
21. Galois correspondence (continued)

21.1. More on Galois correspondence. Our first result provides yet an-
other characterization of finite Galois extensions.

Proposition 21.1. Let K/F be a finite extension. Then K/F is Galois
⇐⇒ KAut(K/F ) = F .

Remark: The forward direction of Proposition 21.1 immediately yields
the second half of the proof of the Fundamental Theorem of Galois Theory
(FTGT). In fact, we could have (and should have) proved Proposition 21.1
before FTGT.

Proof. LetG = Aut(K/F ). By Artin’s LemmaK/KG is Galois and Aut(K/KG) =
G, so [K : KG] = |G| by Theorem 19.1.

Since F ⊆ KG, the equality KG = F holds if and only if [K : F ] = |G|.
On the other hand, again by Theorem 19.1, [K : F ] = |G| if and only if
K/F is Galois. �

Here is another result whose proof is of similar flavor.

Observation 21.2. Let K/F be a finite Galois extension and G = Aut(K/F ).
Then for any subgroup H of G we have [G : H] = [KH : F ].

Proof. The same argument as in the proof of Proposition 21.1 shows that
[K : KH ] = |H|. Therefore,

[KH : F ] =
[K : F ]

[K : KH ]
=
|G|
|H|

= [G : H].

�

Let K/F be a Galois extension and G = Aut(K/F ). By the Fundamental
Theorem every subgroup of G has the form Aut(K/L) for unique subfield
L of K/F . The next result tells us which subfields correspond to normal
subgroups.

Proposition 21.3. Let K/F be a finite Galois extension and L a subfield
of K/F . The following hold:

(i) K/L is always Galois
(ii) L/F is always separable
(iii) L/F is normal (hence Galois) ⇐⇒ Aut(K/L) is a normal subgroup

of Aut(K/F ). Furthermore, if this happens, then

Aut(L/F ) ∼= Aut(K/F )/Aut(K/L). (∗ ∗ ∗)
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Proof. (i) and (ii) are clear (in fact, we have already used both facts before),
so we only need to prove (iii). We shall first prove the forward direction
together with the “furthermore part” and then the backwards direction.

“⇒ + (***)” Assume that L/F is normal, and let σ ∈ Aut(K/F ). Then
σ(L) = L by [HW8, Problem 4], and thus we get a natural restriction map

R : Aut(K/F )→ Aut(L/F ) given by σ 7→ σ|L.

It is clear that R is a group homomorphism and

KerR = {σ ∈ Aut(K/F ) : σ|L = id} = Aut(K/L).

In particular, Aut(K/L) is normal and ImR ∼= Aut(K/F )/Aut(K/L). Iso-
morphism (***) would follow if we show that R is surjective, and the latter
can be proved by a routine application of the Main Extension Lemma. Since
we are assuming that K/F is finite, there is also a simple counting argument:

|Aut(K/F )/Aut(K/L)| = [K : F ]
[K : L]

= [L : F ] = |Aut(L/F )|,

which implies surjectivity of R.
“⇐” Suppose that Aut(K/L) is normal in Aut(K/F ). Let σ ∈ Aut(K/F )

and take any τ ∈ Aut(K/L). Then σ−1τσ ∈ Aut(K/L), so for any l ∈ L
we have σ−1τσ(l) = l and hence τσ(l) = σ(l). Since this is true for any
τ ∈ Aut(K/L), we get σ(l) ∈ KAut(K/L) and KAut(K/L) = L by FTGT.

So, σ(L) ⊆ L, and similarly σ−1(L) ⊆ L. Thus, σ(L) = L for any σ ∈
Aut(K/F ). This easily implies that L/F is normal by the Main Extension
Lemma (fill in the details). �

Isomorphism (***) in Proposition 21.3 can be thought of as an analogue
of the double quotient isomorphism theorem. The next result is a similar
analogue of the diamond isomorphism theorem.

Proposition 21.4. Let K/F and L/F be field extensions, where K and L
are subfields of the same field. Assume that L/F is finite and Galois. Then
KL/K is also finite and Galois, and there is an isomorphism

Aut(KL/K) ∼= Aut(L/K ∩ L).

In particular, Aut(KL/K) is a subgroup of Aut(L/F ) and hence

[KL : K] divides [L : F ].

Proof. The extension KL/K is

(i) separable by Corollary 18.6: KL is generated by L over K, each
element of L is separable over F , hence separable over F ;

(ii) normal by Proposition 20.1: if L is a splitting field over F for a
separable family Ω ⊆ F [x], then KL is a spitting field for Ω over K.
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Thus, KL/K is indeed Galois. We have a natural restriction homomorphism
R : Aut(KL/K) → Aut(L/F ) which is injective: if σ ∈ KerR, then σ acts
trivially on both L and K hence also on KL.

Let H = ImR and G = Aut(L/K ∩ L). To finish the proof we need to
show that H = G, and by FTGT it is enough to show that LH = K ∩ L.
The inclusion K ∩ L ⊆ LH is clear since each element of H is a restriction
of some element of Aut(KL/K).

Conversely, if α ∈ LH , then α (considered as an element of KL) is fixed
by Aut(KL/K), so α ∈ (KL)Aut(KL/K) = K. So α ∈ K ∩ L, and we have
shown that LH ⊆ K ∩ L. �

21.2. Computational applications. A standard computational problem
that can be solved using the Galois correspondence is determination of all
subfields in a given finite Galois extension K/F . Indeed, by FTGT we just
need to determine G = Gal(K/F ), find all subgroups of G and for each
subgroup H compute the fixed field KH . Let us look at an example of such
computations.

Example 21.1: Let K be the splitting field of x5 − 2 over Q.
From Midterm#2 we know that K = Q( 5

√
2, ζ) where ζ = e2πi/5 and that

[K : Q] = 20. Furthermore, the Galois group G = Gal(K/Q) is generated
by the elements σ and τ given by

σ : 5
√

2 7→ 5
√

2ζ τ : 5
√

2 7→ 5
√

2

ζ 7→ ζ ζ 7→ ζ2

Let us label the roots of x5 − 2 as
α1 = 5

√
2, α2 = 5

√
2ζ, α3 = 5

√
2ζ2, α4 = 5

√
2ζ3, α5 = 5

√
2ζ4.

By Lemma 19.3(b) this labeling determines an embedding of Gal(K/Q) in
S5, and it is clear that σ = (12345) and τ = (2354). Let us compute fixed
fields for three subgroups of G: 〈σ〉, 〈τ〉 and 〈τ2〉.

Case 1: H = 〈σ〉. Since |H| = 5, we have [KH : Q] = 20
5 = 4 by

Observation 21.2. On the other hand, σ fixes ζ and thus KH contains Q(ζ).
Since [Q(ζ) : Q] = degQ ζ = 4, we conclude that KH = Q(ζ).

Case 2: H = 〈τ〉 Using similar argument to Case 1 we conclude that
KH = Q( 5

√
2).

Case 3: H = 〈τ2〉. Since τ2 = (25)(34), we have |H| = 2, and therefore
[KH : Q] = 10. Since K〈τ

2〉 ⊇ K〈τ〉, by Case 2 we have KH ⊇ Q( 5
√

2).
Moreover since [Q( 5

√
2) : Q] = 5, we have KH = Q( 5

√
2, β) for any β ∈

KH \Q( 5
√

2).
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Note that τ2 = (25)(34) fixes the elements α1 and α2 + α5, hence also
fixes β := α2+α5

α1
= ζ + ζ4. A direct computation shows that β is a root of

x2 + x − 1 = 0. This polynomial is irreducible over Q (since it has degree
2 and no roots in Q), whence degQ β = 2. Since any element of Q( 5

√
2)

has degree 1 or 5 over Q, we conclude that ζ + ζ4 ∈ KH \ Q( 5
√

2), whence
KH = Q( 5

√
2, ζ + ζ4).


