
Homework Assignment #6.

Plan for next week: Basic field theory and field extensions (13.1,13.2),
start algebraic closures (13.4).

Problems, to be submitted by Thu, March 18th.

Problem 1: V be a finite-dimensional vector space over an algebraically
closed field and T ∈ gl(V ). Assume that T has just one eigenvalue λ and
just one Jordan block. Let S = T − λI and n = dim V .

(a) Prove that rk(Sk) = n − k for 0 ≤ k ≤ n. Deduce that =(Sk) =
Ker (Sn−k) for 0 ≤ k ≤ n.

(b) Let v ∈ V be any vector which lies outside of =(S) = Ker (Sn−1) (why
does such vector exist)? Prove that {Sn−1v, . . . , Sv, v} is a Jordan basis
for T .

Problem 2: Again let V be a finite-dimensional vector space over an alge-
braically closed field, T ∈ gl(V ) and n = dim V.

(a) Assume that T has unique eigenvalue 0 and two Jordan blocks: a 1× 1
block and a 2 × 2 block (so n = 3). Justify the following algorithm
for computing a Jordan basis for T : Take any v ∈ V \ Ker (T ) and
choose w ∈ Ker (T ) such that {w, Tv} is a basis for Ker (T ) (why is
this possible?); then {w, Tv, v} is a Jordan basis for T .

(b) Assume that T has unique eigenvalue 0 and two Jordan blocks, both
of which are 2× 2 (so n = 4). State an algorithm for finding a Jordan
basis similar to the one in (a).

(c) Assume that for each λ ∈ Spec(T ) there is only one Jordan λ-block
in JCF (T ). Decribe an algoirhtm for computing a Jordan basis of
T . Hint: You just need a minor generalization of the algorithm in
Problem 1.

Problem 3: Compute the Jordan canonical form and a Jordan basis for
each of the following matrices over Q:

(a)

−1 3 0
0 2 0
2 1 −1

 (b)

1 −1 1
1 −1 1
1 −1 0
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Problem 4: Let F = F3 be the field with 3 elements and let A be a 12× 12
matrix over F satisfying the following conditions:

rk(A) = 10 rk(A2) = 9 rk(A3) = 9 (1)

rk(A− 1) = 12 (2)

rk(A− 2) = 9 rk((A− 2)2) = 7 rk((A− 2)3) = 6 (3)

(a) Assume in addition that χA(x) splits completely over F , that is, χA(x)
is a product of linear factors in F [x]. Find the Jordan canonical form
of A.

(b) Find all possible RCFs of matrices A satisfying (1)-(3) (without the
extra assumption in (a))

Problem 5: Let V be a finite-dimensional vector space over a field. Let
T : V → V be a diagonalizable linear transformation, let λ1, . . . , λk be
the eigenvalues of T and V1, . . . , Vk the corresponding eigenspaces so that
V = V1 ⊕ . . .⊕ Vk.

(a) Prove that a subspace U of V is T -invariant ⇐⇒ U = ⊕k
i=1(U ∩ Vi).

(b) Use (a) to show that every T -invariant subspace U of V has a T -
invariant complement, that is, there exists a T -invariant subspace W
such that V = U ⊕W .

Hint for (a): The backwards direction is easy; here is a sketch of the proof
in the forward direction. Since V = V1 ⊕ . . . ⊕ Vk, each vector v ∈ V can
be uniquely written as v =

∑k
i=1[v]i where [v]i ∈ Vi. Express [Tv]i, [T 2v]i

etc. in terms of [v]i (easy). Next prove that for any v ∈ V the vectors
[v]1, . . . , [v]k lies in the span of {v, Tv, T 2v, . . . , T k−1v} – this follows from
a basic result on the Vandermonde determinant (look it up on Wikipedia).
The last statement easily implies the forward direction in (a).

Problem 6: Let V = C∞(R) be the space of all infinitely differentiable
functions on the real line and T = d

dx
: V → V the differentiation operator.

Find all eigenvalues of T and the corresponding root subspaces (=generalzed
eigenspaces). Hint: Start by computing the root subspace corresponding to
λ = 0.

Problem 7: (optional) Problem 27 on p.358 of [DF]. It shows that the rank
of a free R-module over a non-commutative ring R may not be well defined.
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