
18. Separable extensions (continued)

We start with an example of a non-separable extension.

Example 18.1. Let Fp be a fintie field of order p, let K = Fp(ζ) be the field
of rational functions over Fp in a formal variable ζ and F = Fp(ζp). Then
it is easy to see that

[K : F ] = p and µζ,F (x) = xp − ζp ∈ F [x].

Thus µ′ζ,F (x) = 0, so ζ is inseparable over F . Alternatively observe that
xp − ζp = (x− ζ)p has a repeated root.

Definition. A field F is called perfect if either charF = 0 or charF = p

and F p = F where F p = {xp : x ∈ F}.

Theorem 18.1 (see DF, 13.5). A field F admits a non-separable extension
if and only if F is not perfect.

18.1. Separable degree.

Definition. Let F be a field and K and E extensions of F . Denote by
EmbF (K,E) the set of F -embeddings of K into E.

We shall be mostly interested in the case E = F , an algebraic closure of F .

Definition. Let K/F be an algebraic extension. For each α ∈ K define

(i) degree of α over F degF (α) = deg µα,F (x)
(ii) separable degree of α over F sdegF (α) = the number of distinct

roots of µα,F (x) in F .

Note: (1) sdegF (α) is independent of the choice of F (exercise).
(2) sdegF (α) ≤ degF (α), and equality holds ⇐⇒ α is separable over F .

Lemma 18.2. Let K/F be an algebraic extension and α ∈ K.

(a) Assume that K = F (α). Then |EmbF (K,F )| = sdegF (α).
(b) Assume that F ⊆ L ⊆ K with K = L(α). Then

|EmbF (K,F )| = |EmbF (L,F )| · sdegL(α).

Proof. Note that (a) is a special case of (b) with L = F , so we will only
prove (b).

Let R : EmbF (K,F )→ EmbF (L,F ) be the natural restriction map. It is
enough to show that for each σ ∈ EmbF (L,F ) there are precisely sdegL(α)
distinct ways to extend σ to some σ′ ∈ EmbF (K,F ).
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Since K = L(α), any such extension σ′ is completely determined by
σ′(α), and possible values of σ′(α) are F -roots of σ∗(µα,L(x)). Conversely,
by Lemma 16.1 for each F -root β of σ∗(µα,L(x)) there is an extension σ′

of σ s.t. σ′(α) = β. Thus, the number of ways to extend σ to σ′ equals
# of F -roots of σ∗(µα,L(x)) = # of F -roots of µα,L(x) = sdegL(α).

�

Theorem 18.3. Let K/F be a finite extension. Then

|EmbF (K,F )| ≤ [K : F ],

and equality holds ⇐⇒ K/F is separable.

Proof. We use induction on [K : F ]. Choose α ∈ K and a subfield F ⊆ L ⊆
K with K = L(α) and α 6∈ L. Thus, by Lemma 18.2 we have

|EmbF (K,F )| = |EmbF (L,F )| · sdegL(α). (∗ ∗ ∗)

1. Assume K/F is separable. Then clearly L/F is separable ⇒ by
induction |EmbF (L,F )| = [L : F ]. In addition, α is separable over L (since
µα,L divides µα,F ), whence sdegL(α) = degL(α) = [L(α) : L] = [K : L].
Hence (***) implies that |EmbF (K,F )| = [L : F ][K : L] = [K : F ].

2. Now assume that K/F is not separable, and let β ∈ K be non-
separable over F . If K = F (β), then by Lemma 18.2(a) we have

|EmbF (K,F )| = sdegF (β) < degF (β) = [K : F ].

If K 6= F (β), we can assume in the construction of L that β ∈ L. Then L/F
is also non-separable, whence by induction |EmbF (L,F )| < [L : F ]. Since
sdegL(α) ≤ degL(α) = [K : L], using (***) again we get

|EmbF (K,F )| < [L : F ] · [K : L] = [K : F ].

�

18.2. Primitive Element Theorem.

Theorem 18.4 (Primitive Element Theorem). Let K/F be a finite separable
extension. Then K = F (γ) for some γ ∈ K.

Proof. First consider the case of finite F . Then K is also finite, and we know
from [Algebra I, Lecture 25] that the multiplicative group K∗ is cyclic. If α
is any generator of K∗, then trivially F (α) = K.

Now assume that F is infinite. We know that K = F (α1, . . . , αn) for some
α1, . . . , αn ∈ K. Since F (α1, . . . , αn−1)/F is also separable, it is enough to
do the case n = 2.
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So, assume that K = F (α, β) and let n = [K : F ]. By Theorem 18.3 we
have |EmbF (K,F )| = n, and let σ1, . . . , σn be the distinct embeddings of K
into F .

Claim. There exists c ∈ F s.t. the elements σ1(α+ cβ), . . . , σn(α+ cβ) are
all distinct.

Proof of the Claim. We will show that there are only finitely many c ∈ F
which do NOT satisfy the claim. Since F is infinite, this will imply that
some c ∈ F will satisfy the claim.

If c ∈ F does not satisfy the claim, there must exist i 6= j s.t.

σi(α+ cβ) = σj(α+ cβ). (∗)

Since c ∈ F , we have

σi(α) + cσi(β) = σj(α) + cσj(β). (∗∗)

Note that if σi(β) = σj(β), then σi(α) = σj(α) by (**), whence σi = σj

(since K = F (α, β)), which is impossible. Hence σi(β) 6= σj(β), whence

c =
σi(α)− σj(α)
σj(β)− σi(β)

.

Since only i and j can vary, there are finitely many possibilities for c. �

We can now finish the proof of Primitive Element Theorem. If c ∈ F is s.t.
σ1(α+ cβ), . . . , σn(α+ cβ) are distinct, then the restrictions of σ1, . . . , σn to
the subfield F (α+ cβ) are also distinct. Applying Theorem 18.3 to the field
F (α+ cβ), we get

[F (α+ cβ) : F ] ≥ |EmbF (F (α+ cβ), F )| ≥ n = [K : F ].

Therefore, K = F (α+ cβ). �

Example 18.2: Let K = Q( 3
√

2, ω) where ω = e2πi/3. Let us show that
K = Q( 3

√
2 + ω).

Proof. We have seen earlier that [K : Q] = 6. Any Q-embedding σ : K → Q
is determined by the images of 3

√
2 and ω, and each element must map to an

element with the same minimal polynomial. Thus, 3
√

2 can map to 3
√

2, ω 3
√

2
or ω2 3

√
2, and ω can map to ω or ω2. Overall, there are 3 ·2 = 6 possibilities.

On the other hand, the extension K/Q is separable since charQ = 0.
Thus by Theorem 18.3 there are 6 = [K : Q] distinct Q-embeddings of K
into Q, so each of the above 6 possibilities extends to a true embedding.

The proof of Theorem 18.4 shows that K = Q(γ) for any γ which has
6 distinct images under the 6 distinct Q-embeddings of K into Q. Let
γ = 3
√

2 + ω. From our description the images of γ under these embeddings
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are {ωi 3
√

2 +ωj : 0 ≤ i ≤ 2, 1 ≤ j ≤ 2}. These 6 elements are easily seen to
be distinct, and thus K = Q(γ), as desired. �

18.3. Transitivity of separability.

Theorem 18.5. Let K/F be a finite extension. The following are equiva-
lent:

(a) K/F is separable
(b) K = F (α1, . . . , αn) where α1, . . . , αn are separable over F
(c) There exist subfields F = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K s.t. Ki =

Ki−1(αi) where αi is separable over Ki−1 for each i.

Proof. “(a) ⇒ (b)” is clear
“(b)⇒ (c)” is also clear: if αi is separable over F , then αi is also separable

over Ki−1 (since µα,Ki divides µα,F ).
“(c) ⇒ (a) ” Applying Lemma 18.2(b) several times, we get

|EmbF (K,F )| =
n∏
i=1

sdegKi−1
(αi) =

n∏
i=1

degKi−1
(αi) =

n∏
i=1

[Ki : Ki−1] = [Kn : K0] = [K : F ].

Hence by Theorem 18.3 K/F is separable. �

Corollary 18.6. Let K/F be an algebraic extension, and suppose that K =
F (A) where each α ∈ A is separable over F . Then K/F is separable.

Proof. IfA is finite, the assertion follows directly from Theorem 18.5(b)⇒(a).
The general case follows from this special case and the fact that any γ ∈ K
lies in a subfield of the form F (B) where B is a finite subset of A. �

Corollary 18.7. Let K/L/F be a tower of algebraic extensions. Then K/F
is separable ⇐⇒ K/L and L/F are separable.

Proof. “⇒” is easy. “⇐” in the case when K/F is finite follows from the
equivalence of (a) and (c) in Theorem 18.5. Finally, to prove “⇐” in the
general case one can use the same trick as in the proof of Lemma 15.1 (this
is left as an exercise). �


