
16. Algebraic closures and splitting fields

16.1. Uniqueness of algebraic closures.
Notation: Let σ : K → L be a field embedding. Then σ naturally extends
to a ring homomorphism σ∗ : K[x]→ L[x] given by

σ∗(anxn + . . .+ a0) = σ(an)xn + . . .+ σ(a0).

Lemma 16.1 (Simple Extension Lemma). Let M(α)/M be an algebraic
extension. Suppose that σ : M → L is a field embedding such that the
polynomial σ∗(µα,M ) has a root β ∈ L. Then there exists a field embedding
σ′ : M(α)→ L s.t. σ′|M = σ and σ′(α) = β.

Proof. By Lemma 14.4 every element of M(α) is equal to p(α) for some
p(x) ∈M [x]. Define σ′ : M(α)→ L by

σ′(p(α)) = (σ∗(p))(β).

The map σ′ is a field embedding as long as it is well defined. It is well
defined since if p(α) = p̃(α) for some p, p̃ ∈M [x], then µα,M | (p̃−p), whence
σ∗(µα,M ) | (σ∗(p̃)− σ∗(p)), and therefore (σ∗(p̃))(β) = (σ∗(p))(β) since β is
a root of σ∗(µα,M ). It is clear that σ′(α) = β. Finally, σ′|M = σ since any
element of M is represented by a constant polynomial p ∈M [x]. �

Definition. Let K/F and L/F be field extensions. A map ι : K → L

is called an F -embedding (resp. F -isomorphism) if ι is a field embedding
(resp. isomorphism) and ι|F = idF .

Lemma 16.2 (Main Extension Lemma). Let K/F and L/F be field exten-
sions. Suppose that K/F is algebraic and L is algebraically closed. Then
there exists an F -embedding σ : K → L.

Proof. Let Ω be the set of pairs (M,ϕ) where M is a field with F ⊆M ⊆ K
and ϕ : M → L is an F -embedding. Define an order relation on Ω as follows:

(M,ϕ) ≤ (M ′, ϕ′) if M ⊆M ′ and ϕ′|M = ϕ.

Note that Ω is non-empty since (F, id) ∈ Ω.
Next we claim that any chain in Ω has an upper bound. Indeed, if

{(Mi, ϕi)} is a chain in Ω, let M = ∪Mi, and define ϕ : M → L as follows:
given α ∈ M , choose i s.t. α ∈ Mi and put ϕ(α) = ϕi(α). Note that ϕ is
well defined because of our order relation on Ω. It is clear that (M,ϕ) ∈ Ω
is an upper bound for {(Mi, ϕi)}.
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We can now apply Zorn lemma to deduce that Ω has a maximal element
(M,σ). If we show that M = K, we will be done. Suppose not, and choose
α ∈ K \ M . By assumption, α is algebraic over F , hence also algebraic
over M . Since L is algebraically closed, the polynomial σ∗(µα,M ) has a root
β ∈ L. Applying Lemma 16.1, we obtain an embedding σ′ : M(α) → L

s.t. σ′|M = σ. But then clearly, (M,σ) < (M(α), σ′) in Ω, which contradicts
maximality of (M,σ). �

We can now give the precise statement of the uniqueness theorem:

Theorem 16.3. For any field F the algebraic closure is unique up to F -
isomorphism, that is, if K and K ′ are two algebraic closures of F , then there
exists an F -isomorphism ϕ : K → K ′.

Proof. Left as an exercise. It is a fairly easy consequence of the Main Ex-
tension Lemma. �

Here is one more simple result that we shall be frequently used.

Observation 16.4. Let K/F be an algebraic extension and K an algebraic
closure of K. Then K is also an algebraic closure of F .

Proof. Follows directly from the fact that a tower of algebraic extensions is
algebraic (Lemma 15.1). �

16.2. Splitting fields.

Definition. Let F be a field and f(x) ∈ F [x]. An extension field K of F is
called a splitting field for f(x) (over F ) if

(i) f(x) splits over K, that is, f(x) = c(x − α1) . . . (x − αn) for some
α1, . . . , αn ∈ K

(ii) K is generated by F and the roots of f(x), that is, K = F (α1, . . . , αn).

Lemma 16.5. Any polynomial p(x) ∈ F [x] has a splitting field which is
unique up to F -isomorphism. Moreover, if F is a fixed algebraic closure of
F , there is a unique splitting field for p(x) inside F .

Proof. Existence: Let F be an algebraic closure of F . Then f(x) splits over
F : f(x) = c(x − α1) . . . (x − αn) for some αi ∈ F . Let K = F (α1, . . . , αn).
It is clear that K is the unique splitting field for F inside F .
Uniqueness: Exercise – follows from Theorem 16.3 and Observation 16.4. �
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Example 16.1: Let f(x) = x3−2 ∈ Q[x] and let K ⊆ C be the splitting field
of f(x). Let us describe K (as well as we can).

Since x3 − 2 = (x − 3
√
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Claim. [K : Q] = 6.
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Let a = [Q( 3
√

2) : Q], b = [Q(ω) : Q], c = [K : Q( 3
√

2)] and d = [K : Q(ω)].
Then [K : Q] = ac = bd.

Note that x3 − 2 is the minimal polynomial of 3
√

2 over Q since it is
irreducible (by Eisenstein) and vanishes at 3

√
2. Therefore, a = degQ( 3

√
2) =

deg(x3 − 2) = 3. Similarly x2 + x + 1 is the minimal polynomial of ω over
Q, whence b = degQ(ω) = 2.

Also note that c = degQ( 3√2)(ω) ≤ degQ(ω) = 2 and d ≤ degQ( 3
√

2) = 3.
This implies that [K : Q] = ac ≤ 6. On the other hand, [K : Q] is a multiple
of both a = 3 and b = 2, and thus we must have [K : Q] = 6.

Alternatively, we could argue that c 6= 1 for otherwise we would have
ω ∈ Q( 3

√
2) which is impossible since ω is not even real. Thus, c = 2 and so

[K : Q] = ac = 6. �


