17. Normal and separable extensions

In this lecture we shall use a slightly generalized version of the Main Extension Lemma. The proof remains the same.

Lemma 17.0 (Generalized Main Extension Lemma). Suppose we are given an algebraic extension K/M, an algebraically closed field L and an embedding $\sigma: M \to L$. Then there exists an embedding $\sigma': K \to L$ s.t. $\sigma'_{|M} = \sigma$.

17.1. Normal extensions.

Definition. Let F be a field and $\{f_i\}$ a family of polynomials in F[x]. An extension field K of F is called a splitting field for the family $\{f_i\}$ (over F) if each f_i splits over K and K is generated by F and the roots of $\{f_i\}$.

Extensions arising in this form are called normal and admit several equivalent characterizations.

Definition. An algebraic extension K/F is called <u>normal</u> if it satisfies the following equivalent conditions:

- (i) Any irreducible polynomial $f(x) \in F[x]$ which has a root in K must split completely over K.
- (ii) K is a splitting field for some family of polynomials in F[x].
- (iii) Fix ¹ an algebraic closure \overline{F} of F with $F \subseteq K \subseteq \overline{F}$. Then for any F-embedding $\sigma: K \to \overline{F}$ we have $\sigma(K) = K$.

The equivalence of conditions (i)-(iii) will be proved below. But first we give basic examples of a normal and non-normal extensions.

Example 17.1: Let $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega = e^{2\pi i/3}$. The extension K/\mathbb{Q} is normal as it is a splitting field over \mathbb{Q} for $x^3 - 2$, as shown in Example 16.1.

Example 17.2: Let $L = \mathbb{Q}(\sqrt[3]{2})$. Then L/\mathbb{Q} is not normal as it clearly violates condition (i): $f(x) = x^3 - 2$ is irreducible over \mathbb{Q} and has a root $\sqrt[3]{2} \in L$, but does not split completely over L (if it did we would have $\omega\sqrt[3]{2} \in L$, which is impossible since $L \subseteq \mathbb{R}$).

¹Note that such \overline{F} exists by Observation 16.4

It is also easy to see directly that L/\mathbb{Q} also violates (iii). Indeed, by Lemma 16.1 there exists a \mathbb{Q} -embedding $\sigma: L \to \mathbb{C}$ such that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}\omega$, and thus $\sigma(L) \neq L$.

The following simple lemma is a partial converse of Lemma 16.1.

Lemma 17.1. Let K/F and L/F be field extensions and $\sigma : K \to L$ an *F*-embedding. Then for any $\alpha \in K$ and $p(x) \in F[x]$ we have

$$p(\alpha) = 0 \quad \iff \quad p(\sigma(\alpha)) = 0.$$

In particular, α and $\sigma(\alpha)$ have the same minimal polynomial over F.

Proof. Exercise.

Theorem 17.2. Conditions (i)-(iii) in the definition of a normal extension are indeed equivalent.

Proof. "(i) \Rightarrow (ii)" Let $\Omega = \{\mu_{\alpha,F}(x) : \alpha \in K\}$ and let A be the set of all K-roots of polynomials from Ω . Then clearly $K \subseteq F(A)$ since each $\alpha \in K$ is a root of its minimal polynomial $\mu_{\alpha,F}(x)$. For the same reason, each $p \in \Omega$ has a root in K and thus must split completely over K, whence $F(A) \subseteq K$. Therefore, K = F(A) is a splitting field for Ω .

"(ii) \Rightarrow (iii)" By definition there exists a family of polynomials $\Omega \subseteq F[x]$ such that K = F(A) where A is the set of all \overline{F} -roots of elements of Ω . By Lemma 17.1 any embedding $\sigma : K \to \overline{F}$ must permute elements of A. Thus, $\sigma(A) = A$, whence

$$\sigma(K) = \sigma(F(A)) = F(\sigma(A)) = F(A) = K.$$

"(iii) \Rightarrow (i)" Suppose (i) does not hold, that is, there exists an irreducible $p(x) \in F[x]$ and \overline{F} -roots α, β of p(x) s.t. $\alpha \in K$ but $\beta \notin K$.

Then $p = \mu_{\alpha,F} = \mu_{\beta,F}$, so by Lemma 16.1 there exists an *F*-embedding $\sigma: F(\alpha) \to \overline{F}$ s.t. $\sigma(\alpha) = \beta$. Since $K/F(\alpha)$ is algebraic, by the Generalized Main Extension Lemma σ extends to an *F*-embedding $\sigma': K \to \overline{F}$ s.t. $\sigma'_{|K} = \sigma$. Since $\sigma'(\alpha) = \beta$, we have $\sigma'(K) \neq K$, which contradicts (iii). \Box

17.2. Separable extensions.

Definition. Let F be a field. A polynomial $p(x) \in F[x]$ is called <u>separable</u> if p(x) has no repeated roots in \overline{F} .

Lemma 17.3. $p(x) \in F[x]$ is separable $\iff \gcd(p(x), p'(x)) = 1$.

Proof. " \Rightarrow " Suppose that $gcd(p(x), p'(x)) \neq 1$. Hence p(x) and p'(x) have a common root $\alpha \in \overline{F}$, so $p(x) = (x - \alpha)u(x)$ and $p'(x) = (x - \alpha)v(x)$ for some

 $u, v \in \overline{F}[x]$. But then $p'(x) = u(x) + (x - \alpha)u'(x)$, whence $(x - \alpha) \mid u(x)$, and so $(x - \alpha)^2 \mid p(x)$. Thus p(x) has a repeated root.

" \Leftarrow " Similar (exercise).

Definition. Let K/F be an algebraic extension.

- (a) An element $\alpha \in K$ is called separable over F if $\mu_{\alpha,F}(x)$ is separable.
- (b) The extension K/F is separable if any $\alpha \in K$ is separable over F.

<u>Note</u>: The polynomial $\mu_{\alpha,F}(x)$ is always irreducible. Thus, there are two possibilities:

- (1) $\mu'_{\alpha,F}(x) \neq 0$. Then $gcd(\mu_{\alpha,F}, \mu'_{\alpha,F}) = 1$ (since $deg(\mu'_{\alpha,F}) < deg(\mu_{\alpha,F})$), and so $\mu_{\alpha,F}$ is separable.
- (2) $\mu'_{\alpha,F}(x) = 0$ in which case $\mu_{\alpha,F}$ is not separable

How can it happen that $\mu'_{\alpha,F}(x) = 0$?

Observation 17.4. Let $f(x) \in F[x]$.

- (a) If char F = 0, then $f'(x) = 0 \iff f$ is constant
- (b) If char F = p > 0, then $f'(x) = 0 \iff f = g(x^p)$ for some $g \in F[x]$.

Proposition 17.5. If either charF = 0 or F is a finite field, then every algebraic extension K/F is separable.

Proof. The case charF = 0 is clear from the above discussion. The assertion in the case of finite fields will be proved later.