20. Galois correspondence

20.1. Further characterization of Galois extensions.

Proposition 20.1. Let K/F be a field extension.

- (a) K/F is Galois if and only if K is a splitting field (over F) for some family of separable polynomials $\Omega \subseteq F[x]$.
- (b) Assume that K/F is finite. Then K/F is Galois if and only if K is a splitting field (over F) for some irreducible polynomial $p(x) \in F[x]$.

Proof. (a) " \Rightarrow " Since K/F is normal, we know that K is a splitting field for the set $\Omega = \{\mu_{\alpha,F}(x) : \alpha \in K\}$, and since K/F is separable, each polynomial in Ω is separable.

" \Leftarrow " We only need to show that K/F is separable. We are given that K = F(A) where A is the set of K-roots for some family of separable polynomials in F[x]. Then each $\alpha \in A$ is separable over F, whence by Corollary 18.6 K/F is separable.

(b) " \Leftarrow " is a special case of (a), and " \Rightarrow " holds by the Primitive Element Theorem (let α be such that $K = F(\alpha)$, and set $p(x) = \mu_{\alpha,F}(x)$).

Proposition 20.1(b) can be interpreted as a characterization of finite Galois extensions "from the bottom" – for a fixed field F, Proposition 20.1 tells us how to "produce" all finite Galois extensions of the form K/F. Below we will obtain a simple characterization of finite Galois extensions "from the top", called <u>Artin's lemma</u>.

Lemma 20.2. Let K/F be a separable extension, and suppose that there exists $n \in \mathbb{N}$ s.t. $[F(\alpha) : F] \leq n$ for all $\alpha \in K$. Then $K = F(\beta)$ for some $\beta \in K$ and thus $[K : F] \leq n$.

Proof. Let $\beta \in K$ be such that $m = [F(\beta) : F]$ is largest possible. If $K = F(\beta)$, we are done.

Suppose not, so there exists $\gamma \in K \setminus F(\beta)$. The extension $F(\beta, \gamma)/F$ is finite and separable, so by Primitive Element Theorem there exists $\delta \in K$ s.t. $F(\beta, \gamma) = F(\delta)$. Then $[F(\delta) : F] > [F(\beta) : F]$, contrary to the choice of β .

Lemma 20.3 (Artin's Lemma). Let K be a field and G a finite subgroup of $\operatorname{Aut}(K)$. Let $F = K^G = \{k \in K : gk = k \text{ for all } g \in G\}$ be the fixed field of G. Then K/F is a finite Galois extension and $\operatorname{Aut}(K/F) = G$.

Proof. Take any $\alpha \in K$, and let $m = |G\alpha|$ be the size of the *G*-orbit of α . Choose $\sigma_1, \ldots, \sigma_m \in G$ s.t. the elements $\sigma_1 \alpha, \ldots, \sigma_m \alpha$ are all distinct (note that one of these elements is equal to α).

Take any $\tau \in G$. Then $\tau \sigma_1 \alpha, \ldots, \tau \sigma_m \alpha$ are also *m* distinct elements of the *G*-orbit of α , so

$$(\tau \sigma_1 \alpha, \dots, \tau \sigma_m \alpha)$$
 is a permutation of $(\sigma_1 \alpha, \dots, \sigma_m \alpha)$. (*)

Consider the polynomial $f_{\alpha} = (x - \sigma_1 \alpha) \dots (x - \sigma_m \alpha) \in K[x]$. As before, for any $\tau \in G$ let τ^* be the automorphism of K[x] which applies τ to each coefficient. Then

$$\tau^* f_{\alpha} = (x - \tau \sigma_1 \alpha) \dots (x - \tau \sigma_m \alpha) = (x - \sigma_1 \alpha) \dots (x - \sigma_m \alpha) = f_{\alpha},$$

where the middle equality holds by (*). Hence f_{α} is τ^* -invariant, which means that all its coefficients are τ -invariant. Since this is true for any $\tau \in G$, the coefficients of f_{α} lie in $K^G = F$.

Thus, $f_{\alpha} \in F[x]$ and α is a root of f_{α} , so $\mu_{\alpha,F}$ divides f_{α} . Note also that by construction f_{α} is separable and splits completely over K, so $\mu_{\alpha,F}$ is also separable and splits completely over K. Since this is true for any α , by definition K/F is normal and separable, and thus Galois.

For any $\alpha \in K$ we have $[F(\alpha) : F] = \deg \mu_{\alpha,F} \leq \deg f_{\alpha} \leq |G|$. So, by Lemma 20.2 $[K : F] \leq |G|$, whence $|\operatorname{Aut}(K/F)| \leq [K : F] \leq |G|$ by Theorem 19.1. On the other hand, it is clear that $G \subseteq \operatorname{Aut}(K/F)$. Thus, we must have $G = \operatorname{Aut}(K/F)$.

20.2. Fundamental theorem of Galois theory.

Terminology: If K/F is a field extension, by a subfield of K/F we shall mean a field L with $F \subseteq L \subseteq K$.

Theorem 20.4 (Fundamental Theorem of Galois Theory). Let K/F be a finite Galois extension and $G = \operatorname{Aut}(K/F)$. Then there is a bijective correspondence between subgroups of G and subfields of K/F given by

$$\begin{split} \Phi : subgroups of G \to subfields of K/F & H \mapsto K^H \\ \Psi : subfields of K/F \to subgroups of G & L \mapsto \operatorname{Aut}(K/L) \end{split}$$

This correspondence is inclusion reversing, that is, if $H_1 \subseteq H_2$ are subgroups of G, then $K^{H_2} \subseteq K^{H_1}$, and if $L_1 \subseteq L_2$ are subfields of L, then $\operatorname{Aut}(K/L_2) \subseteq \operatorname{Aut}(K/L_1)$.

Proof. It is clear that the correspondence is inclusing reversing, so we just need to check that Φ and Ψ are mutually inverse. Both directions follow easily from Artin's Lemma.¹

 $^{^1\}mathrm{Thanks}$ to Sean for providing a simpler argument in the opposite direction

For any subgroup H of G we have $\Psi \Phi(H) = \operatorname{Aut}(K/K^H)$. By Artin's Lemma $\operatorname{Aut}(K/K^H) = H$.

Conversely, given a subfield L of K/F, let $M = \Phi \Psi(L) = K^{\operatorname{Aut}(K/L)}$. By Artin's Lemma K/M is Galois and $\operatorname{Aut}(K/M) = \operatorname{Aut}(K/L)$. Since K/Mand K/L are both Galois, Theorem 19.1 implies that [K:M] = [K:L]. On the other hand, it is clear that $L \subseteq M$, and thus we must have M = L. \Box

Note: Here is a different (longer) proof of the inclusion $M \subseteq L$ which was given in class. Take any $\alpha \in M$. Since K/F is normal, K/L is also normal. Thus, by Lemma 19.3 Aut(K/L) acts transitively on the set of K-roots of $\mu_{\alpha,L}(x)$. On the other hand, by definition of M, all elements of Aut(K/L)fix α . Thus, $\mu_{\alpha,L}(x)$ splits completely over K and has no roots besides α . Hence $\mu_{\alpha,L}(x) = (x - \alpha)^d$. If d > 1, then α is not separable over L, hence not separable over F, which is impossible as K/F is separable. Therefore, d = 1, whence $\mu_{\alpha,L}(x) = x - \alpha$. This implies that $\alpha \in L$.