
2. Basic properties of modules

2.1. Isomorphism theorems for modules. All four isomorphism theo-
rems for groups have direct counterparts for modules. In fact, their state-
ments are even easier since normality assumption is already “included” in
the definition of a submodule.

One can obtain the statements of the isomorphism theorems for modules
as follows – take the statements of the isomorphism theorems for groups,
specialize to the case of abelian groups, using additive notation and removing
vacuous assumptions and replace every occurrence of group (resp. subgroup)
by R-module (resp. R-submodule).

For instance, here are the first and fourth isomorphism theorems for
modules.

Theorem (First isomorphism theorem for modules). If ϕ : M → N is a
homomorphism of R-modules, then

• Ker ϕ is a submodule of M ,
• Imϕ = ϕ(M) is a submodule of N ,
• M/Kerϕ ∼= ϕ(M).

Theorem (Fourth isomorphism theorem for modules). Let M be a R-
module and N a submodule of M . Then there is an inclusion preserving
bijection

submodules of M containing N ←→ submodules of M/N.

2.2. Generating and linearly independent subsets of modules.

Definition. Let M be an R-module and X a subset of M . The the smallest
submodule of R containing X will be called the submodule of M generated by X

and denoted by RX. Clearly,

RX = {r1x1 + . . . rkxk : ri ∈ R, xi ∈ X}.

Definition. Let M be an R-module and X a subset of M . We will say that

(i) X generates M (as an R-module) if RX = M

(ii) X is linearly independent (over R) if equality r1x1 + . . . rkxk = 0
where ri ∈ R and x1, . . . , xk are distinct elements of X implies that
ri = 0 for all i

(iii) X is a basis of M if X is linearly independent and generates M .
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Proposition 2.1. Assume that R is a field and M an R-module (= R-vector
space). Then R has a basis. Furthermore,

(a) Any generating subset of M contains a basis of M

(b) Any linearly independent subset of M can be extended to a basis of
M .

Proposition 2.1 in the case of finite dimensional vector spaces is a standard
fact from undergraduate linear algebra. For general vector spaces it is a
consequence of the following result.

Claim. Let R be a field, M and R-vector space, X a generating set of M ,
and Y a linearly independent subset of X. Then M has a basis B with
Y ⊆ B ⊆ X.

Proof. Apply Zorn’s lemma to the set of linearly independent sets Z, with
Y ⊆ Z ⊆ X, ordered by inclusion. �

If R is not a field, Proposition 2.1 becomes completely false. Here are some
examples.

1. Let R = Z and n ≥ 2 an integer. Then Z/nZ is a Z-module with no
non-empty linearly independent subsets.

2. Let R = Z and M = R. Then M has a basis X, in fact there are just
two possibilities: X = {1} or X = {−1}. However,
{2, 3} is a generating set which does not contain a basis.
{2} is a linearly independent subset which does not extend to a basis

2.3. Free modules.

Definition. An R-module is called free if it has a basis.

By Proposition 2.1 if R is a field, then every R-module is free. We shall now
describe the structure of free R-modules over arbitrary rings.

Definition (Direct sum of modules).
1. Finite case: If M1, . . . ,Mk are R-modules, their (external) direct sum

M1 ⊕ . . .⊕Mk = {(m1, . . . ,mk) : mi ∈Mi}

is an R-module with componentwise addition and R-action given by

r(m1, . . . ,mk) = (rm1, . . . , rmk).

2. General case: if X is any set and {Mx}x∈X is a collection of R-modules,
define

⊕
x∈X

Mx to be the set of functions

{f : X → ∪Mx : f(x) ∈Mx for each x and the set {x : f(x) 6= 0} is finite}.
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This is an R-module with pointwise addition and R-action given by

(rf)(x) = rf(x)

Theorem 2.2. Let M be an R-module and ω a cardinal number. The
following are equivalent.

(i) M has a basis of cardinality ω

(ii) M is isomorphic to the direct sum of ω copies of R.

Proof. “(i)⇒ (ii)” Suppose M has a basis X with |X| = ω. Let M ′ =
⊕x∈XRx where each Rx is a copy of R.
Take m ∈ M . Since X is a basis, we can uniquely write m =

∑
x∈X rxx

where each rx ∈ R and only finitely many rx are 0. Let ϕm ∈ M ′ be the
function defined by ϕm(x) = rx for each x.
We get a map ϕ : M →M ′ given by m 7→ ϕm. It is routine to check that ϕ

is an isomorphism of R-modules.

“(ii)⇒ (i)” Let X be any set with |X| = ω, and let M ′ = ⊕x∈XRx where
each Rx is a copy of R. Thus by assumption M ∼= M ′.
For each x ∈ X let ex ∈M ′ be the function defined by

ex(y) =
{

1 if y = x
0 if y 6= x

It is then easy to check that {ex}x∈X is a basis of M ′. Thus M ′ has a basis
of cardinality ω, and the same is true for any module isomorphic to M . �

2.4. Categorical characterization of free modules.

Definition. Let M be an R-module and X a subset of M . We will say that
M is categorically free on X if for any R-module N , any map f : X → N

uniquely extends to an R-module homomorphism f∗ : M → N .

Lemma 2.3 (Uniqueness of categorically free modules). Suppose that M

is categorically free on X and M ′ is categorically free on X ′. Assume that
|X| = |X ′|. Then M ∼= M ′; moreover, there is an R-module isomorphism
from ϕ : M →M ′ such that ϕ(X) = X ′.

Proof. This is a standard diagram argument (similar to what we did for free
groups). �

Theorem 2.4. Let M be an R-module and X a subset of M . The following
are equivalent:

(i) X is a basis of M .
(ii) Any element m ∈ M can be uniquely written as m =

∑
x∈X rxx

where rx ∈ R and only finitely many rx are nonzero.



4

(iii) M is categorically free on X.

Proof. “(i)⇒ (ii)” is easy (in fact, we already used it).
“(ii)⇒ (iii)” is also easy – just set f∗(

∑
x∈X rxx) =

∑
x∈X rxf(x).

“(iii)⇒ (i)” Let M ′ be the direct sum of |X| copies of R. By Theorem 2.2
M ′ has a basis X ′ with |X ′| = |X|. Hence by implication “(i)⇒ (iii)” (which
we already proved) M ′ is categorically free on X ′.
By Lemma 2.3 there is an isomorphism ϕ : M ′ →M such that ϕ(X ′) = X.
Clearly, an R-module isomorphism sends a basis to a basis, and thus X must
be a basis of M . �

Combining Theorems 2.2 and 2.4, we obtain three equivalent characteriza-
tions of free modules

Corollary 2.5. Let M be an R-module. The following are equivalent:

(i) M is free, that is, M has a basis
(ii) M is categorically free (on some X)
(iii) M is isomorphic to the direct sum of several copies of R.


