1. Modules

Covention: This semester all rings will be assumed to have 1.

Definition. Let R be a ring. A left R-module is a set M with two operations:

- (1) binary operation + on M, that is a map + : $M \times M \rightarrow M$
- (2) an action of R on M, that is, a map $R \times M \to M$

 $(r, m) \mapsto rm$

satisfying the following axioms:

M1: $(M,+)$ is an abelian group M2: $(r + s)m = rm + sm$ for all $r, s \in R$ and $m \in M$ M3: $(rs)m = r(sm)$ for all $r, s \in R$ and $m \in M$ M4: $r(m+n) = rm + rn$ for all $r \in R$ and $m, n \in M$ M5: $1 \cdot m = m$ for all $m \in M$

Elements of R are often called scalars.

Remark: (1) Similarly one defines right R-modules, where the action is denoted by $(r, m) \mapsto mr$, and axioms M2-M5 are replaced by their "mirror" images.

(2) If R is commutative, left R-modules $=$ right R-modules

From now on by an R -module we will mean a left R -module.

1.1. Basic examples of modules.

1. Assume that R is a field. Then R-modules = vector spaces over R

2. Let R be any ring and $n \in \mathbb{N}$. Let $R^n = \{(r_1, \ldots, r_n) : r_i \in R\}$. Then R^n is an R-module where

$$
r(r_1,\ldots,r_n)=(rr_1,\ldots,rr_n).
$$

 $Rⁿ$ is called the standard free R-module of rank n.

3. Let R be any ring, S a subring of R with 1. Then R is an S-module with action = left-multiplication.

In particular, any ring R is a module over itself.

4. Let R be any ring. I an ideal of R. Then R/I is an R-module where $r(a+I) = ra + I.$

1.2. Modules over some special rings.

Modules over $\mathbb Z$

Claim 1.1. Modules over $\mathbb{Z} = abelian \ groups.$

"Proof". If M is a Z-module, then $(M, +)$ is an abelian group by definition. Conversely, if A is an abelian group, we can turn A into a \mathbb{Z} -module by setting

$$
na = \begin{cases} \underbrace{a + \dots + a}_{n \text{ times}} & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ \underbrace{a + \dots + a}_{-n \text{ times}} & \text{if } n < 0 \end{cases}
$$

Module axioms trivially holds.

There is no other way to make M a Z-module since for any $n \in \mathbb{N}$ and $a \in A$ we must have $na = (1 + ... + 1)$ \overline{n} times $(a = a + \ldots + a)$ \overline{n} times by M2 and M5; similarly we must have $0 \cdot a = a$ and $(-n) \cdot a = -(na)$.

In other works, an action of $\mathbb Z$ on M is completely determined by addition on M .

Modules over
$$
F[x]
$$
 where F is a field

Claim 1.2. Modules over $F[x] = pairs (V, A)$ where V is a vector space over F and $A: V \to V$ a linear transformation.

Sketch of the proof. (see $[DF, pp. 340-341]$ for more details) Let V be an $F[x]$ -module. Then V can also be considered as an F-module $=$ F-vector space.

Define a mapping $A: V \to V$ by $A(v) = xv$. By module axioms A is a linear transformation form V to V .

Conversely, given an F-vector space V and a linear transformation $A: V \rightarrow$ V, we want to make V into $F[x]$ -module such that $xv = A(v)$ for all $v \in V$. By module axioms we are forced to set

$$
(x2)v = x(xv) = A(xv) = A(A(v)) = A2(v).
$$

Similarly, $x^n v = A^n v$ for any $n \in \mathbb{N}$, and finally for any $p(x) \in F[x]$ we must have $p(x)v = (p(A))v$, that is,

$$
(c_n x^n + \ldots + c_0)v = (c_n A^n + \ldots + c_0)(v) \qquad (*)
$$

Thus, once we decided how x acts on V, the action of any element of $F[x]$ has to be given by $(***)$. We still have to verify that $(***)$ indeed defines an $F[x]$ -module structure on V, but this verification is routine.

1.3. Submodules, quotient modules and homomorphisms.

Definition. Let M be an R-module. A subset N of M is called an R-submodule if

- (1) N is a subgroup of $(M, +)$
- (2) for any $r \in R$, $n \in N$ we have $rn \in N$.

Example: Let R be a ring, $M = R$ (with action by left multiplication). Then submodules of $R =$ left ideals of R.

Definition. If M is an R-module and N is a submodule of M , we can define the quotient module M/N . As a set M/N is just the quotient group M/N , and R-action is given by

$$
r(m+N) = rm + N \text{ for all } r \in R, m \in M.
$$

Definition. If M and N are R-modules, a mapping $\varphi : M \to N$ is called a homomorphism of R-modules (alternatively φ is an R-linear mapping) if

(1) φ is a homomorphism of abelian group

(2) $\varphi(rm) = r\varphi(m)$ for all $r \in R, m \in M$.

1.4. Modules and group actions.

Definition. Let G be a group. The integral group ring $\mathbb{Z}[G]$ is defined as follows: as a set $\mathbb{Z}[G]$ is the collection of formal finite linear combinations of elements of G with integral coefficients, that is,

$$
\mathbb{Z}[G] = \big\{ \sum_{g \in G} n_g g : n_g \in \mathbb{Z} \text{ and only finitely many } n_g \text{ are nonzero.} \big\}
$$

Addition and multiplication on $\mathbb{Z}[G]$ are defined by setting

 $(\sum_{g \in G} n_g g) + (\sum_{g \in G} m_g g) = \sum_{g \in G} (n_g + m_g) g$ and $\left(\sum_{g\in G} n_g g\right)\cdot \left(\sum_{g\in G} m_g g\right)=\sum_{g\in G} l_g g$ where $l_g=\sum_{h\in G} n_h m_{h^{-1}g}$.

In other words, multiplication in $\mathbb{Z}[G]$ is obtained by first setting $g \cdot h$ to be the product of g and h in G and then uniquely extending to arbitrary elements of $\mathbb{Z}[G]$ by distributivity.

Theorem (HW#1, Problem 6). Let M be an abelian group. Show that there is a natural bijection between $\mathbb{Z}[G]$ -module structures on M and actions of G on M by group automorphisms (that is, actions of G on M such that for any $g \in G$ the map $m \mapsto gm$ is an automorphism of the abelian group $(M, +)$).