
19. Galois groups and Galois extensions

Definition. Let K/F be a field extension. Let Aut(K/F ) denote the set of
all F -automorphisms of K, that is,

Aut(K/F ) = {ϕ ∈ Aut(K) : ϕ|F = idF }.

Then Aut(K/F ) is clearly a group, called the automorphism group of K/F
or the Galois group of K/F .

Definition. A field extension is called Galois if it is normal and separable.

Theorem 19.1. Let K/F be a finite extension. Then |Aut(K/F )| ≤ [K :
F ], and equality holds if and only if K/F is Galois.

Proof. Fix an algebraic closure F of F with K ⊆ F . Note that any element
of Aut(K/F ) can be thought of as an F -embedding of K into F , and thus
we have a map T : Aut(K/F )→ EmbF (K,F ).

The map T is clearly injective, and given σ ∈ EmbF (K,F ) we have
σ ∈ Im(T ) ⇐⇒ σ(K) = K. Hence, T is surjective ⇐⇒ K/F is normal.
Therefore, we always have |Aut(K/F )| ≤ |EmbF (K,F )|, and equality holds
if and only if K/F is normal.

On the other hand, by Theorem 18.3 we have |EmbF (K,F )| ≤ [K : F ],
where equality holds if and only if K/F is separable. Combining this two
results, we deduce Theorem 19.1. �

While the question of determining the Galois group Aut(K/F ) makes sense
for any extension K/F , one is usually interested in the case of Galois exten-
sions.
Notation: If K/F is a Galois extension, we will usually write Gal(K/F )
instead of Aut(K/F ).

19.1. Computing Galois groups. If K/F is a finite Galois extension,
there are two standard ways to describe the Galois group Gal(K/F ). First,
we can choose a set of field generators for K over F , that is, write K =
F (α1, . . . , αn), and describe the elements of Gal(K/F ) by where they map
α1, . . . , αn. In some cases, we may simply want to determine Gal(K/F ) up
to isomorphism. Let us obtain descriptions of both kind in our standard
example Q( 3

√
2, ω)/Q.
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Example 19.1: Let K = Q( 3
√

2, ω). Describe the Galois group Gal(K/Q).

First note that the extension K/Q is indeed Galois – it is separable since
charQ = 0 and normal since K is a splitting field for x3 − 2 over Q.

In order to describe the elements of Gal(K/Q) by where they map 3
√

2 and
ω, we argue similarly to Example 18.2. Any σ ∈ Gal(K/Q) is determined by
the images of 3

√
2 and ω, and each element must be mapped to an element

with the same minimal polynomial over Q. Thus, 3
√

2 can go to 3
√

2, ω 3
√

2
or ω2 3

√
2, and ω can go to ω or ω2. Overall, there are 3 · 2 = 6 possibilities.

On the other hand, since K/Q is Galois we know that |Aut(K/Q)| = 6, so
each of the above 6 possibilities does correspond to an F -automorphism ofK.
We conclude that Gal(K/Q) has six elements {σi,j : 0 ≤ i ≤ 2, 1 ≤ j ≤ 2}
given by σi,j(

3
√

2) = ωi 3
√

2 and σi,j(ω) = ωj .

The argument used in this example can be generalized as follows. Sup-
pose K/F is a finite Galois extension, and K is given in the form K =
F (α1, . . . , αn). For 1 ≤ i ≤ n let Ki = F (α1, . . . , αi). Let di = degF (αi)
and ei = degKi−1

(αi). Then ei ≤ di, and since ei = [Ki−1(αi) : Ki−1] =

[Ki : Ki−1], we have [K : F ] =
n∏
i=1

ei.

In our example we used the fact that ei = di for each i, in which case the
following result holds:

Proposition 19.2. In the above notations suppose that ei = di for each
1 ≤ i ≤ n. Let Ωi be the set of K-roots of µαi,F (x) (note that |Ωi| =
ei = di). Then for any elements β1 ∈ Ω1, . . . , βn ∈ Ωn there exists unique
σ ∈ Aut(K/F ) s.t. σ(α1) = β1, . . . , σ(αn) = βn. Furthemore, every element
of Aut(K/F ) is of this form.

Proof. Use the same reasoning as in Example 19.1. �

Let us go back to Example 19.1. We know that every group of order 6
is isomorphic to Z/6Z or S3. From the description we obtained it is easy
to see that the group Gal(Q( 3

√
2, ω)/Q) is non-abelian and thus must be

isomorphic to S3. However, there is a much nicer way to prove the latter.

Lemma 19.3. Let K/F be a normal extension, and let p(x) ∈ F [x] be an
irreducible polynomial which has a root in K (and hence by normality splits
completely over K). Let Ω be the set of K-roots of p(x). The following hold:

(a) Aut(K/F ) acts on Ω, and thus there is a natural homomorphism
Aut(K/F )→ Sym(Ω). Furthermore, the action of Aut(K/F ) on Ω
is transitive.
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(b) Assume in addition that K is a splitting field for p(x) over F . Then
the action of Aut(K/F ) on Ω is faithful, and thus Aut(K/F ) embeds
in Sym(Ω).

Proof. (a) The group Aut(K/F ) acts on Ω by Lemma 17.1 (we have already
used this fact many times). Let us show that this action is transitive.

Take any α, β ∈ Ω. By the Simple Extension Lemma there exists an F -
embedding σ : F (α) → F s.t. σ(α) = β. By the Main Extension Lemma σ
extends to an F -embedding σ′ : K → F with σ′(α) = β. Since K/F is nor-
mal, we have σ′(K) = K, and thus σ′ determines an element of Aut(K/F )
which maps α to β.

(b) If K is a splitting field for p(x), an element of Aut(K/F ) is completely
determined by its action on Ω. Thus, if σ ∈ Aut(K/F ) acts trivially on Ω,
then σ = id. �

Example 19.1 concluded: Since K = Q( 3
√

2, ω) is a splitting field for x3 − 2
over Q, Lemma 19.3 implies that Gal(K/Q) embeds in S3. Since we already
know that |Gal(K/Q)| = 6 = |S3|, we conclude that Gal(K/Q) ∼= S3.

19.2. Galois closure. Let K/F be an algebraic extensions which is not
Galois. Can we find an extension field L of K s.t. L/F is Galois? If K/F
is not separable, this is clearly impossible (any element of K which is not
separable over F will stay inseparable in any extension of K). On the other
hand, as we show below, if K/F is separable, such L always exists. The
minimal L with this property will be called the Galois closure of K over F .

Theorem 19.4. Let K/F be a separable extension, and choose an algebraic
closure F of F with K ⊆ F . Then there is unique field L with K ⊆ L ⊆ F

s.t.

(i) L/F is Galois
(ii) If M is any subfield of F s.t. M ⊇ K and M/F is Galois, then

M ⊇ L.

The field L is called the Galois closure of K over F .

Proof. Let Ω = {µα,F (x) : α ∈ K}, let A = the set of F -roots of polynomials
in Ω and L = F (A) ⊇ K. Then L is a splitting field for Ω, whence L/F is
normal.

Since K/F is separable, each polynomial in Ω is separable. Hence any
γ ∈ A is separable over F , so L/F is separable by Corollary 18.6. Thus the
extension L/F is Galois. Verification of condition (ii) and uniqueness of L
are left as (easy) exercises. �


