Definition. Let K/F be a field extension. Let Aut(K/F) denote the set of all *F*-automorphisms of *K*, that is,

$$\operatorname{Aut}(K/F) = \{\varphi \in \operatorname{Aut}(K) : \varphi|_F = id_F\}.$$

Then $\operatorname{Aut}(K/F)$ is clearly a group, called the <u>automorphism group of K/F</u> or the Galois group of K/F.

Definition. A field extension is called <u>Galois</u> if it is normal and separable.

Theorem 19.1. Let K/F be a finite extension. Then $|\operatorname{Aut}(K/F)| \leq [K : F]$, and equality holds if and only if K/F is Galois.

Proof. Fix an algebraic closure \overline{F} of F with $K \subseteq \overline{F}$. Note that any element of $\operatorname{Aut}(K/F)$ can be thought of as an F-embedding of K into \overline{F} , and thus we have a map $T : \operatorname{Aut}(K/F) \to Emb_F(K, \overline{F})$.

The map T is clearly injective, and given $\sigma \in Emb_F(K, \overline{F})$ we have $\sigma \in Im(T) \iff \sigma(K) = K$. Hence, T is surjective $\iff K/F$ is normal. Therefore, we always have $|Aut(K/F)| \leq |Emb_F(K, \overline{F})|$, and equality holds if and only if K/F is normal.

On the other hand, by Theorem 18.3 we have $|Emb_F(K, \overline{F})| \leq [K : F]$, where equality holds if and only if K/F is separable. Combining this two results, we deduce Theorem 19.1.

While the question of determining the Galois group $\operatorname{Aut}(K/F)$ makes sense for any extension K/F, one is usually interested in the case of Galois extensions.

Notation: If K/F is a Galois extension, we will usually write Gal(K/F) instead of Aut(K/F).

19.1. Computing Galois groups. If K/F is a finite Galois extension, there are two standard ways to describe the Galois group $\operatorname{Gal}(K/F)$. First, we can choose a set of field generators for K over F, that is, write $K = F(\alpha_1, \ldots, \alpha_n)$, and describe the elements of $\operatorname{Gal}(K/F)$ by where they map $\alpha_1, \ldots, \alpha_n$. In some cases, we may simply want to determine $\operatorname{Gal}(K/F)$ up to isomorphism. Let us obtain descriptions of both kind in our standard example $\mathbb{Q}(\sqrt[3]{2}, \omega)/\mathbb{Q}$. Example 19.1: Let $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$. Describe the Galois group $\operatorname{Gal}(K/\mathbb{Q})$. First note that the extension K/\mathbb{Q} is indeed Galois – it is separable since

char $\mathbb{Q} = 0$ and normal since K is a splitting field for $x^3 - 2$ over \mathbb{Q} .

In order to describe the elements of $\operatorname{Gal}(K/\mathbb{Q})$ by where they map $\sqrt[3]{2}$ and ω , we argue similarly to Example 18.2. Any $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ is determined by the images of $\sqrt[3]{2}$ and ω , and each element must be mapped to an element with the same minimal polynomial over \mathbb{Q} . Thus, $\sqrt[3]{2}$ can go to $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$ or $\omega^2\sqrt[3]{2}$, and ω can go to ω or ω^2 . Overall, there are $3 \cdot 2 = 6$ possibilities.

On the other hand, since K/\mathbb{Q} is Galois we know that $|\operatorname{Aut}(K/\mathbb{Q})| = 6$, so each of the above 6 possibilities does correspond to an *F*-automorphism of *K*. We conclude that $\operatorname{Gal}(K/\mathbb{Q})$ has six elements $\{\sigma_{i,j} : 0 \le i \le 2, 1 \le j \le 2\}$ given by $\sigma_{i,j}(\sqrt[3]{2}) = \omega^i \sqrt[3]{2}$ and $\sigma_{i,j}(\omega) = \omega^j$.

The argument used in this example can be generalized as follows. Suppose K/F is a finite Galois extension, and K is given in the form $K = F(\alpha_1, \ldots, \alpha_n)$. For $1 \le i \le n$ let $K_i = F(\alpha_1, \ldots, \alpha_i)$. Let $d_i = \deg_F(\alpha_i)$ and $e_i = \deg_{K_{i-1}}(\alpha_i)$. Then $e_i \le d_i$, and since $e_i = [K_{i-1}(\alpha_i) : K_{i-1}] = [K_i : K_{i-1}]$, we have $[K : F] = \prod_{i=1}^n e_i$.

In our example we used the fact that $e_i = d_i$ for each *i*, in which case the following result holds:

Proposition 19.2. In the above notations suppose that $e_i = d_i$ for each $1 \leq i \leq n$. Let Ω_i be the set of K-roots of $\mu_{\alpha_i,F}(x)$ (note that $|\Omega_i| = e_i = d_i$). Then for any elements $\beta_1 \in \Omega_1, \ldots, \beta_n \in \Omega_n$ there exists unique $\sigma \in \operatorname{Aut}(K/F)$ s.t. $\sigma(\alpha_1) = \beta_1, \ldots, \sigma(\alpha_n) = \beta_n$. Furthemore, every element of $\operatorname{Aut}(K/F)$ is of this form.

Proof. Use the same reasoning as in Example 19.1.

Let us go back to Example 19.1. We know that every group of order 6 is isomorphic to $\mathbb{Z}/6\mathbb{Z}$ or S_3 . From the description we obtained it is easy to see that the group $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q})$ is non-abelian and thus must be isomorphic to S_3 . However, there is a much nicer way to prove the latter.

Lemma 19.3. Let K/F be a normal extension, and let $p(x) \in F[x]$ be an irreducible polynomial which has a root in K (and hence by normality splits completely over K). Let Ω be the set of K-roots of p(x). The following hold:

(a) $\operatorname{Aut}(K/F)$ acts on Ω , and thus there is a natural homomorphism $\operatorname{Aut}(K/F) \to Sym(\Omega)$. Furthermore, the action of $\operatorname{Aut}(K/F)$ on Ω is transitive.

 (b) Assume in addition that K is a splitting field for p(x) over F. Then the action of Aut(K/F) on Ω is faithful, and thus Aut(K/F) embeds in Sym(Ω).

Proof. (a) The group $\operatorname{Aut}(K/F)$ acts on Ω by Lemma 17.1 (we have already used this fact many times). Let us show that this action is transitive.

Take any $\alpha, \beta \in \Omega$. By the Simple Extension Lemma there exists an F-embedding $\sigma : F(\alpha) \to \overline{F}$ s.t. $\sigma(\alpha) = \beta$. By the Main Extension Lemma σ extends to an F-embedding $\sigma' : K \to \overline{F}$ with $\sigma'(\alpha) = \beta$. Since K/F is normal, we have $\sigma'(K) = K$, and thus σ' determines an element of $\operatorname{Aut}(K/F)$ which maps α to β .

(b) If K is a splitting field for p(x), an element of $\operatorname{Aut}(K/F)$ is completely determined by its action on Ω . Thus, if $\sigma \in \operatorname{Aut}(K/F)$ acts trivially on Ω , then $\sigma = id$.

Example 19.1 concluded: Since $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$ is a splitting field for $x^3 - 2$ over \mathbb{Q} , Lemma 19.3 implies that $\operatorname{Gal}(K/\mathbb{Q})$ embeds in S_3 . Since we already know that $|\operatorname{Gal}(K/\mathbb{Q})| = 6 = |S_3|$, we conclude that $\operatorname{Gal}(K/\mathbb{Q}) \cong S_3$.

19.2. Galois closure. Let K/F be an algebraic extensions which is not Galois. Can we find an extension field L of K s.t. L/F is Galois? If K/Fis not separable, this is clearly impossible (any element of K which is not separable over F will stay inseparable in any extension of K). On the other hand, as we show below, if K/F is separable, such L always exists. The minimal L with this property will be called the Galois closure of K over F.

Theorem 19.4. Let K/F be a separable extension, and choose an algebraic closure \overline{F} of F with $K \subseteq \overline{F}$. Then there is unique field L with $K \subseteq L \subseteq \overline{F}$ s.t.

- (i) L/F is Galois
- (ii) If M is any subfield of F s.t. M ⊇ K and M/F is Galois, then M ⊇ L.

The field L is called the Galois closure of K over F.

Proof. Let $\Omega = \{\mu_{\alpha,F}(x) : \alpha \in K\}$, let A = the set of \overline{F} -roots of polynomials in Ω and $L = F(A) \supseteq K$. Then L is a splitting field for Ω , whence L/F is normal.

Since K/F is separable, each polynomial in Ω is separable. Hence any $\gamma \in A$ is separable over F, so L/F is separable by Corollary 18.6. Thus the extension L/F is Galois. Verification of condition (ii) and uniqueness of L are left as (easy) exercises.