15. Algebraic closures

We begin with one more result on algebraic extensions.

Lemma 15.1. Suppose that K/F and L/K are algebraic extensions. Then the extension L/F is also algebraic.

Proof. In the case of finitely generated extensions this is immediate by Lemma 14.5. In general we argue as follows.

Take any $\beta \in L$. We are given that β is algebraic over K, so there exists $p(x) = p_n x^n + \ldots + p_0 \in K[x]$ such that $p(\beta) = 0$. Let $K' = F(p_0, \ldots, p_n) \subseteq K$. Then β is also algebraic over K', so the extension $K'(\beta)/K$ is finite. The extension K'/F is algebraic and finitely generated, hence finite by Lemma 14.5. Thus, by Lemma 14.1, $K'(\beta)/F$ is finite, and so β is algebraic over F again by Lemma 14.5.

15.1. Relative algebraic closures.

Definition. Let K/F be a field extension. The set $\overline{F}_K = \{\alpha \in K : \alpha \text{ is algebraic over } F\}$ is called the relative algebraic closure of F in K.

Corollary 15.2. Let K/F be a field extension and let $\alpha, \beta \in K, \beta \neq 0$, be algebraic over F. Then $\alpha \pm \beta, \alpha\beta$ and $\frac{\alpha}{\beta}$ are also algebraic over F. In other words, the relative algebraic closure \overline{F}_K is a subfield of K.

Proof. The elements $\alpha \pm \beta$, $\alpha\beta$ and $\frac{\alpha}{\beta}$ all lie in the field $F(\alpha, \beta)$. Since α and β are algebraic over F, the extension $F(\alpha, \beta)/F$ is algebraic by Lemma 14.5.

Example 15.1 The element $\alpha = \sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} . Direct verification is not so obvious: $\alpha^2 = 5 + 2\sqrt{6}$, whence $(\alpha^2 - 5)^2 - 24 = 0$.

15.2. Embedding into algebraically closed fields.

Lemma 15.3. Let F be a field and $p_1, \ldots, p_n \in F[x]$ a finite collection of non-constant polynomials. Then there exists a finite extension K/F such that each p_i has a root in K.

Proof. Case 1: n = 1. WOLOG we can assume that each p_1 is irreducible. Let $K_1 = F[x]/(p_1(x))$. Then K_1 is a field, and we have a natural embedding $F \to K_1$ via $F \to F[x] \to F[x]/(p_1(x))$. If $\alpha = \bar{x}$ is the image of x in K_1 , then $p_1(\alpha) = p_1(\bar{x}) = \overline{p_1(x)} = 0$. Thus, p_1 has a root in K_1 . Note that $[K_1:F] = \deg p_1(x)$ is finite. General case. By consecutive applications of Case 1 we can construct an ascending chain of fields $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ such that p_i has a root in K_i . Hence each of the polynomials p_1, \ldots, p_n has a root in K_n . By construction each extension K_i/K_{i-1} is finite, so K_n/F is also finite. Thus, $K = K_n$ has the desired property. \Box

Theorem 15.4. Any field F can be embedded in an algebrically closed field.

Proof. Step 1: Construct an extension K_1/F s.t. every non-constant polynomial from F[x] has a root in K_1 .

Let S be the set of all non-constant polynomials in F[x]. For each $f \in S$ introduce a formal variable x_f and let $R = F[\{x_f\}_{f \in S}]$ be the ring of polynomials over F in $\{x_f\}$.

Let *I* be the ideal of *R* generated by $\{f(x_f) : f \in S\}$. We claim that $I \neq R$. Suppose not. Then there exist $f_1, \ldots, f_n \in S$ and $g_1, \ldots, g_n \in R$ s.t.

$$g_1 f_1(x_{f_1}) + \ldots + g_n f_n(x_{f_n}) = 1.$$
 (*)

By Lemma 15.3 there exists an extension K/F in which f_1 has some root α_1, \ldots, f_n has some root α_n . Now take (*), set $x_{f_i} = \alpha_i$ for $1 \le i \le n$, and set x_f to be any element of F for $f \notin \{f_i\}$. We get 0 = 1, which is impossible.

Once we proved that $I \neq R$, we know that there is a maximal ideal Ms.t. $I \subseteq M$. Let $K_1 = R/M$. Then K_1 is a field containing an (isomoprhic copy of) F and each $f \in S$ has a root in K_1 . Indeed, if $\overline{x_f}$ is the image of x_f in K_1 , then $f(\overline{x_f}) = \overline{f(x_f)} = 0$ as $f(x_f) \in I \subseteq M$. This completes Step 1.

Step 2: Apply Step 1 to K_1 , that is, construct an extension K_2/K_1 s.t. every polynomial in $K_1[x]$ has a root in K_2 . Then apply Step 1 to K_2 etc.

$$F \subseteq K_1 \subseteq K_2 \subseteq \ldots$$

Let $K = \bigcup_{n=1}^{\infty} K_n$. Then K is a field being the union of an ascending chain of fields. Given a non-constant polynomial $p \in K[x]$, there exists $n \in \mathbb{N}$ s.t. $p \in K_n[x]$. By construction p has a root in K_{n+1} and hence has a root in K. Thus K is algebraically closed.

15.3. Existence of algebraic closures.

Definition. Let F be a field. An extension field \overline{F} of F is called an algebraic closure of F if

- (i) F is algebraically closed
- (ii) the extension \overline{F}/F is algebraic

Theorem 15.5. Any field F has an algebraic closure.

Proof. By Theorem 15.4 F can be embedded in an algebraically closed field K. Let $L = \{\alpha \in K : \alpha \text{ is algebraic over } F\}$ be the relative algebraic closure of F in K. Then L is a field by Corollary 15.2 and the extension L/F is algebraic. It remains to show that L is algebraically closed.

Take any non-constant polynomial $p(x) \in L[x]$. We know that p(x) has a root $\beta \in K$. We will be done if we show that $\beta \in L$.

Since β is algebraic over L, the extension $L(\beta)/L$ is algebraic. Since L/F is also algebraic, by Lemma 15.1 $L(\beta)/F$ is algebraic. In particular, β is algebraic over F, so by definition $\beta \in L$.

Uniqueness of algebraic closures will be proved in the next lecture.