18. SEPARABLE EXTENSIONS (CONTINUED)

We start with an example of a non-separable extension.

Example 18.1. Let \mathbb{F}_p be a finite field of order p, let $K = \mathbb{F}_p(\zeta)$ be the field of rational functions over \mathbb{F}_p in a formal variable ζ and $F = \mathbb{F}_p(\zeta^p)$. Then it is easy to see that

$$[K:F] = p$$
 and $\mu_{\zeta,F}(x) = x^p - \zeta^p \in F[x].$

Thus $\mu'_{\zeta,F}(x) = 0$, so ζ is inseparable over F. Alternatively observe that $x^p - \zeta^p = (x - \zeta)^p$ has a repeated root.

Definition. A field F is called perfect if either char F = 0 or char F = p and $F^p = F$ where $F^p = \{x^p : x \in F\}$.

Theorem 18.1 (see DF, 13.5). A field F admits a non-separable extension if and only if F is not perfect.

18.1. Separable degree.

Definition. Let F be a field and K and E extensions of F. Denote by $Emb_F(K, E)$ the set of F-embeddings of K into E.

We shall be mostly interested in the case $E = \overline{F}$, an algebraic closure of F.

Definition. Let K/F be an algebraic extension. For each $\alpha \in K$ define

- (i) degree of α over F $\deg_F(\alpha) = \deg \mu_{\alpha,F}(x)$
- (ii) separable degree of α over \overline{F} sdeg_F(α) = the number of distinct roots of $\mu_{\alpha,F}(x)$ in \overline{F} .

<u>Note:</u> (1) $\operatorname{sdeg}_F(\alpha)$ is independent of the choice of \overline{F} (exercise). (2) $\operatorname{sdeg}_F(\alpha) \leq \operatorname{deg}_F(\alpha)$, and equality holds $\iff \alpha$ is separable over F.

Lemma 18.2. Let K/F be an algebraic extension and $\alpha \in K$.

- (a) Assume that $K = F(\alpha)$. Then $|Emb_F(K, \overline{F})| = \operatorname{sdeg}_F(\alpha)$.
- (b) Assume that $F \subseteq L \subseteq K$ with $K = L(\alpha)$. Then

$$|Emb_F(K,\overline{F})| = |Emb_F(L,\overline{F})| \cdot \operatorname{sdeg}_L(\alpha).$$

Proof. Note that (a) is a special case of (b) with L = F, so we will only prove (b).

Let $R : Emb_F(K, \overline{F}) \to Emb_F(L, \overline{F})$ be the natural restriction map. It is enough to show that for each $\sigma \in Emb_F(L, \overline{F})$ there are precisely $\operatorname{sdeg}_L(\alpha)$ distinct ways to extend σ to some $\sigma' \in Emb_F(K, \overline{F})$. Since $K = L(\alpha)$, any such extension σ' is completely determined by $\sigma'(\alpha)$, and possible values of $\sigma'(\alpha)$ are \overline{F} -roots of $\sigma^*(\mu_{\alpha,L}(x))$. Conversely, by Lemma 16.1 for each \overline{F} -root β of $\sigma^*(\mu_{\alpha,L}(x))$ there is an extension σ' of σ s.t. $\sigma'(\alpha) = \beta$. Thus, the number of ways to extend σ to σ' equals # of \overline{F} -roots of $\sigma^*(\mu_{\alpha,L}(x)) = \#$ of \overline{F} -roots of $\mu_{\alpha,L}(x) = \operatorname{sdeg}_L(\alpha)$.

Theorem 18.3. Let K/F be a finite extension. Then

$$|Emb_F(K,\overline{F})| \le [K:F],$$

and equality holds $\iff K/F$ is separable.

Proof. We use induction on [K : F]. Choose $\alpha \in K$ and a subfield $F \subseteq L \subseteq K$ with $K = L(\alpha)$ and $\alpha \notin L$. Thus, by Lemma 18.2 we have

$$|Emb_F(K,\overline{F})| = |Emb_F(L,\overline{F})| \cdot \operatorname{sdeg}_L(\alpha). \quad (***)$$

1. Assume K/F is separable. Then clearly L/F is separable \Rightarrow by induction $|Emb_F(L,\overline{F})| = [L:F]$. In addition, α is separable over L (since $\mu_{\alpha,L}$ divides $\mu_{\alpha,F}$), whence $\operatorname{sdeg}_L(\alpha) = \operatorname{deg}_L(\alpha) = [L(\alpha):L] = [K:L]$. Hence (***) implies that $|Emb_F(K,\overline{F})| = [L:F][K:L] = [K:F]$.

2. Now assume that K/F is not separable, and let $\beta \in K$ be nonseparable over F. If $K = F(\beta)$, then by Lemma 18.2(a) we have

$$|Emb_F(K,\overline{F})| = \operatorname{sdeg}_F(\beta) < \operatorname{deg}_F(\beta) = [K:F].$$

If $K \neq F(\beta)$, we can assume in the construction of L that $\beta \in L$. Then L/F is also non-separable, whence by induction $|Emb_F(L,\overline{F})| < [L:F]$. Since $\operatorname{sdeg}_L(\alpha) \leq \operatorname{deg}_L(\alpha) = [K:L]$, using (***) again we get

$$|Emb_F(K,\overline{F})| < [L:F] \cdot [K:L] = [K:F].$$

18.2. Primitive Element Theorem.

Theorem 18.4 (Primitive Element Theorem). Let K/F be a finite separable extension. Then $K = F(\gamma)$ for some $\gamma \in K$.

Proof. First consider the case of finite F. Then K is also finite, and we know from [Algebra I, Lecture 25] that the multiplicative group K^* is cyclic. If α is any generator of K^* , then trivially $F(\alpha) = K$.

Now assume that F is infinite. We know that $K = F(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in K$. Since $F(\alpha_1, \ldots, \alpha_{n-1})/F$ is also separable, it is enough to do the case n = 2.

So, assume that $K = F(\alpha, \beta)$ and let n = [K : F]. By Theorem 18.3 we have $|Emb_F(K, \overline{F})| = n$, and let $\sigma_1, \ldots, \sigma_n$ be the distinct embeddings of K into \overline{F} .

Claim. There exists $c \in F$ s.t. the elements $\sigma_1(\alpha + c\beta), \ldots, \sigma_n(\alpha + c\beta)$ are all distinct.

Proof of the Claim. We will show that there are only finitely many $c \in F$ which do NOT satisfy the claim. Since F is infinite, this will imply that some $c \in F$ will satisfy the claim.

If $c \in F$ does not satisfy the claim, there must exist $i \neq j$ s.t.

$$\sigma_i(\alpha + c\beta) = \sigma_j(\alpha + c\beta). \tag{(*)}$$

Since $c \in F$, we have

$$\sigma_i(\alpha) + c\sigma_i(\beta) = \sigma_j(\alpha) + c\sigma_j(\beta). \tag{**}$$

Note that if $\sigma_i(\beta) = \sigma_j(\beta)$, then $\sigma_i(\alpha) = \sigma_j(\alpha)$ by (**), whence $\sigma_i = \sigma_j$ (since $K = F(\alpha, \beta)$), which is impossible. Hence $\sigma_i(\beta) \neq \sigma_j(\beta)$, whence

$$c = \frac{\sigma_i(\alpha) - \sigma_j(\alpha)}{\sigma_j(\beta) - \sigma_i(\beta)}.$$

Since only *i* and *j* can vary, there are finitely many possibilities for *c*. \Box

We can now finish the proof of Primitive Element Theorem. If $c \in F$ is s.t. $\sigma_1(\alpha + c\beta), \ldots, \sigma_n(\alpha + c\beta)$ are distinct, then the restrictions of $\sigma_1, \ldots, \sigma_n$ to the subfield $F(\alpha + c\beta)$ are also distinct. Applying Theorem 18.3 to the field $F(\alpha + c\beta)$, we get

$$[F(\alpha + c\beta) : F] \ge |Emb_F(F(\alpha + c\beta), \overline{F})| \ge n = [K : F].$$

Therefore, $K = F(\alpha + c\beta)$.

Example 18.2: Let $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega = e^{2\pi i/3}$. Let us show that $K = \mathbb{Q}(\sqrt[3]{2} + \omega)$.

Proof. We have seen earlier that $[K : \mathbb{Q}] = 6$. Any \mathbb{Q} -embedding $\sigma : K \to \overline{\mathbb{Q}}$ is determined by the images of $\sqrt[3]{2}$ and ω , and each element must map to an element with the same minimal polynomial. Thus, $\sqrt[3]{2}$ can map to $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$ or $\omega^2\sqrt[3]{2}$, and ω can map to ω or ω^2 . Overall, there are $3 \cdot 2 = 6$ possibilities.

On the other hand, the extension K/\mathbb{Q} is separable since char $\mathbb{Q} = 0$. Thus by Theorem 18.3 there are $6 = [K : \mathbb{Q}]$ distinct \mathbb{Q} -embeddings of K into $\overline{\mathbb{Q}}$, so each of the above 6 possibilities extends to a true embedding.

The proof of Theorem 18.4 shows that $K = \mathbb{Q}(\gamma)$ for any γ which has 6 distinct images under the 6 distinct \mathbb{Q} -embeddings of K into $\overline{\mathbb{Q}}$. Let $\gamma = \sqrt[3]{2} + \omega$. From our description the images of γ under these embeddings are $\{\omega^i \sqrt[3]{2} + \omega^j : 0 \le i \le 2, 1 \le j \le 2\}$. These 6 elements are easily seen to be distinct, and thus $K = \mathbb{Q}(\gamma)$, as desired.

18.3. Transitivity of separability.

Theorem 18.5. Let K/F be a finite extension. The following are equivalent:

- (a) K/F is separable
- (b) $K = F(\alpha_1, \ldots, \alpha_n)$ where $\alpha_1, \ldots, \alpha_n$ are separable over F
- (c) There exist subfields $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n = K$ s.t. $K_i = K_{i-1}(\alpha_i)$ where α_i is separable over K_{i-1} for each *i*.

Proof. "(a) \Rightarrow (b)" is clear

"(b) \Rightarrow (c)" is also clear: if α_i is separable over F, then α_i is also separable over K_{i-1} (since μ_{α,K_i} divides $\mu_{\alpha,F}$).

"(c) \Rightarrow (a) " Applying Lemma 18.2(b) several times, we get

$$|Emb_F(K,\overline{F})| = \prod_{i=1}^n \operatorname{sdeg}_{K_{i-1}}(\alpha_i) = \prod_{i=1}^n \operatorname{deg}_{K_{i-1}}(\alpha_i) = \prod_{i=1}^n [K_i:K_{i-1}] = [K_n:K_0] = [K:F].$$

Hence by Theorem 18.3 K/F is separable.

Corollary 18.6. Let K/F be an algebraic extension, and suppose that K = F(A) where each $\alpha \in A$ is separable over F. Then K/F is separable.

Proof. If A is finite, the assertion follows directly from Theorem 18.5(b) \Rightarrow (a). The general case follows from this special case and the fact that any $\gamma \in K$ lies in a subfield of the form F(B) where B is a finite subset of A.

Corollary 18.7. Let K/L/F be a tower of algebraic extensions. Then K/F is separable $\iff K/L$ and L/F are separable.

Proof. " \Rightarrow " is easy. " \Leftarrow " in the case when K/F is finite follows from the equivalence of (a) and (c) in Theorem 18.5. Finally, to prove " \Leftarrow " in the general case one can use the same trick as in the proof of Lemma 15.1 (this is left as an exercise).

4