
12. Jordan canonical form of matrices and linear

transformations.

Let F be a field, V a f.d. vector space over F and T ∈ gl(V ) an F -linear
transformation from V to V . As before let VT denote V considered as F [x]-
module where x acts as T .

Recall that the existence of the rational canonical form (RCF) of T was
derived from the invariant factors decomposition of the F [x]-module VT .
Today we shall use the decomposition of VT in the elementary divisors form
to establish the existence of the Jordan canonical form (JCF). While RCF
exists over any field, to ensure the existence of JCF we need to assume that
F is algebraically closed. This is not a very serious restriction since any field
can be embedded into an algebraically closed field – we will show this later
in the course.

Definition. A field F is called algebraically closed if any non-constant poly-
nomical in F [x] has a root in F . Equivalently, F is algebraically closed if
any irreducible polynomial in F [x] has degree 1.

12.1. Existence and uniqueness of Jordan canonical form. So, let F

be an algebraically closed field, V a f.d. F -vector space and T ∈ gl(V ). We
apply the classification of modules over PID in ED form to the module VT .
Since all irreducible polynomials in F [x] are linear, we get that there exist
λ1, . . . , λk ∈ F (not necessarily distinct) and positive integers d1, . . . , dk such
that

VT = V1 ⊕ . . .⊕ Vk where Vi
∼= F [x]/(x− λi)di as F [x]-modules.

As in RCF case, each Vi is T -invariant. If we let Ti = T|Vi
∈ gl(Vi),

choose a basis Ωi of Vi for each i and let Ω = Ω1t . . .tΩk, then Ω is a basis
of V and

[T ]Ω =


[T1]Ω1 0 . . . 0
0 [T2]Ω2 . . . 0
...

...
. . . 0

0 0 . . . [Tk]Ωk


Thus, as with RCF we are reduced to the case when

VT
∼= F [x]/(x− λ)d as F [x]-modules.

For each 0 ≤ i ≤ d − 1 let ei = (x− λ)i where p(x) is the image of p(x) in
VT . Let Ω = {ed−1, . . . , e0} (in this order!) Then Ω is an F -basis of V , and
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the action of T on Ω is given by

T (ei) = x(x− λ)i = (x− λ)i+1 + λ(x− λ)i = λei + ei+1 if i < d− 1 and

T (ed−1) = λed−1.

So,

[T ]Ω =


λ 1 . . . 0 0
0 λ 1 0
...

. . . . . . . . . 0

0
. . . λ 1

0 . . . . . . 0 λ


This d×d matrix will be denoted by J(d, λ). Matrices of this form are called
Jordan blocks.

Definition. A matrix A ∈ Matn(F ) is said to be in Jordan canonical form
if A is block-diagonal where each block is a Jordan block.

Theorem 12.1 (Existence and uniqueness of JCF). Let V be a f.d. vector
space over an algebraically closed field and T ∈ gl(V ). Then there is a basis
Ω of V and a matrix J in Jordan canonical form s.t. [T ]Ω = J . The matrix
J is called the Jordan canonical form of T – it is unique up to permutation
of Jordan blocks.

Proof. The existence part is proved above. The uniqueness part can be
deduced from the uniqueness part in the PID classificaiton theorem (ED
form), but we shall also give a different argument later on. �

Here is the matrix form of Theorem 12.1:

Theorem 12.1’. Assume that F is algebraically closed. Then any matrix
A ∈ Matn(F ) is similar to a matrix in JCF, which is unique up to permu-
tation of Jordan blocks.

From now on we will primarily state our results for matrices (instead of
linear transformations).

12.2. Relation of JCF to minimal and characteristic polynomial.

Lemma 12.2. Let F be an algebraically closed field and A ∈ Matn(F ). Let
Spec(A) be the set of all eigenvalues of A.

(a) Let λ ∈ F . Then λ ∈ Spec(A) if and only if JCF (A) contains at
least one Jordan λ-block (that is, a block of the form J(d, λ)).

(b) The characteristic polynomial χA(x) is equal to
∏

λ∈Spec(A)(x−λ)sλ

where sλ is the sum of sizes of all Jordan λ-blocks in JCF (A);
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(c) The minimal polynomial µA(x) is equal to
∏

λ∈Spec(A)(x−λ)mλ where
mλ is the maximum size of a Jordan λ-block in JCF (A).

Proof. Since Spec(A), χA(x) and µA(x) do not change under conjugation,
we can assume that A is in JCF. In this case (a) and (b) are obvious.

It is also clear that µA(x) is the least common multiple of the minimal
polynomials of the Jordan blocks. Thus, to prove (c) it is enough to show
that if A = J(d, λ) for some d ∈ N and λ ∈ F , then µA(x) = (x− λ)d, and
the latter can be verified by a simple computation. �

12.3. Computing JCF using ranks. Let F be an algebraically closed field
and A ∈ Matn(F ). We can determine the eigenvalues of A by computing the
characterisitc polynomial χA(x). The sizes of the Jordan blocks are often
easy to compute via the following observation.

Lemma 12.3. For each λ ∈ F and k ∈ N let nA(k, λ) be the number of
Jordan λ-blocks of size ≥ k in JCF (A). Then

nA(k, λ) = rk((A− λI)k−1)− rk((A− λI)k) (∗ ∗ ∗)

(here I is the identity matrix of suitable size)

Remark: Formula (***) holds for all λ ∈ F , not only for λ ∈ Spec(A).

Proof. As before, we can assume that A is in JCF.
Case 1: A has just one Jordan block, that is, A = J(d, µ).

If µ 6= λ, then clearly nA(k, λ) = 0 for each k, and on the other hand the
matrix (A− λI)k has maximal rank being invertible. Thus, (***) holds.

If λ = µ, then nA(k, λ) = 1 for k ≤ d and nA(k, λ) = 0 for k > d. On the
other hand, direct computation shows that

rk((A− λI)k =
{

d− k if k ≤ d
0 if k > d

Again, we see that (***) holds for each k.
Case 2: A has more than one Jordan block.

We can put A into a block-diagonal form with non-trivial blocks B and
C. Note that

(i) nA(k, λ) = nB(k, λ) + nC(k, λ)
(ii) rk((A− λI)k) = rk((B − λI)k) + rk((C − λI)k)

By induction (***) holds for both B and C. Combining this fact with (i)
and (ii), we get that (***) also holds for A. �

Remark: Lemma 12.3 gives an alternative proof of the uniqueness of JCF
(up to permutation of Jordan blocks).
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Corollary 12.4. Any matrix A ∈ Matn(F ) is similar to its transpose AT .

Proof. Let F ′ be an algebraically closed field containing F . By Corol-
lary 10.3 it is enough to prove that A and AT are similar in Matn(F ′).
Note that for each λ ∈ F ′ and k ∈ N we have ((A− λI)k)T = (AT − λI)k

(since (BC) = CT BT ), and therefore

rk((AT − λI)k) = rk((A− λI)k).

Lemma 12.3 now implies that A and AT have the same JCF (over F ′) and
hence must be similar in Matn(F ′). �

12.4. Root subspaces. In the last two subsections we fix an algebraically
closed field F , a f.d. vector space V over F and T ∈ gl(V ). For each λ ∈ F

let

Vλ = {v ∈ V : (T − λI)kv = 0 for some k ∈ N}.

The subspaces Vλ are called root subspaces (or generalized eigenspaces) of
T .
Note that Vλ 6= {0} if and only if λ is an eigenvalue of T and that Vλ always
contains the eigenspace Eλ = {v ∈ V : Tv = λv}.

Observation 12.5. The following are equivalent:

(i) T is diagonalizable, that is, T is represented by a diagonal matrix
with respect to some basis

(ii) All Jordan blocks in JCF (T ) have size 1
(iii) Vλ = Eλ for each eigenvalue λ of T

(iv) The minimal polynomial µT (x) has no multiple roots.

Proof. Follows immediately from what we have already proved. �

Lemma 12.6. The space V is a direct sum of the root subspaces Vλ:

V = ⊕λ∈Spec(T )Vλ.

Proof. By Theorem 12.1 we have a decomposition

V = V1 ⊕ . . .⊕ Vk (∗ ∗ ∗)

such that each Vi is T -invaraint, and if Ti = T|Vi
, then there is a basis Ωi of

Vi such that [Ti]Ωi is some Jordan block J(di, λi).
It is clear that for each λ ∈ Spec(T ) the root subspace Vλ is the (direct)

sum of all Vi for which λi = λ. This combined with (***) yields the lemma.
�
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12.5. A few words on computing a Jordan basis.

Definition. A basis Ω of V is called a Jordan basis for T if [T ]Ω is in JCF.

Below we discuss how to compute Jordan basis in two simple cases. A few
more complicated cases will be discussed in the homework, and a general
algorithm is given in Kevin McCrimmon’s ‘General exam guide’.

Case 1: T is diagonalizable. In this case we simply compute eigenvalues
of T , then for each eigenvalue λ compute the eigenspace Eλ (by solving the
equation Tv = λv) and pick a basis for each Eλ. By Observation 12.5 and
Lemma 12.6 the union of these bases is a Jordan basis for T .

Case 2: JCF (T ) has just one block. Let λ be the unique eigenvalue of
T . Clearly, we may replace T by T − λI (since any Jordan basis for T − λI

is also a Jordan basis for T ), and thus we may assume that λ = 0.
Let n = dim V . We know that if {e0, . . . , en−1} is a Jordan basis for T ,

then Te0 = 0 and Tei = ei−1 for i > 0. The following lemma is a partial
converse of this statement which also provides an algorithm for finding a
Jordan basis:

Lemma 12.7. The following hold:

(i) For any 0 ≤ k ≤ n we have Im T k = KerTn−k

(ii) Let vn−1 be any vector which does not lie in Im T = Ker Tn−1, and
set vi = Tvi+1 for n − 2 ≥ i ≥ 0. Then {v0, . . . , vn−1} is a Jordan
basis for T .

Proof. This is part of Homework #6. �


