
22. Finite fields II

22.1. Main structure theorems. Recall that F is a field of characteristic
p > 0, then the subfield of F generated by 1 (also called the prime subfield of F )
is isomorphic to Fp, so F is an extension of Fp.

The following results have been proved in Algebra-I:

(A) If F is a finite field of characteristic p, then |F | = pn for some n and
F ∼= Fp[x]/(f(x)), where f(x) ∈ F [x] is an irreducible polynomial of
degree n, which can be chosen monic.

(B) Conversely, if f(x) ∈ F [x] is irreducible of degree n, then Fp[x]/(f(x))
is a finite field of order pn.

We proved that for any n ≥ 1 a field of order pn exists, but we did not
prove uniqueness. We will now give a very short proof of both existence and
uniqueness using basic field theory.

Theorem 22.1. Let p be a prime and Fp a fixed algebraic closure of Fp. For
each n ∈ N let Fpn = {x ∈ Fp : xpn

= x}. Then Fpn is the unique subfield of
Fp of order pn.

Remark: If F is any field of order pn, then the extension F/Fp is finite
(hence algebraic), whence F embeds in Fp. Thus, Theorem 22.1 implies that
there exists a unique up to isomorphism field of order pn.

Proof. Step 1: Why is Fpn a subfield? This is because the map x 7→ xpn
is

a ring homomorphism in any field of characterstic p, and char Fp = p since
characteristic does not change under field extensions.

Step 2: Why is |Fpn | = pn? The polynomial Φn(x) = xpn − x is separable
since Φ′n(x) = −1, so gcd(Φn, Φ′n) = 1. Therefore, Φn(x) has pn = deg Φn

distinct roots in Fp.

Step 3: Why unique? If F is any subfield of Fp with |F | = pn, then |F ∗| =
pn − 1. By Lagrange xpn−1 = 1 for any x ∈ F ∗, whence xpn

= x for all
x ∈ F . Thus F ⊆ Fpn , and so F = Fpn (as |F | = |Fpn | = pn). �

The next question is when Fpm contained in Fpn .

Proposition 22.2. Fpm ⊆ Fpn if and only if m | n.

Proof. “⇒” Suppose Fpm ⊆ Fpn . Then Fpn is a vector space over Fpm of
dimension d <∞. Hence |Fpn | = |Fpm |d, so pn = pmd and n = md.
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“⇐” If n = dm, then any solution of xpm
= x is also a solution of xpn

= x.
Indeed,

xpm
= x ⇒ xp2m

= (xpm
)pm

= xpm
= x etc.

Thus, Fpm ⊆ Fpn . �

Corollary 22.3. A finite field of order pn contains a unique subfield of
order pm for each m | n and no other subfields.

Next we will show that if K/F is an extension of finite fields, then K/F is
always Galois and its Galois group is cyclic.

Definition. Let K be a field of characteristic p > 0. The map Fr : K → K

given by Fr(x) = xp is called the Frobenius map of K.

The Frobenius map Fr is always an endomorphism of K (since char K = p).
Thus, Fr is an automorphism of K if and only if it is surjective (that is, K

is perfect); in particular, this happens if K is finite.

Theorem 22.4. Let K/F be an extension of finite fields. Then K/F is
always Galois and Aut(K/F ) is cyclic, generated by Frd, where d = logp |F |.

Proof. Let n = [K : F ], so that |K| = pnd. WOLOG we can assume that
F = Fpd and K = Fpnd (defined as subfields of Fp).

Note that Fr(L) ⊆ L for every subfield L of Fp, and by definition Fpm is
the fixed field of Frm for each m ∈ N.

Thus, Frd is an element of Aut(K) which acts trivially on F , so Frd ∈
Aut(K/F ). Moreover, Frm acts trivially on K ⇐⇒ nd | m, so Frd has
order n as an element of Aut(K/F ).

So, 〈Frd〉 is a cyclic subgroup of Aut(K/F ) of order n = [K : F ]. By
Theorem 19.1 this implies that K/F is Galois and Aut(K/F ) = 〈Frd〉. �

22.2. A few words about the Galois group Aut(Fp/Fp). We start with
a warning that for a field K of positive characteristic the extension K/K is
not Galois in general (normality is not a problem, but separability need not
hold). However, this problem does not occur if K is perfect (in particular,
if K is finite) by Theorem 18.1.

In view of Theorem 22.4, a naive guess would be that the Galois group
Aut(Fp/Fp) is isomorphic to Z and is generated by the Frobenius map Fr.
However, it turns out that Aut(Fp/Fp) is much larger – it is isomorphic to
Ẑ, the profinite completion of Z; in particular, it is uncountable, as is the
Galois group of any infinite Galois extension.

Moreover, Galois groups of infinite Galois extensions come with natural
topology, called Krull topology, and in the case of Fp/Fp the subgroup 〈Fr〉
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is an infinite cyclic subgroup of Aut(Fp/Fp) which is dense in Krull topology.
We will prove these facts in a couple of weeks.

At this point let us give a simple direct proof of uncountability of Aut(Fp/Fp).
For each n ∈ N let Fn = Fpn! . Then we get an ascending union of fields

F1 ⊆ F2 ⊆ . . . and ∪Fn = Fp.

Now note that if we are given a sequence {ϕn}∞n=1 where

ϕn ∈ Aut(Fn/Fp) and ϕn+1|Fn
= ϕn (∗ ∗ ∗)

then there exists ϕ ∈ Aut(Fp/Fp) such that ϕ|Fn
= ϕn for each n.

We can construct plenty of such sequences as follows. Choose any se-
quence of integers d1, d2, . . ., define a1 = d1 and an = an−1 + dn−1 · n! for
n ≥ 1, and let ϕn = Fran . Since Frdn−1·n! acts trivially on Fn, each such
sequence {ϕn} satisfies compatibility condition (***) and thus defines some
element ϕ ∈ Aut(Fp/Fp).

Clearly, there are uncountably many possible sequences {dn}. While
distinct sequences may yield the same element of Aut(Fp/Fp), one can show
that uncountably many distinct elements of Aut(Fp/Fp) can be constructed
in this way. The latter is left as a homework problem.


