
14. Field theory

Recall that a field is a commutative ring with 1 in which all elements are
invertible.

14.1. Field extensions.

Definition. A field extension is a pair of fields (K,F ) where K contains F .
The standard notation for a field extension is K/F .

Definition. If F and K are two fields, a map ι : F → K is called a
field embedding if ι is an injective ring homomorphism.

Remark: Any non-trivial homomorphism between fields is an embedding.
If ι : F → K is a field embedding, then K/ι(F ) is a field extension. By
abuse of terminology we will often say that K/F is a field extension.

If K/F is a field extension, then K is a vector space over F . The di-
mension of this vector space is called the degree of K over F and denoted
by [K : F ]. Thus [K : F ] = dimF K. The extension K/F is called finite if
[K : F ] is finite.

Proposition 14.1. For any fields F ⊆ K ⊆ L we have

[L : F ] = [L : K][K : F ].

Proof. Let {αi} be a basis of K over F and {βi} a basis of L over K. Then
it is easy to see that {αiβj} is a basis of L over F (check details). �

14.2. Constructing field extensions. Let L/F be a field extension. For
any subset S of L we can consider the field F (S) = the smallest subfield of
L containing both F and S. We have F ⊆ F (S) ⊆ L.

Definition. (a) A field extension K/F is called simple if K can be obtained
from F by adjoining one element, that is, K = F (α) for some α ∈ K. Note:

F (α) = {β ∈ K : β =
p(α)
q(α)

for some p(x), q(x) ∈ F [x] with q(α) 6= 0.}

(b)K/F is called finitely generated ifK can be obtained from F by adjoining
finitely mant elements, that is, K = F (α1, . . . , αn) for some α1, . . . , αn ∈ K.

Proposition 14.2. (a) Any finite extension is finitely generated.
(b) Assume that K/F is finitely generated. Then there exist subfields F =
K0 ⊆ K1 ⊆ . . . ⊆ Kn = K s.t. Ki/Ki−1 is simple for each i.
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Proof. (a) Let {α1, . . . , αn} be a basis for K over F . Then F (α1, . . . , αn)
contains

∑n
i=1 λiαi for any λi ∈ F , and so F (α1, . . . , αn) = K.

(b) Suppose that K = F (α1, . . . , αn), and define Ki = F (α1, . . . , αi) for
1 ≤ i ≤ n. It is easy to see that Ki(αi+1) = Ki+1, so Ki+1/Ki is simple for
each i. �

14.3. Simple extensions. Let K/F be a field extension. Given any α ∈ K
let V (α) = {f ∈ F [x] : f(α) = 0}. Clearly V (α) is an ideal of F [x]. We
have two cases.

Case 1: V (α) 6= {0}. In this case α is called algebraic over F . The
unique monic polynomial which generates V (α) as an ideal is called the
minimal polynomial of α over F and denoted by µα,F (x).

Case 2: V (α) = {0}. In this case α is called transcendental over F .

Lemma 14.3. Let K/F be a field extension and let α ∈ K be algebraic over
F . Let p(x) ∈ F [x] be monic. The following are equivalent:

(i) p(x) = µα,F (x)
(ii) p(x) is irreducible and p(α) = 0.

Proof. Exercise. �

Theorem 14.4. Assume that K = F (α) for some α.

(a) If α is algebraic over F , then
(i) K = F [α] = polynomials in α with coefficients from F

(ii) K ∼= F [x]/(µα(x))
(iii) If n = degµα(x), then [K : F ] = n and {1, α, . . . , αn−1} is a

basis of K over F .
(b) If α is transcendental over F , then K ∼= F (x), the field of rational

functions over F in one variable.

Proof. (a) Define the homomorphism ϕ : F [x] → K by ϕ(p(x)) = p(α).
Then Imϕ = F [α] and Kerϕ = (µα(x)) (by definition). Therefore,

F [α] ∼= F [x]/(µα(x)).

Since µα(x) is irreducible by Lemma 14.3, F [α] is a field. Thus, F [α] is a
field containing F and α, so F [α] = F (α) (as the inclusion F [α] ⊆ F (α)
always holds). This proves (i) and (ii). (iii) is left as an exercise.

(b) Define ϕ : F (x) → K by ϕ
(
p(x)
q(x)

)
= p(α)

q(α) . Note that ϕ is well defined
since α is transcendental (so q(α) 6= 0 if q 6= 0). This time ϕ is surjective by
definition, and finally Kerϕ = {0} again because α is transcendental. �
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14.4. Algebraic extensions.

Definition. An extension K/F is called algebraic if any α ∈ K is algebraic
over F .

Lemma 14.5. Let K/F be a finitely generated extension. The following are
equivalent:

(a) K/F is finite
(b) K/F is algebraic
(c) K = F (α1, . . . , αn) for some algebraic elements α1, . . . , αn.

Proof. “(a)⇒ (b)” Let n = [K : F ]. Then for any α ∈ K the elements
1, α, . . . , αn are linearly dependent over F , so α is algebraic over F .

“(b)⇒ (c)” Since K/F is finitely generated, K = F (α1, . . . , αn) for some
α1, . . . , αn ∈ K, and since K/F is algebraic, each αi must be algebraic over
F .

“(c)⇒ (a)” LetKi = F (α1, . . . , αi). ThenKi = Ki−1(αi) for each i. Since
αi is algebraic over F , it is surely algebraic over Ki−1, so by Theorem 14.4
we have [Ki : Ki−1] <∞. Hence

[K : F ] = [Kn : K0] =
n∏
i=1

[Ki : Ki−1] <∞.
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