19. GALOIS GROUPS AND GALOIS EXTENSIONS

Definition. Let K/F be a field extension. Let Aut(K/F') denote the set of
all F-automorphisms of K, that is,

Aw(K/F) = {p € Aut(K) : p|p = idr}.

Then Aut(K/F) is clearly a group, called the automorphism group of K/F
or the Galois group of K/F.

Definition. A field extension is called Galois if it is normal and separable.

Theorem 19.1. Let K/F be a finite extension. Then |Aut(K/F)| < [K :
F], and equality holds if and only if K/F is Galois.

Proof. Fix an algebraic closure F of F' with K C F. Note that any element
of Aut(K/F) can be thought of as an F-embedding of K into F', and thus
we have a map T : Aut(K/F) — Embp(K, F).

The map T is clearly injective, and given 0 € Embpr(K, F) we have
o €Im(T) <= o(K) = K. Hence, T is surjective <= K/F is normal.
Therefore, we always have |Aut(K/F)| < |Embp(K, F)|, and equality holds
if and only if K/F' is normal.

On the other hand, by Theorem 18.3 we have |Embpr(K, F)| < [K : F],
where equality holds if and only if K/F is separable. Combining this two

results, we deduce Theorem 19.1. U

While the question of determining the Galois group Aut(K/F') makes sense
for any extension K /F', one is usually interested in the case of Galois exten-
sions.

Notation: If K/F is a Galois extension, we will usually write Gal(K/F)
instead of Aut(K/F).

19.1. Computing Galois groups. If K/F is a finite Galois extension,
there are two standard ways to describe the Galois group Gal(K/F). First,
we can choose a set of field generators for K over F', that is, write K =
F(ai,...,ay), and describe the elements of Gal(K/F') by where they map
ai,...,0n. In some cases, we may simply want to determine Gal(K/F') up

to isomorphism. Let us obtain descriptions of both kind in our standard

example Q(¥/2,w)/Q.
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Example 19.1: Let K = Q(3/2,w). Describe the Galois group Gal(K/Q).

First note that the extension K/Q is indeed Galois — it is separable since
charQ = 0 and normal since K is a splitting field for 2% — 2 over Q.

In order to describe the elements of Gal(K/Q) by where they map +/2 and
w, we argue similarly to Example 18.2. Any o € Gal(K/Q) is determined by
the images of ¥/2 and w, and each element must be mapped to an element
with the same minimal polynomial over Q. Thus, /2 can go to v/2, wv/2
or w?+v/2, and w can go to w or w?. Overall, there are 3 -2 = 6 possibilities.

On the other hand, since K/Q is Galois we know that |Aut(K/Q)| = 6, so
each of the above 6 possibilities does correspond to an F-automorphism of K.
We conclude that Gal(K/Q) has six elements {o;; : 0 < < 2,1 < j <2}
given by 0; ;(V/2) = w'V/2 and 0; j(w) = w.

The argument used in this example can be generalized as follows. Sup-
pose K/F is a finite Galois extension, and K is given in the form K =
F(ai,...,ap). For 1 <i<nlet K; = F(ai,...,qa;). Let d; = degp(a)
and e; = degg,  (;). Then e; < d;, and since e; = [K;—1(a;) @ Ki—1] =

n
[K; : K;—1], we have [K : F| =[] e;.
i=1
In our example we used the fact that e; = d; for each 4, in which case the

following result holds:

Proposition 19.2. In the above notations suppose that e; = d; for each
1 < i < n. Let Q be the set of K-roots of fia, r(x) (note that |Q;| =
e; = d;). Then for any elements 5y € Qu,..., 0, € Qy there exists unique
o€ Awt(K/F) s.t. o(ar) = f,...,0(an) = Bn. Furthemore, every element
of Aut(K/F) is of this form.

Proof. Use the same reasoning as in Example 19.1. O

Let us go back to Example 19.1. We know that every group of order 6
is isomorphic to Z/67Z or Ss. From the description we obtained it is easy
to see that the group Gal(Q(¥/2,w)/Q) is non-abelian and thus must be

isomorphic to S3. However, there is a much nicer way to prove the latter.

Lemma 19.3. Let K/F be a normal extension, and let p(x) € F[x] be an
irreducible polynomial which has a root in K (and hence by normality splits
completely over K ). Let S be the set of K-roots of p(x). The following hold:

(a) Aut(K/F) acts on 2, and thus there is a natural homomorphism
Auwt(K/F) — Sym(S). Furthermore, the action of Aut(K/F) on Q
18 transitive.



(b) Assume in addition that K is a splitting field for p(x) over F. Then
the action of Aut(K/F') on Q is faithful, and thus Aut(K/F') embeds
in Sym(§2).

Proof. (a) The group Aut(K/F) acts on Q by Lemma 17.1 (we have already
used this fact many times). Let us show that this action is transitive.

Take any «, 5 € 2. By the Simple Extension Lemma there exists an F-
embedding o : F(a) — F s.t. o(a) = 3. By the Main Extension Lemma o
extends to an F-embedding o’ : K — F with ¢/(a) = 3. Since K/F is nor-
mal, we have ¢/(K) = K, and thus ¢’ determines an element of Aut(K/F)

which maps « to §.

(b) If K is a splitting field for p(z), an element of Aut(K/F') is completely
determined by its action on Q. Thus, if 0 € Aut(K/F) acts trivially on €2,
then o = id. O

Example 19.1 concluded: Since K = Q(¥/2,w) is a splitting field for 23 — 2
over Q, Lemma 19.3 implies that Gal(K/Q) embeds in S3. Since we already
know that |Gal(K/Q)| = 6 = |S3|, we conclude that Gal(K/Q) = Ss.

19.2. Galois closure. Let K/F be an algebraic extensions which is not
Galois. Can we find an extension field L of K s.t. L/F is Galois? If K/F
is not separable, this is clearly impossible (any element of K which is not
separable over F' will stay inseparable in any extension of K). On the other
hand, as we show below, if K/F is separable, such L always exists. The

minimal L with this property will be called the Galois closure of K over F.

Theorem 19.4. Let K/F be a separable extension, and choose an algebraic
closure F of F with K C F. Then there is unique field L with K C L C F
s.t.
(i) L/F is Galois
(ii) If M is any subfield of F s.t. M O K and M/F is Galois, then
M D L.
The field L is called the Galois closure of K over F.

Proof. Let Q = {pio p(z) : @ € K}, let A = the set of F-roots of polynomials
in Q and L = F(A) D K. Then L is a splitting field for 2, whence L/F is
normal.

Since K/F is separable, each polynomial in ) is separable. Hence any
v € A is separable over F', so L/F is separable by Corollary 18.6. Thus the
extension L/F' is Galois. Verification of condition (ii) and uniqueness of L

are left as (easy) exercises. O



