22. FINITE FIELDS II

22.1. Main structure theorems. Recall that F is a field of characteristic
p > 0, then the subfield of F’ generated by 1 (also called the prime subfield of F')

is isomorphic to F,, so F' is an extension of ).

The following results have been proved in Algebra-I:

(A) If F'is a finite field of characteristic p, then |F| = p™ for some n and
F =TF,[z]/(f(x)), where f(z) € F[z] is an irreducible polynomial of
degree n, which can be chosen monic.

(B) Conversely, if f(z) € F[z] is irreducible of degree n, then I, [x]/(f(x))
is a finite field of order p™.

We proved that for any n > 1 a field of order p™ exists, but we did not

prove uniqueness. We will now give a very short proof of both existence and

uniqueness using basic field theory.

Theorem 22.1. Let p be a prime and F,, a fived algebraic closure of Fp,. For
eachn € N let Fpn = {x € F, : 2P" = x}. Then Fyn is the unique subfield of
F, of order p".

Remark: If F is any field of order p", then the extension F'/F, is finite
(hence algebraic), whence F embeds in F,. Thus, Theorem 22.1 implies that

there exists a unique up to isomorphism field of order p”.

Proof. Step 1: Why is F,» a subfield? This is because the map z — xP" is
a ring homomorphism in any field of characterstic p, and char Fp = p since
characteristic does not change under field extensions.

Step 2: Why is |Fpn| = p™? The polynomial ®,(x) = 27" — x is separable
since @ () = —1, so ged(®,,®)) = 1. Therefore, ®,,(z) has p"” = deg @,
distinct roots in F,.

Step 3: Why unique? If F' is any subfield of F, with |F| = p", then |F*| =
p" — 1. By Lagrange zP"~! = 1 for any x € F*, whence 2P" = z for all
x € F. Thus F C Fyn, and so F' = Fpn (as |F| = [Fpn| = p"). O

The next question is when Fym contained in Fjn.
Proposition 22.2. Fym C Fyn if and only if m | n.
Proof. “=" Suppose Fpm C Fyn. Then Fpn is a vector space over Fpm of

dimension d < co. Hence |Fpn| = |[Fym|?, so p™ = p™ and n = md.
1



2

“<” If n = dm, then any solution of 2" = z is also a solution of zP" = z.
Indeed,

m 2m

=z = P :(xpm)p

Thus, Fpm g Fpn. O

m m

=2 =z etc.

Corollary 22.3. A finite field of order p™ contains a unique subfield of

order p™ for each m | n and no other subfields.

Next we will show that if K/F is an extension of finite fields, then K/F' is

always Galois and its Galois group is cyclic.

Definition. Let K be a field of characteristic p > 0. The map Fr: K — K
given by Fr(x) = 2P is called the Frobenius map of K.

The Frobenius map F'r is always an endomorphism of K (since char K = p).
Thus, Fr is an automorphism of K if and only if it is surjective (that is, K

is perfect); in particular, this happens if K is finite.

Theorem 22.4. Let K/F be an extension of finite fields. Then K/F is
always Galois and Aut(K/F) is cyclic, generated by Fr?, where d = log,, |F|.

Proof. Let n = [K : FJ, so that |K| = p"®. WOLOG we can assume that
F =T, and K = F . (defined as subfields of F,).

Note that Fr(L) C L for every subfield L of F,, and by definition Fpm is
the fixed field of F'r™ for each m € N.

Thus, Fr? is an element of Aut(K) which acts trivially on F, so Fr¢ €
Aut(K/F). Moreover, Fr™ acts trivially on K <= nd | m, so Fr? has
order n as an element of Aut(K/F).

So, (Fr?) is a cyclic subgroup of Aut(K/F) of order n = [K : F]. By
Theorem 19.1 this implies that K/F is Galois and Aut(K/F) = (Fr?). O

22.2. A few words about the Galois group Aut(F,/F,). We start with
a warning that for a field K of positive characteristic the extension ?/ K is
not Galois in general (normality is not a problem, but separability need not
hold). However, this problem does not occur if K is perfect (in particular,
if K is finite) by Theorem 18.1.

In view of Theorem 22.4, a naive guess would be that the Galois group
Aut(F,/F,) is isomorphic to Z and is generated by the Frobenius map F'r.
However, it turns out that Aut(F,/F,) is much larger — it is isomorphic to

2, the profinite completion of Z; in particular, it is uncountable, as is the

Galois group of any infinite Galois extension.
Moreover, Galois groups of infinite Galois extensions come with natural

topology, called Krull topology, and in the case of F,/F, the subgroup (Fr)



is an infinite cyclic subgroup of Aut(F,/F,) which is dense in Krull topology.

We will prove these facts in a couple of weeks.

At this point let us give a simple direct proof of uncountability of Aut(F,/F,).

For each n € N let F;, = F,n. Then we get an ascending union of fields
F, CF,C...and UFn:Fp.
Now note that if we are given a sequence {p,}5°; where

¢n € Aut(Fn/Fp) and ni1jp, = ¢n (% % %)
then there exists ¢ € Aut(F,/F,) such that ®|F, = pn for each n.

We can construct plenty of such sequences as follows. Choose any se-
quence of integers di,ds, ..., define a; = dy and a, = an_1 + dp—1 - n! for
n > 1, and let ¢, = Fror. Since Fri»—1" acts trivially on F,, each such
sequence {¢,} satisfies compatibility condition (***) and thus defines some
element ¢ € Aut(F,/F,).

Clearly, there are uncountably many possible sequences {d,}. While
distinct sequences may yield the same element of Aut(F,/F,), one can show
that uncountably many distinct elements of Aut(F,/F,) can be constructed

in this way. The latter is left as a homework problem.



