F is Galois and Gal(K/F) ≅ Z/dZ for some d | n.

Remark: If F does not contain primitive n^{th} root of unity, an extension of the form $F(\sqrt[n]{a})/F$ need not even be Galois.

Proof. (a) Let $\zeta \in F$ be primitive n^{th} root of unity, let $N : K \to F$ be the norm function and let σ be a generator of Gal(K/F). Since $\zeta \in F$, we have $N(\zeta) = \zeta^n = 1$, so by Hilbert's Theorem 90 there exists $\alpha \in K$ s.t. $\zeta = \frac{\sigma(\alpha)}{\alpha}$.

So, $\sigma(\alpha) = \zeta \alpha$, whence $\sigma^i(\alpha) = \zeta^i \alpha$ for $0 \le i \le n-1$. Hence the orbit of α under the action of $\operatorname{Gal}(K/F)$ contains n distinct elements. Therefore, $\deg_F(\alpha) \ge n = [K:F]$, and we must have $K = F(\alpha)$.

It remains to show that $\alpha^n \in F$. We have $\sigma(\alpha^n) = \sigma(\alpha)^n = \zeta^n \alpha^n = \alpha^n$. Thus, α^n is fixed by σ , whence fixed by the entire Galois group $\operatorname{Gal}(K/F)$. Therefore, by Proposition 21.1 $\alpha^n \in F$.

(b) We are given that $K = F(\alpha)$ s.t. $a := \alpha^n \in F$. First note that K is a splitting field over F for $x^n - a = x^n - \alpha^n = \prod_{i=1}^n (x - \zeta^i \alpha)$ since $\zeta \in F$. Hence K/F is Galois.

Any $\sigma \in \operatorname{Gal}(K/F)$ must send α to a root of $x^n - a$, so $\sigma(\alpha) = \zeta^{I(\sigma)} \alpha$ for some integer $I(\sigma)$ which is well defined mod n. Thus, we get a map $I : \operatorname{Gal}(K/F) \to \mathbb{Z}/n\mathbb{Z}$. It is straightforward to check that I is a homomorphism, and also I is injective as σ is completely determined by where it sends α . Therefore, $\operatorname{Gal}(K/F)$ is a subgroup of $\mathbb{Z}/n\mathbb{Z}$, so $\operatorname{Gal}(K/F) \cong \mathbb{Z}/d\mathbb{Z}$ for some $d \mid n$. \Box

4