16. ALGEBRAIC CLOSURES AND SPLITTING FIELDS

16.1. Uniqueness of algebraic closures.
Notation: Let 0 : K — L be a field embedding. Then ¢ naturally extends

to a ring homomorphism o* : K[x] — L[z] given by
o (anz™ + ...+ ag) =oc(ap)z™ + ...+ o(ap).

Lemma 16.1 (Simple Extension Lemma). Let M (a)/M be an algebraic
extension. Suppose that o : M — L is a field embedding such that the
polynomial o*(pia,nr) has a root B € L. Then there exists a field embedding
o' : M(a) — L s.t. U|’M =0 and o'(a) = (.

Proof. By Lemma 14.4 every element of M(«) is equal to p(«) for some
p(x) € M[z]. Define o’ : M () — L by

o' (p(a)) = (o™ (p))(B)-
The map o’ is a field embedding as long as it is well defined. It is well
defined since if p(a) = p(«) for some p,p € M|x], then pq ar | (p—p), whence

o*(toopr) | (0°(F) — 0*(p)), and therefore (o*(7))(8) = (0" (1))(8) since § is
a root of o*(uq,ar). It is clear that o'(a) = 8. Finally, UI/M = o since any

element of M is represented by a constant polynomial p € M|z]. ([

Definition. Let K/F and L/F be field extensions. A map ¢ : K — L
is called an F-embedding (resp. F-isomorphism) if ¢ is a field embedding

(resp. isomorphism) and ¢|p = idp.

Lemma 16.2 (Main Extension Lemma). Let K/F and L/F be field exten-
sions. Suppose that K/F is algebraic and L is algebraically closed. Then

there exists an F-embedding o : K — L.

Proof. Let Q be the set of pairs (M, ¢) where M is a field with F C M C K

and ¢ : M — L is an F-embedding. Define an order relation on 2 as follows:
(M,p) < (M',¢) if M C M and SDTM = .

Note that € is non-empty since (Fid) € Q.

Next we claim that any chain in ) has an upper bound. Indeed, if
{(M;, i)} is a chain in Q, let M = UM;, and define ¢ : M — L as follows:
given a € M, choose i s.t. a € M; and put ¢(a) = p;(a). Note that ¢ is
well defined because of our order relation on Q. It is clear that (M, ¢) € 2
is an upper bound for {(M;, ¢;)}.



We can now apply Zorn lemma to deduce that 2 has a maximal element
(M, o). If we show that M = K, we will be done. Suppose not, and choose
a € K\ M. By assumption, « is algebraic over F, hence also algebraic
over M. Since L is algebraically closed, the polynomial o*(pq, ) has a root
B € L. Applying Lemma 16.1, we obtain an embedding ¢’ : M(a) — L
s.t. O"IM = 0. But then clearly, (M,0) < (M(«),o’) in 2, which contradicts
maximality of (M, o). O

We can now give the precise statement of the uniqueness theorem:

Theorem 16.3. For any field F' the algebraic closure is unique up to F'-
isomorphism, that is, if K and K' are two algebraic closures of F', then there

exists an F-isomorphism ¢ : K — K'.

Proof. Left as an exercise. It is a fairly easy consequence of the Main Ex-

tension Lemma. O

Here is one more simple result that we shall be frequently used.

Observation 16.4. Let K/F be an algebraic extension and K an algebraic

closure of K. Then K is also an algebraic closure of F.

Proof. Follows directly from the fact that a tower of algebraic extensions is
algebraic (Lemma 15.1). O

16.2. Splitting fields.

Definition. Let F be a field and f(z) € F[z]. An extension field K of F is
called a splitting field for f(x) (over F') if

(i) f(x) splits over K, that is, f(z) = c(x — a1)...(z — ay,) for some
aly...,on €K
(ii) K is generated by F' and the roots of f(x), thatis, K = F(aq,...,ay).

Lemma 16.5. Any polynomial p(z) € Flx] has a splitting field which is
unique up to F-isomorphism. Moreover, if F is a fized algebraic closure of

F, there is a unique splitting field for p(x) inside F.

Proof. Ezistence: Let I be an algebraic closure of F. Then f(z) splits over
F: f(x) =clr —a1)...(z — ap) for some a; € F. Let K = F(aq,...,ap).
It is clear that K is the unique splitting field for F inside F.

Uniqueness: Exercise — follows from Theorem 16.3 and Observation 16.4. [



Example 16.1: Let f(z) = 2% —2 € Q[z] and let K C C be the splitting field
of f(z). Let us describe K (as well as we can).

Since 2° — 2 = (z — V/2)(x — wv2)(z — w?V/2), by definition we have
K = Q(V/2,wy/2,w%V/2), but it is clear that K = Q(\‘?/iw).

Claim. [K : Q] =6.

Proof.
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Let a = [Q(¥/2): Q], b= [Q(w) : Q], ¢ = [K : Q(¥/2)] and d = [K : Q(w)].
Then [K : Q] = ac = bd.

Note that 2 — 2 is the minimal polynomial of /2 over Q since it is
irreducible (by Eisenstein) and vanishes at v/2. Therefore, a = degg(V/2) =
deg(x3 — 2) = 3. Similarly 22 + = + 1 is the minimal polynomial of w over
Q, whence b = degg(w) = 2.

Also note that ¢ = degq 43 (w) < degg(w) =2 and d < degg(V/2) = 3.
This implies that [K : Q] = ac < 6. On the other hand, [K : Q] is a multiple
of both @ = 3 and b = 2, and thus we must have [K : Q] = 6.

Alternatively, we could argue that ¢ # 1 for otherwise we would have

w € Q(¥/2) which is impossible since w is not even real. Thus, ¢ = 2 and so
[K : Q] =ac=6. O



